Распределение максвелла определяет. Функция распределения максвелла

  • В большом числе случаев знание одних средних значений физических величин недостаточно. Например, знание среднего роста людей не позволяет планировать выпуск одежды различных размеров. Надо знать приблизительное число людей, рост которых лежит в определенном интервале.

    Точно так же важно знать числа молекул, имеющих скорости, отличные от среднего значения. Максвелл первым нашел, как эти числа можно определять.

Вероятность случайного события

В § 4.1 мы уже упоминали, что для описания поведения большой совокупности молекул Дж. Максвелл ввел понятие вероятности.

Как неоднократно подчеркивалось, в принципе невозможно проследить за изменением скорости (или импульса) одной молекулы на протяжении большого интервала времени. Нельзя также точно определить скорости всех молекул газа в данный момент времени. Из макроскопических условий, в которых находится газ (определенный объем и температура), не вытекают с необходимостью определенные значения скоростей молекул. Скорость молекулы можно рассматривать как случайную величину, которая в данных макроскопических условиях может принимать различные значения, подобно тому как при бросании игральной кости может выпасть любое число очков от 1 до 6 (число граней кости равно шести). Предсказать, какое число очков выпадет при данном бросании кости, нельзя. Но вероятность того, что выпадет, скажем, пять очков, поддается определению.

Что же такое вероятность наступления случайного события? Пусть произведено очень большое число N испытаний (N - число бросаний кости). При этом в N" случаях имел место благоприятный исход испытаний (т. е. выпадение пятерки). Тогда вероятность данного события равна отношению числа случаев с благоприятным исходом к полному числу испытаний при условии, что это число сколько угодно велико:

Для симметричной кости вероятность любого выбранного числа очков от 1 до 6 равна .

Мы видим, что на фоне множества случайных событий обнаруживается определенная количественная закономерность, появляется число. Это число - вероятность - позволяет вычислять средние значения. Так, если произвести 300 бросаний кости, то среднее число выпаданий пятерки, как это следует из формулы (4.6.1), будет равно 300 = 50, причем совершенно безразлично, бросать 300 раз одну и ту же кость или одновременно 300 одинаковых костей.

Несомненно, что поведение молекул газа в сосуде гораздо сложнее движения брошенной игральной кости. Но и здесь можно надеяться обнаружить определенные количественные закономерности, позволяющие вычислять статистические средние, если только ставить задачу так же, как в теории игр, а не как в классической механике. Нужно отказаться от неразрешимой задачи определения точного значения скорости молекулы в данный момент и попытаться найти вероятность того, что скорость имеет определенное значение.

Распределение молекул по скоростям - распределение Максвелла

Максвелл допустил, что в газах в состоянии теплового равновесия существует некоторое распределение скоростей, не изменяющееся с течением времени, иными словами, число молекул, имеющих скорости в заданном интервале значений, остается постоянным. И Максвелл нашел это распределение.

Но главная заслуга Максвелла состояла не столько в решении этой задачи, сколько в самой постановке новой проблемы. Он ясно осознал, что случайное в данных макроскопических условиях поведение отдельных молекул подчинено определенному вероятностному, или статистическому, закону. Этот статистический закон для распределения молекул газа по скоростям оказался сравнительно простым.

Наглядно распределение молекул по скоростям можно представить следующим образом. Выберем прямоугольную систему отсчета, на осях которой будем откладывать проекции v x , v y , v z скоростей частиц. В результате получится трехмерное «пространство скоростей», каждая точка которого соответствует молекуле со строго заданной скоростью v, равной по модулю длине радиуса-вектора, проведенного из начала системы отсчета в эту точку (рис. 4.7).

Рис. 4.7

Общее представление о распределении молекул по скоростям получится, если скорость каждой из N молекул изобразить точкой в этом пространстве скоростей (рис. 4.8). Точки окажутся расположенными довольно хаотически, но в среднем плотность точек будет убывать по мере удаления от начала отсчета (не все значения скоростей молекул встречаются одинаково часто).

Рис. 4.8

Картина распределения точек, конечно, не является застывшей. С течением времени скорости молекул за счет столкновений меняются и, следовательно, меняется картина распределения точек в пространстве скоростей. Однако ее изменение таково, что средняя плотность точек в любой области пространства скоростей со временем не будет изменяться, она остается одной и той же. Именно это и означает существование определенного статистического закона. Средней плотности соответствует наиболее вероятное распределение скоростей.

Число точек AN в некотором малом объеме Δv x Δv y Δv z пространства скоростей, очевидно, равно этому объему, помноженному на плотность точек внутри него. (Аналогично масса Δm некоторого объема ΔV равна произведению плотности вещества ρ на этот объем: Δm = ρΔV.) Обозначим через Nf(v x , v y , v z) среднюю плотность точек в пространстве скоростей, т. е. число точек, приходящихся на единицу объема пространства скоростей (N - общее число молекул газа). Тогда

Фактически ΔN - это число молекул, проекции скоростей которых лежат в интервалах значений от v x до v x + Δv x , от v y до v y + Δv y и от v z до v z + Δv z (радиусы-векторы скоростей этих молекул оканчиваются внутри объема пространства скоростей Δv = Δv x Δv y Δv z , имеющего форму куба (см. рис. 4.8).

