Ветровые течения примеры. Океаническое течение - это что? Причины океанических течений

Течения имеют очень важное значение для мореплавания, влияя на скорость и направление движения судна. Поэтому в судовождении очень важно уметь правильно их учитывать (рис. 18.6).

Для выбора наивыгоднейших и безопасных путей при плавании вблизи берегов и в открытом море важно знать природу, направления и скорость морских течений.
При плавании по счислению морские течения могут оказывать значительное влияние на его точность.

Морские течения - перемещение водных масс в море или в океане из одного места в другое. Основные причины, вызывающие морские течения - ветер, атмосферное давление, приливо-отливные явления.

Морские течения подразделяются на следующие виды

1. Ветровые и дрейфовые течения возникают под действием ветра вследствие трения движущихся масс воздуха о морскую поверхность. Длительные, или господствующие, ветры вызывают движение не только верхних, но и более глубоких слоев воды, и образуют дрейфовые течения.
Причем, дрейфовые течения, вызываемые пассатами (постоянными ветрами), - постоянные, а дрейфовые течения, вызываемые муссонами (переменными ветрами), в течение года изменяют и направление, и скорость. Временные, непродолжительные, ветры вызывают ветровые течения, которые носят переменный характер.

2. Приливо-отливные течения вызываются изменением уровня моря приливами и отливами. В открытом море приливо-отливные течения постоянно меняют свое направление: в северном полушарии - по часовой стрелке, в южном - против часовой стрелки. В проливах, узких заливах и у берегов течения во время прилива направлены в одну сторону, а при отливе - в обратную.

3. Сточные течения вызываются повышением уровня моря в отдельных его районах в результате притока пресной воды из рек, выпадения большого количества атмосферных осадков и т. д.

4. Плотностные течения возникают вследствие неравномерного распределения плотности воды в горизонтальном направлении.

5. Компенсационные течения возникают в том или ином районе для восполнения убыли воды, вызванной ее стоком или сгоном.

Рис. 18.6. Течения Мирового океана

Гольфстрим - самое мощное теплое течение Мирового океана идет вдоль берегов Северной Америки в Атлантическом океане,а затем отклоняется от берега и распадается на ряд ветвей. Северная ветвь, или Северо-Атлантическое течение, идет на северо-восток. Наличие Северо-Атлантического теплого течения объясняет сравнительно мягкую зиму на побережье Северной Европы, а также существование ряда незамерзающих портов.

В Тихом океане Северное пассатное (экваториальное) течение начинается у берегов Центральной Америки, пересекает Тихий океан со средней скоростью около 1 узла, и у Филиппинских островов разделяется на несколько ветвей.
Главная ветвь Северного пассатного течения проходит вдоль Филиппинских островов и следует на северо-восток под названием Куросио, которое является вторым после Гольфстрима мощным теплым течением Мирового океана; его скорость от 1 до 2 уз и даже временами до 3 уз.
Около южной оконечности острова Кюсю это течение разделяется на две ветви, одна из которых - Цусимское течение направляется в Корейский пролив.
Другая, двигаясь на северо-восток, переходит в Северо-Тихоокеанское течение, пересекающее океан на восток. Холодное Курильское течение (Ойясио) следует навстречу Куросио вдоль Курильской гряды и встречается с ним примерно на широте Сангарского пролива.

Течение западных ветров у берегов Южной Америки разделяется на две ветви, одна из которых дает начало холодному Перуанскому течению.

В Индийском океане Южное пассатное (экваториальное) течение у острова Мадагаскар разделяется на две ветви. Одна ветвь поворачивает на юг и образует Мозамбикское течение, скорость которого от 2 до 4 уз.
У южной оконечности Африки Мозамбикское течение дает начало теплому, мощному и устойчивому Иголь- ному течению, средняя скорость которого более 2 уз, а максимальная - около 4,5 уз.

В Северном Ледовитом океане основная масса поверхностного слоя воды совершает движение по часовой стрелке с востока на запад.