Вероятность того, что проекции скорости молекулы лежат в заданном интервале скоростей, равна отношению числа молекул с данным значением скорости к полному числу молекул:

Функция f(v x , v y , v z) называется функцией распределения молекул по скоростям и представляет собой плотность вероятности, т. е. вероятность, отнесенную к единичному объему пространства скоростей.

Скорости молекул в данный момент времени в принципе могут оказаться любыми. Но вероятность различных распределений скоростей неодинакова. Среди всех возможных мгновенных распределений имеется одно, вероятность которого больше, чем всех других, - наиболее вероятное распределение. Максвелл установил, что функция распределения f(v x , v y , v z), дающая это наивероятнейшее распределение скоростей молекул (распределение Максвелла), определяется отношением кинетической энергии молекулы

к средней энергии ее теплового движения kT (k - постоянная Больцмана). Это распределение имеет вид

Здесь е ≈ 2,718 - основание натуральных логарифмов, а величина А не зависит от скорости.

Таким образом, по Максвеллу, плотность точек, изображающих молекулы в пространстве скоростей, максимальна вблизи начала отсчета (v = 0) и убывает с ростом v, причем тем быстрее, чем меньше энергия теплового движения kT. На рисунке 4.9 представлена зависимость функции распределения f от проекции v x при условии, что проекции v y и v z любые. Функция распределения имеет характерную колоколообразную форму, которая часто встречается в статистических теориях и называется кривой Гаусса.

Рис. 4.9

Постоянную А находят из условия, что вероятность для скорости молекулы иметь любое значение от нуля до бесконечности должна равняться единице. Это условие называется условием нормировки. (Аналогично вероятность выпадания любого числа очков от 1 до 6 при данном бросании игральной кости равна единице.) Полная вероятность получается сложением вероятностей всех возможных взаимоисключающих реализаций случайного события.

Суммируя вероятности ΔW i всех возможных значений скорости i , получим уравнение

Вычислив с помощью уравнения (4.6.5) нормировочную постоянную А, можно записать выражение для среднего числа частиц со скоростями в заданном интервале в следующей форме:

Скорость любой молекулы в данный момент времени - случайная величина. Поэтому и само распределение молекул по скоростям в данный момент времени случайно. Но среднее распределение, определяемое статистическим законом, реализуется с необходимостью в определенных макроскопических условиях и не меняется со временем. Однако всегда есть отклонения от средних - флуктуации. Эти отклонения с равной вероятностью происходят в ту и в другую сторону. Именно поэтому в среднем имеется определенное распределение молекул по скоростям.

Распределение молекул по скоростям Максвелла оказывается справедливым не только для газов, но и для жидкостей и твердых тел. Лишь в том случае, когда для описания движения частиц нельзя применить классическую механику, распределение Максвелла перестает быть верным.

Распределение модулей скоростей молекул

Найдем среднее число молекул, скорости которых по модулю лежат в интервале от v до v + Δv.

Распределение Максвелла (4.6.4) определяет число молекул, проекции скоростей которых лежат в интервалах значений от v x до v x + Δv x , от v y до v y + Δv y , от v z до v z + Δv z . Векторы этих скоростей оканчиваются внутри объема Δv x Δu y Δv z (см. рис. 4.8). Таким образом задается среднее число молекул, имеющих определенный модуль и определенное направление скоростей, задаваемые положением объема Δv x Δu y Δv z в пространстве скоростей.

Все молекулы, модули скоростей которых лежат в интервале от v до и + Δv, располагаются в пространстве скоростей внутри шарового слоя радиусом v и толщиной Δv (рис. 4.10). Объем шарового слоя равен произведению площади поверхности слоя на его толщину: 4πv 2 Δv.

Рис. 4.10

Число молекул, находящихся внутри этого слоя и, следовательно, обладающих заданными значениями модуля скорости в интервале от v до v + Δv, может быть найдено из формулы (4.6.2), если заменить объем Δv x Δu y Δv z на объем 4πv 2 Δv.

Таким образом, искомое среднее число молекул равно

Так как вероятность определенного значения модуля скорости молекулы равна отношению , то для плотности вероятности получим

График, выражающий зависимость этой функции от скорости, показан на рисунке 4.11. Мы видим, что функция f(v) имеет максимум уже не в нуле, как плотность вероятности f(v x , v y , v z). Причина этого состоит в следующем. Плотность точек, изображающих молекулы в пространстве скоростей, по-прежнему будет наибольшей вблизи v = 0, но за счет роста объемов шаровых слоев с увеличением модулей скоростей (~ v 2) происходит увеличение функции f(v). При этом число точек внутри шарового слоя растет быстрее, чем убывает функция f(v x , v y , v z) вследствие уменьшения плотности точек.

Рис. 4.11

Можно пояснить сказанное наглядным примером. Допустим, обычную мишень с концентрическими кругами обстреливает достаточно меткий стрелок. Попадания пуль концентрируются вокруг центра мишени. Плотность попаданий - число попаданий на единицу площади - будет максимальной вблизи центра мишени. Разделим мишень на отдельные узкие полоски шириной Δx (рис. 4.12, а). Тогда отношение числа попаданий на данную полоску к ее ширине будет максимально вблизи центра мишени.

Рис. 4.12

Зависимость отношения числа попаданий в данную полоску к ее ширине имеет вид, показанный на рисунке 4.12, б. Здесь опять получается гауссова кривая, как и для распределения f(v x) по проекциям скоростей (см. рис. 4.9).

Но совсем другой результат получится, если подсчитывать число попаданий в различные кольца мишени. В этом случае отношение числа попаданий в кольцо радиусом г к его ширине графически будет характеризоваться кривой, изображенной на рисунке 4.12, в. Хотя плотность попаданий по мере удаления от центра мишени убывает, но площади колец растут пропорционально r, что и приводит к смещению максимума кривой от нуля.

Наиболее вероятная скорость молекул

Зная формулу (4.6.8) для плотности вероятности модулей скоростей молекул, можно найти значение скорости, соответствующей максимуму плотности этой вероятности(1). Скорость (ее называют наиболее вероятной) оказывается равной

Большинство молекул имеют скорости, близкие к наиболее вероятной (см. рис. 4.11).

По мере увеличения абсолютной температуры Т наиболее вероятная скорость увеличивается и при этом кривая зависимости До) становится все более сглаженной (рис. 4.13).

Рис. 4.13

Роль быстрых молекул

При любой температуре имеется некоторое количество молекул, скорости которых, а значит, и кинетические энергии, заметно превышают средние.

Известно, что многие химические реакции, например горение обычных видов топлива (дрова, уголь и т. д.), начинаются только при определенной, достаточно высокой температуре. Энергия, необходимая для начала процесса окисления топлива, т. е. горения (ее называют энергией активации), имеет порядок 10 -19 Дж. А при температуре 293 К (комнатная температура) средняя кинетическая энергия теплового движения молекул составляет примерно 5 10 -21 Дж. Поэтому горение не происходит. Однако увеличение температуры всего лишь в 2 раза (до 586 К) вызывает воспламенение. Средняя энергия молекул увеличивается при этом тоже в 2 раза, но число молекул, кинетическая энергия которых превышает 10 -19 Дж, увеличивается в 10 8 раз. Это следует из распределения Максвелла. Поэтому при температуре 293 К вы чувствуете себя, читая книгу, комфортно, а при 586 К книга начинает гореть.

Испарение жидкости также определяется быстрыми молекулами правого «хвоста» максвелловского распределения. Энергия связи молекул воды при комнатной температуре значительно больше кТ. Тем не менее испарение происходит за счет небольшого числа быстрых молекул, у которых кинетическая энергия превышает кТ.

Максвелл открыл новый тип физического закона - статистический - и нашел распределение молекул по скоростям. Он отчетливо понимал значение своего открытия. В докладе Кембриджскому философскому обществу Максвелл сказал: «Я считаю, что наиболее важное значение для развития наших методов мышления молекулярные теории имеют потому, что они заставляют делать различие между двумя методами познания, которые мы можем назвать динамическим и статистическим».

(1) Это делается по правилам нахождения максимума известной функции. Нужно вычислить производную этой функции по скорости и приравнять ее нулю.

Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным.

В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на Δυ x , Δυ y , Δυ z , причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. При этом мы не можем ничего определенного сказать о точном значении скорости той или иной частицы υ i , поскольку за столкновениями и движениями каждой из молекул невозможно проследить ни в опыте, ни в теории. Такая детальная информация вряд ли имела бы практическую ценность.

Распределение молекул идеального газа по скоростям впервые было получено знаменитым английским ученым Дж. Максвеллом в 1860 году с помощью методов теории вероятностей.


Вывод формулы функции распределения молекул по скоростям есть в учебнике Ю.И Тюрина и др. (ч. 1) или И.В. Савельева (т. 1). Мы воспользуемся результатами этого вывода.

Скорость – векторная величина. Для проекции скорости на ось х (x -й составляющей скорости) из (2.2.1) имеем

Тогда

(2.3.1)

Где А 1 – постоянная, равная

Графическое изображение функции показано на рисунке 2.2. Видно, что доля молекул со скоростью не равна нулю. При , (в этом физический смысл постоянной А1).

Приведённое выражение и график справедливы для распределения молекул газа по x-компонентам скорости. Очевидно, что и по y - и z -компонентам скорости также можно получить:

Где , или

(2.3.2)

Формуле (2.3.2) можно дать геометрическое истолкование: dn xyz – это число молекул в параллелепипеде со сторонами dυ x , dυ y , dυ z , то есть в объёме dV =dυ x dυ y dυ z (рис. 2.3), находящемся на расстоянии от начала координат в пространстве скоростей.

Эта величина (dn xyz ) не может зависеть от направления вектора скорости . Поэтому надо получить функцию распределения молекул по скоростям независимо от их направления, то есть по абсолютному значению скорости.

Если собрать вместе все молекулы в единице объёма, скорости которых заключены в интервале от υ до υ+dυ по всем направлениям, и выпустить их, то они окажутся через одну секунду в шаровом слое толщиной dυ и радиусом υ (рис. 2.4). Этот шаровой слой складывается из тех параллелепипедов, о которых говорилось выше.

Общее число молекул в слое, как следует из (2.3.2)

Где – доля всех частиц в шаровом слое объема dV , скорости которых лежат в интервале от υ до υ+dυ.

При dυ = 1 получаем плотность вероятности , или функцию распределения молекул по скоростям:

(2.3.4)

Эта функция обозначает долю молекул единичного объёма газа, абсолютные скорости которых заключены в единичном интервале скоростей, включающем данную скорость.

Обозначим: тогда из (2.3.4) получим:

(2.3.5)

График этой функции показан на рисунке 2.5.

Выводы:

Рассмотрим пределы применимости классического описания распределения частиц по скоростям. Для этого воспользуемся соотношением неопределенностей Гейзенберга. Согласно этому соотношению координаты и импульс частицы не могут одновременно иметь определенное значение. Классическое описание возможно, если выполнены условия:

Здесь – постоянная Планка – фундаментальная константа, определяющая масштаб квантовых (микроскопических) процессов.

Таким образом, если частица находится в объеме , то в этом случае возможно описание ее движения на основе законов классической механики.

Наиболее вероятная, среднеквадратичная и средняя арифметическая скорости молекул газа

Рассмотрим, как изменяется с абсолютной величиной скорости число частиц, приходящихся на единичный интервал скоростей, при единичной концентрации частиц.

График функции распределения Максвелла

,

Приведен на рисунке 2.6.

Из графика видно, что при «малых» υ, т.е. при , имеем ; затем достигает максимума А и далее экспоненциально спадает .

Величину скорости, на которую приходится максимум зависимости , называют наиболее вероятной скоростью.

Найдем эту скорость из условия равенства производной .

Среднюю квадратичную скорость найдем, используя соотношение : Средняя арифметическая скорость:
. .

Где – число молекул со скоростью от υ до υ+dυ. Если подставить сюда f (υ) и вычислить, то получим: В таком виде

кроме того

Максвелловский закон распределения по скоростям и все вытекающие следствия справедливы только для газа в равновесной системе. Закон статистический, и выполняется тем лучше, чем больше число молекул.

Лекция 5

В результате многочисленных соударений молекул газа между собой (~10 9 столкновений за 1 секунду) и со стенками сосуда, устанавливается некоторое статистическое распределение молекул по скоростям. При этом все направления векторов скоростей молекул оказываются равновероятными, а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям.

При столкновениях скорости молекул изменяются случайным образом. Может оказаться, что одна из молекул в ряде столкновений будет получать энергию от других молекул и ее энергия будет значительно больше среднего значения энергии при данной температуре. Скорость такой молекулы будет большая, но, все-таки она будет иметь конечное значение, так как максимально возможная скорость – скорость света - 3·10 8 м/с. Следовательно, скорость молекулы вообще может иметь значения от 0 до некоторой υ max . Можно утверждать, что очень большие скорости по сравнению со средними значениями, встречаются редко, также как и очень малые.

Как показывают теория и опыты распределение молекул по скоростям не случайное, а вполне определенное. Определим сколько молекул, или какая часть молекул обладает скоростями, лежащими в некотором интервале вблизи заданной скорости.

Пусть в данной массе газа содержится N молекул, при этом dN молекул обладают скоростями, заключенными в интервале от υ до υ +. Очевидно, что это число молекул dN пропорционально общему числу молекул N и величине заданного интервала скорости

где a - коэффициент пропорциональности.

Также очевидно, что dN зависит и от величины скорости υ , так как в одинаковых по величине интервалах, но при разных абсолютных значениях скорости число молекул будет различным (пример: сравните число живущих в возрасте 20 – 21 год и 99 – 100 лет). Это значит, что коэффициент a в формуле (1) должен быть функцией скорости.

С учетом этого перепишем (1) в виде

Из (2) получим

Функция f (υ ) называется функцией распределения. Ее физический смысл следует из формулы (3)

Следовательно, f (υ ) равна относительной доле молекул, скорости которых заключены в единичном интервале скоростей вблизи скорости υ . Более точно функция распределения имеет смысл вероятности любой молекуле газа иметь скорость, заключенную в единичном интервале вблизи скорости υ . Поэтому ее называют плотностью вероятности .

Проинтегрировав (2) по всем значениям скоростей от 0 до получим

Из (5) следует, что

Уравнение (6) называется условием нормировки функции. Оно определяет вероятность того, что молекула имеет одно из значений скорости от 0 до . Скорость молекулы имеет какое-нибудь значение: это событие достоверное и его вероятность равна единице.



Функция f (υ ) была найдена Максвеллом в 1859 году. Она была названа распределением Максвелла :

где A – коэффициент, который не зависит от скорости, m – масса молекулы, T – температура газа. Используя условие нормировки (6) можно определить коэффициент A :

Взяв этот интеграл, получим A :

С учетом коэффициента А функция распределения Максвелла имеет вид:

При возрастании υ множитель в (8) изменяется быстрее, чем растет υ 2 . Поэтому функция распределения (8) начинается в начале координат, достигает максимума при некотором значении скорости, затем уменьшается, асимптотически приближаясь к нулю (рис.1).

Рис.1. Максвелловское распределение молекул

по скоростям. T 2 > T 1

Используя кривую распределения Максвелла можно графически найти относительное число молекул, скорости которых лежат в заданном интервале скоростей от υ до (рис.1, площадь заштрихованной полоски).

Очевидно, что вся площадь, находящаяся под кривой дает общее число молекул N . Из уравнения (2) с учетом (8) найдем число молекул, скорости которых лежат в интервале от υ до

Из (8) также видно, что конкретный вид функции распределения зависит от рода газа (масса молекулы m ) и от температуры и не зависит от давления и объема газа.

Если изолированную систему вывести из состояния равновесия и предоставить самой себе, то через некоторый промежуток времени она вернется в состояние равновесия. Этот промежуток времени называется временем релаксации . Для различных систем он различный. Если газ находится в равновесном состоянии, то распределение молекул по скоростям не изменяется с течением времени. Скорости отдельных молекул беспрерывно изменяются, однако число молекул dN , скорости которых лежат в интервале от υ до все время остается постоянным.

Максвелловское распределение молекул по скоростям всегда устанавливается, когда система приходит в состояние равновесия. Движение молекул газа хаотичное. Точное определение хаотичности тепловых движений следующее: движение молекул полностью хаотично, если скорости молекул распределены по Максвеллу . Отсюда следует, что температура определяется средней кинетической энергией именно хаотичных движений . Как бы ни велика была бы скорость сильного ветра, она не сделает его «горячим». Ветер даже самый сильный, может быть и холодным и теплым, потому что температура газа определяется не направленной скоростью ветра, а скоростью хаотического движения молекул.

Из графика функции распределения (рис.1) видно, что число молекул, скорости которых лежат в одинаковых интервалах dυ , но вблизи различных скоростей υ , больше в том случае если скорость υ приближается к скорости, которая соответствует максимуму функции f (υ ). Эта скорость υ н называется наивероятнейшей (наиболее вероятной).

Продифференцируем (8) и приравняем производную к нулю:

то последнее равенство выполняется когда:

Уравнение (10) выполняется при:

Первые два корня соответствуют минимальным значениям функции. Тогда скорость, которая соответствует максимуму функции распределения, найдем из условия:

Из последнего уравнения:

где R – универсальная газовая постоянная, μ – молярная масса.

С учетом (11) из (8) можно получить максимальное значение функции распределения

Из (11) и (12) следует, что при повышении T или при уменьшении m максимум кривой f (υ ) сдвигается вправо и становится меньше, однако площадь под кривой остается постоянной (рис.1).

Для решения многих задач удобно пользоваться распределением Максвелла в приведенном виде. Введем относительную скорость:

где υ – данная скорость, υ н – наивероятнейшая скорость. С учетом этого уравнение (9) принимает вид:

(13) – универсальное уравнение. В таком виде функция распределения не зависит ни от рода газа, ни от температуры.

Кривая f (υ ) ассиметрична. Из графика (рис.1) видно, что большая часть молекул имеет скорости большие, чем υ н . Асимметрия кривой означает, что средняя арифметическая скорость молекул не равна υ н . Средняя арифметическая скорость равна сумме скоростей всех молекул, деленная на их число:

Учтем, что согласно (2)

Подставив в (14) значение f (υ ) из (8) получим среднюю арифметическую скорость:

Средний квадрат скорости молекул получим, вычислив отношение суммы квадратов скоростей всех молекул к их числу:

После подстановки f (υ ) из (8) получим:

Из последнего выражения найдем среднюю квадратичную скорость:

Сопоставляя (11), (15) и (16) можно сделать вывод, что, и одинаково зависят от температуры и отличаются только численными значениями: (рис.2).

Рис.2. Распределение Максвелла по абсолютным значениям скоростей

Распределение Максвелла справедливо для газов находящихся в состоянии равновесия, рассматриваемое число молекул должно быть достаточно большим. Для малого числа молекул могут наблюдаться значительные отклонения от распределения Максвелла (флуктуации).

Первое опытное определение скоростей молекул провел Штерн в 1920 году. Прибор Штерна состоял из двух цилиндров разных радиусов, закрепленных на одной оси. Воздух из цилиндров был откачен до глубокого вакуума. Вдоль оси натягивалась платиновая нить, покрытая тонким слоем серебра. При пропускании по нити электрического тока она нагревалась до высокой температуры (~1200 о С), что приводило к испарению атомов серебра.

В стенке внутреннего цилиндра была сделана узкая продольная щель, через которую проходили движущиеся атомы серебра. Осаждаясь на внутренней поверхности внешнего цилиндра, они образовывали хорошо наблюдаемую тонкую полоску прямо напротив прорези.

Цилиндры начинали вращать с постоянной угловой скоростью ω. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полета внешний цилиндр успевал повернуться на некоторый угол. При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние l .

В точке 1 оседают частицы, когда установка неподвижна, при вращении установки частицы оседают в точке 2.

Полученные значения скоростей подтвердили теорию Максвелла. Однако о характере распределения молекул по скоростям этот метод давал приблизительные сведения.

Более точно распределение Максвелла было проверено опытами Ламмерта, Истэрмана, Элдриджа и Коста . Эти опыты достаточно точно подтвердили теорию Максвелла.

Прямые измерения скорости атомов ртути в пучке были выполнены в 1929 году Ламмертом . Упрощенная схема этого эксперимента показана на рис. 3.

Рис.3. Схема опыта Ламмерта
1 - быстро вращающиеся диски, 2 - узкие щели, 3 - печь, 4 - коллиматор, 5 - траектория молекул, 6 – детектор

Два диска 1, насаженные на общую ось, имели радиальные прорези 2, сдвинутые друг относительно друга на угол φ . Напротив щелей находилась печь 3, в которой нагревался до высокой температуры легкоплавкий металл. Разогретые атомы металла, в данном случае ртути, вылетали из печи и с помощью коллиматора 4 направлялись в необходимом направлении. Наличие двух щелей в коллиматоре обеспечивало движение частиц между дисками по прямолинейной траектории 5. Далее атомы, прошедшие прорези в дисках, регистрировались с помощью детектора 6. Вся описанная установка помещалась в глубокий вакуум.

При вращении дисков с постоянной угловой скоростью ω, через их прорези беспрепятственно проходили только атомы, имевшие некоторую скорость υ . Для атомов, проходящих обе щели должно выполняться равенство:

где Δt 1 - время пролета молекул между дисками, Δt 2 - время поворота дисков на угол φ . Тогда:

Изменяя угловую скорость вращения дисков можно было выделять из пучка молекулы, имеющие определенную скорость υ , и по регистрируемой детектором интенсивности судить об относительном содержании их в пучке.

Таким способом удалось экспериментально проверить Максвелловский закон распределения молекул по скоростям.

Для выяснения способа, которым можно количественно описать распределение молекул по значениям скорости, воспользуемся следующим приемом. Возьмем в воображаемом пространстве, которое мы будем называть -пространством (пространством скоростей), прямоугольные координатные оси, по которым станем откладывать значения отдельных молекул (имеются в виду компоненты скорости по осям х, у и z, взятым в обычном Пространстве). Тогда скорости каждой молекулы будет соответствовать точка в этом пространстве. Из-за столкновений положения точек будут непрерывно меняться, но их плотность в каждом месте будет оставаться неизменной (напомним, что рассматривается равновесное состояние газа).

Вследствие равноправности всех направлений движения расположение точек относительно начала координат будет сферически симметричным. Следовательно, плотность точек в пространстве может зависеть только от модуля скорости v (или от ). Обозначим эту плотность через - полное число молекул в данной массе газа). Тогда количество молекул, компоненты скоростей которых лежат в пределах от до можно представить в виде

(произведение дает элемент объема в пространстве).

Точки, изображающие скорости, величина которых заключена в пределах от v до попадают в область, лежащую между сферами радиусов v и (рис. 98.1). Объем области равен Следовательно, число точек, находящихся в этой области, определяется выражением

Это выражение дает число молекул, величина скоростей которых лежит в интервале от v до Разделив его на N, получим вероятность того, что скорость молекулы окажется в пределах от v до

Из сравнения этого выражения с (93.6) заключаем, что

играет роль функции распределения молекул газа по скоростям.

Вид функции (98.4) был установлен теоретически Максвеллом в 1860 г. В изложенном ниже выводе закона распределения молекул газа по скоростям мы примерно следуем Максвеллу.

Согласно формуле (93.6) вероятность того, что компонента скорости некоторой молекулы имеет значение в пределах от до может быть представлена в виде

где - функция распределения. Аналогичные вероятности для двух других компонент определяются выражениями

В силу равноправности всех направлений движения аналитический вид функций должен быть одинаков, эти функции отличаются лишь обозначением аргумента.

Максвелл предположил, что вероятность различных значений одной из компонент, например не зависит от того, какова величина остальных двух компонент (в данном случае ). Это означает, что события, заключающиеся в том, что некоторой молекулы находится в пределах от до той же молекулы - в пределах от до и, наконец, той же молекулы - в пределах от до являются статистически независимыми. Поэтому вероятность того, что компоненты скорости некоторой молекулы имеют значения, лежащие в пределах от до равна произведению вероятностей (98.5); (98.6) и (98.7):

(см. формулу (93.4)). Вместе с тем, согласно (98.1), эта вероятность может быть, представлена в виде

Сравнение выражений (98.8) и (98.9) дает, что

Взяв логарифм от обеих частей этого равенства, получим:

Продифференцируем полученное соотношение по

Поскольку частная производная от v по равна

Подставив это значение производной в (98.11) и перенеся затем числителя левой части в знаменатель правой, придем к равенству

Правая часть этого равенства, а значит и левая часть, не зависит от переменных Следовательно, она не может зависеть и от входят в симметрично; см. (98.10)). Таким образом, каждое из выражений, стоящих слева и справа в (98.12), равно некоторой константе, которую мы обозначим, через -а (впоследствии выяснится, что эта константа меньше нуля, т. е. ). Итак,

Интегрирование дает, что

где А - константа. Отсюда

Аналогично

Перемножив найденные функции, найдем, что

Из вида функций (98.13) и (98.14) следует, что постоянная а должна быть больше нуля. Если бы она была отрицательной, эти функции неограниченно возрастали бы при увеличении V.

Постоянная А определяется из условия нормировки (93.7). Согласно этому условию

В § 94 отмечалось, что значения v (а значит и иж) не могут превысить некоторое, хотя и очень большое, но конечное значение . Вместе с тем, в качестве пределов интегрирования мы взяли Такое расширение пределов интегрирования не вносит ощутимой ошибки. Подынтегральная функция убывает о ростом столь быстро, что при достаточно больших она практически не отличается от нуля. Поэтому вклад участков интегрирования от до и от до является пренебрежимо малым.

Интеграл в (98.15) представляет собой интеграл Пуассона с (см. Приложение I, формулу (1.1)). Согласно (1.3)

Подставив это значение в (98.15), получим, что Отсюда

Подстановка найденного значения А в (98.13) и (98.14) приводит к формулам

Чтобы найти постоянную а, вычислим с помощью функции (98.18) значение и приравняем полученное выражение найденному из вычисления давления значению (см. (97.3)). В соответствии в (93.11)

Согласно формуле (1.4)

Заменив в (98.20) интеграл его значением (98.21), найдем, что

Сопоставление с (97.3) дает

Подстановка этого значения в формулы (98.18) и (98.19) приводит к окончательным выражениям для функций распределения:

Напомним, что функция (98.24), будучи умноженной на N, определяет плотность точек, изображающих скорости молекул в -пространстве. Умножив эту функцию на мы найдем вероятность того, что компоненты скорости лежат в пределах от до При этом не только величина скорости, но и ее направление варьируются лишь в небольших пределах, определяемых Если нас интересует вероятность только величины скорости, независимо от направления движения молекулы, т. е. , то нужно взять функцию распределения в виде (98.4).

Умножение этой функции на дает вероятность того, что модуль скорости некоторой молекулы окажется (при произвольном направлении движения) в пределах от v до

Согласно (98.4) и (98.24)

Характерным для этой функции является то обстоятельство, что в показателе экспоненты стоит взятое со знаком минус отношение кинетической энергии молекулы, отвечающей рассматриваемой скорости v, к , т. е. величине, характеризующей среднюю энергию молекул газа.

График функции (98.23) изображен на рис. 98.2. Он совпадает с гауссовой кривой распределения случайной величины.

График функции (98.25) дан на рис. 98.3. Поскольку при возрастании v множитель вида убывает быстрее, чем растет множитель функция, начинаясь в нуле (из-за ), достигает максимума и затем асимптотически стремится к нулю.

Площадь, охватываемая кривой, равна единице (ср. с (93.7)).

Найдем среднюю скорость молекул (имеется в виду средняя арифметическая скорость). По аналогии с (93.9) имеем:

Переход к переменной и интегрирование по частям приводят к следующему результату:

Согласно (93.11)

В соответствии с формулой (1.6)

Подставив это значение интеграла в (98.27), получим для уже известное нам значение (см. (97.2)). В этом нет ничего удивительного, так как при нахождении значения а в (98.18) мы исходили из соотношения (97.3), т. е. по существу из соотношения (97.2).

Корень квадратный из называется средней квадратичной скоростью:

Скорость, отвечающая максимуму будет наиболее вероятной.

Взяв производную от выражения (98.25) по v, опустив постоянные множители и приравняв получившееся выражение нулю, придем к уравнению

Удовлетворяющие этому уравнению значения соответствуют минимумам Значение V, обращающее в нуль выражение, стоящее в скобках, представляет собой искомую наиболее вероятную скорость :

Сопоставление выражений (98.29), (98.26) и (98.28) дает, что

Рис. 98.4 иллюстрирует это соотношение.

Подставив выражение (98.29) в формулу (98.25), найдем максимальное значение функции наблюдаются в среднем лишь у одной из 12 миллиардов молекул.

Произведем оценку средней скорости молекул кислорода. Вычисления удобнее производить, заменив в (98.26) отношение равным ему отношением Тогда выражение для средней скорости примет вид

Молекулярная масса кислорода равна 32. Следовательно, масса моля Комантная температура равна примерно 300 К. Подставив в формулу (98.31) числовые значения входящих в нее величин, получим

Таким образом, каждая молекула кислорода проходит за секунду путь, равный в среднем 0,5 км. Поскольку молекула претерпевает очень частые соударения с другими молекулами, этот путь состоит из большого числа коротких прямолинейных отрезков, образующих ломаную линию.

Молекулы водорода имеют массу, в 16 раз меньшую, чем молекулы кислорода, вследствие чего их скорость при той же температуре будет в 4 раза больше и составит при комнатной температуре в среднем почти

Если имеется смесь газов, находящаяся в равновесии, то в пределах молекул каждого сорта имеет место распределение (98.25) со своим значением т. Более тяжелые молекулы будут двигаться в среднем с меньшей скоростью, чем более легкие.

Исходя из распределения молекул по скоростям

можно найти распределение молекул по значениям кинетической энергии поступательного движения (обозначим ее буквой ). Для этого нужно перейти от переменной v к переменной , равной Произведя в (98.32) подстановку получим

где означает число молекул, кинетическая энергия поступательного движения которых имеет значения, заключенные в пределах от до

Таким образом, распределение молекул по значениям в характеризуется функцией

где А - нормировочный множитель, равный

Распределение Максвелла

В равновесном состоянии в системе, состоящей из огромного числа частиц, к примеру в некотором объёме газа, при отсутствии внешних воздействий не происходит макроскопических изменений: параметры системы остаются постоянными. Постоянным остается и среднее значение скорости молекул. Ответ на вопрос, сколько молекул, или какая их часть движется с определœенной скоростью в данный момент, был теоретически получен Максвеллом.

Введем понятие пространства скоростей. Для каждой молекулы откладываем компоненты ее скорости по трем взаимно перпендикулярным осям (рис. 1.3.1).

Каждая точка в пространстве скоростей соответствует одной молекуле с определœенной скоростью. Вектор скорости идет от начала координат к рассматриваемой точке.

Рассмотрим, как будут распределœены молекулы, содержащиеся в единичном объёме газа по скоростям.

Эти молекулы будут изображаться совокупностью из n точек. Из-за столкновений молекул какие-то точки будут выходить из элемента объёма, а другие входить в него. При этом среднее число точек в данном элементе объёма сохраняется.

Закон Максвелла описывается некоторой функцией f(v), которая принято называть функция распределœения молекул по скоростям. Функция f(v) определяет относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, ᴛ.ᴇ.

Откуда .

Применяя методы теории вероятностей, Максвелл нашел эту функцию:

Из формулы видно, что конкретный вид функции зависит от рода газа (от массы молекулы m 0) и от параметра состояния (температуры T).

График функции f(v) приведен на рис.1.3.2. Функция f(v) начинается от нуля, достигает максимума при v в и затем асимптотически стремится к нулю. Кривая не симметрична относительно v в.

Распределœение Максвелла - это распределœение по скоростям молекул идеального газа, находящегося в состоянии термодинамического равновесия.

Интегрируя распределœение Максвелла, можно рассчитать средние величины. Средний квадрат скорости (средняя квадратичная скорость)

v в
Скорость, при которой функция распределœения молекул идеального газа по скоростям максимальна, принято называть наиболее вероятной скоростью. Значение наиболее вероятной скорости можно определить, используя условие максимума функции откуда следует, что

Для того, чтобы найти число молекул, обладающих скоростями в интервале от v 1 до v 2 , крайне важно определить площадь под соответствующим участком кривой (рис.1.3.2.)

При увеличении температуры максимум кривой Максвелла смещается в сторону больших скоростей и вид кривой изменяется. Распределœения для двух разных температур приведены на рис.1.3.3. Поскольку площадь, ограниченная кривой, остается неизменной, следовательно, при повышении температуры кривая распределœения молекул по скоростям будет растягиваться и понижаться.

Рис.1.3.3 Т 1 < Т.

Среднее значение абсолютной величины скорости (среднее значение скорости равно нулю, так как отрицательное и положительное значения компонент равноправны) определяется по формуле

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, скорости, характеризующие состояние газа:

1) наиболее вероятная ;

2) средняя скорость ;

3) средняя квадратичная .

Эти скорости связаны соотношением

v В: ávñ: áv кв ñ @1:1,13:1,22,

то есть средняя квадратичная скорость имеет наибольшую величину.

Исходя их распределœения молекул по скоростям, перейдя к новой переменной Е=m 0 v 2 /2, можно получить функцию распределœения молекул по энергиям

Тогда средняя кинœетическая энергия молекулы идеального газа равна

Для того, чтобы рассчитать количество молекул DN, скорости которых находятся в промежутке от v до v+Dv, удобно ввести относительную скорость u=v/v В, где v В - наиболее вероятная скорость. Тогда DN - число молекул, относительные скорости которых находятся в интервале u, u+Du, ᴛ.ᴇ. v/v в, v+Dv/v В, где должно быть Dv†v. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, имеем

где N - полное число молекул газа, DN/N - относительное число (доля) молекул, имеющих скорости в интервале u, u+Du. График этой зависимости соответствует рис.1.3.2, в случае если по оси абсцисс отложить u, а по оси ординат величину DN/(NDu) - функцию распределœения.

Пример7. Определить среднеквадратичную скорость молекул азота при температуре 27°С. Как зависит средне квадратичная скорость от молекулярной массы и температуры?

Т=300°К, m=28 кг/кмоль, k=1,38×10 -23 Дж/град.

Решение. где ;

Таким образом

Средняя квадратичная скорость прямо пропорциональна корню квадратному из температуры и обратно пропорциональна корню квадратному из молекулярной массы.

Распределение Максвелла - понятие и виды. Классификация и особенности категории "Распределение Максвелла" 2017, 2018.

  • - Распределение Максвелла

    В равновесном состоянии в системе, состоящей из огромного числа частиц, например в некотором объеме газа, при отсутствии внешних воздействий не происходит макроскопических изменений: параметры системы остаются постоянными. Постоянным остается и среднее значение... .


  • - Распределение Максвелла

    Молекулы газа вследствие теплового движения испытывают многочисленные соударения друг с другом. При каждом соударении скорости молекул изменяются как по величине, так и по направлению. В результате в сосуде, содержащем большое число молекул, устанавливается некоторое... .


  • - Распределение Максвелла по направлениям скоростей

    Теперь, когда мы определились, какую же величину будем искать, давайте воспользуемся довольно часто используемым в физике приёмом. Мы попытаемся “угадать” искомое распределение. А проверку того, что мы угадали правильно, мы получим, сравнивая результаты нашей... .


  • -

    В состоянии теплового равновесия частицы идеального газа имеют различные скорости, которые меняются и результате столкновений. На вопрос какова вероятность того, что частица обладает определенной скоростью, отвечает распределение Максвелла. Оно является частным... .


  • - Семинары 5, 6. Распределение Максвелла

    О т в е т ы 4.1. а) 4 % б) 4.2. 1.4× 4.3. а) . б) г) 4.4. а) б) г) В состоянии теплового равновесия частицы идеального газа имеют различные скорости, которые меняются и результате столкновений. На вопрос какова вероятность того, что частица обладает определенной...

    Распределение Максвелла может быть получено при помощи статистической механики (см. происхождение статсуммы). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого... .


  • - Распределение Максвелла (для модуля скорости)

    Обычно, более интересно распределение по абсолютному значению, а не по проекциям скоростей молекул. Модуль скорости, v определяется как: поэтому модуль скорости всегда будет больше или равен нулю. Так как все распределены нормально, то будет иметь хи-квадрат... .


  • - Распределение молекул по скоростям (распределение Максвелла)

    Предположим, что нам удалось измерить скорости всех молекул газа в некоторый момент времени, т.е. получить v1, v2, ... ,vN. Нанесем их на ось скоростей в виде точек. Как видно из рис. 8.3, распределение точек на оси не будет равномерным – в области больших и малых скоростей они... .