Течения Атлантического океана

Южное пассатное течение . Начинается почти от берегов Африки полосой около 10 градусов широты. Северная граница течения около 1°N вначале и у берегов Ю. Америки доходит до 6-7° N. Очень устойчиво, наибольшая суточная скорость - 55 миль. Зимой скорость меньше, чем летом. Доходит до мыcа Кабу-Бранку, где разделяется на Бразильское течение, идущее к югу, и Гвианское течение.

Гвианское течение . От мыса Кабу-Бранку направлено на северо-запад вдоль берега Ю. Америки, скорости 30-60 миль в сутки, температура 27-28°. Летом его скорость доходит до 90 миль. Входя в Карибское море, течет от проливов между Малыми Антильскими островами к Юкатанскому проливу по всей поверхности Карибского моря. Скорость до 35-50 миль. Проходя Мексиканский залив, в основном уклоняется к Флоридскому проливу. В дальнейшем сливается с Северным пассатным течением.

Северное пассатное течение . Начинается от Зеленого мыса полосой между 8 и 23° N. Скорость до 20 миль. Подходя к. Малым Антильским островам, постепенно уклоняется к западу-северо-западу, разделяясь на две ветви. Океаническая ветвь получает название Антильского течения, скорость которого 10-20 миль в сутки. В дальнейшем Антильское течение присоединяется к Гольфстриму. Вторая ветвь сливается с Гвианским течением, входя с ним в Карибское море.

Гольфстрим . Начинается от Флоридского пролива. Скорость до 120 миль в сутки вначале и 40-50 у мыса Гаттераса. Протекает вдоль берегов Северной Америки от Флоридского пролива до района восточное Ньюфаундлендской банки, где течение начинает разветвляться. С удалением к северу скорость течения падает с 45-50 миль в сутки до 25-30 миль. Среди течения, расширяющегося у 50° W до 350 миль, появляются полосы с различными скоростями и температурами. Между Гольфстримом и берегом материка расположена полоса холодной воды, являющаяся продолжением ветви холодного Лабрадорского течения из залива св. Лаврентия. Восточным пределом Гольфстрима следует считать район восточной оконечности Ньюфаундленда, примерно 40° W.

Северо-Атлантическое течение . Это название присвоено всему комплексу течений севера Атлантического океана. Начинаются они с северо-восточной границы Гольфстрима, являясь его продолжением Между Ньюфаундлендом и Ла-Маншем средняя скорость течения 12-15 миль в сутки, а южная граница проходит примерно по 40° N. Постепенно от его южного края отделяется юго-восточная ветвь, омывающая Азорские острова, эта ветвь носит название Северо-Африканского, или Канарского течения. По своей температуре воды течения на 2-3° холоднее окружающих. В дальнейшем Канарское течение, поворачивая на юго-запад, дает начало Северному пассатному течению. Атлантическое течение, приближаясь к берегам Европы, постепенно сворачивает на северо-восток. На параллели Ирландии от него отделяется влево ветвь, называемая течением Ирмингера, идущее к южной оконечности Гренландии, и далее посреди Дэвисова пролива в Баффиново море, образуя там теплое Западно-Гренландское течение. Основная же часть Атлантического течения проходит проливами между Исландией и Шотландией к окраине материкового склона Норвегии и вдоль ее берегов на север. Пройдя Норвегию, течение разделяется на две ветви, одна ветвь идет к востоку под названием Нордкапского течения в Баренцево море, а вторая к Шпицбергену, огибая остров вдоль его западных берегов и постепенно исчезая.

Восточно-Гренландское течение идет с северо-востока к мысу Фэруэлл, а от этого мыса в Дэвисов пролив между берегом Гренландии и теплым Западно-Гренландским течением. В Датском проливе скорость этого течения доходит до 24 миль в сутки.

Лабрадорское течение берет начало из проливов Северо-Американского архипелага, протекая вдоль западного берега Баффинова моря. Скорость его в этом море несколько меньше 10 миль в сутки, но в дальнейшем возрастает до 14 миль. Воды этого течения, встречаясь с Гольфстримом, уходят под него; в район встречи они выносят от Гренландии айсберги, представляющие значительную опасность для судов, тем более, что в районе встречи течений отмечается до 43% туманных дней в году. К Лабрадорскому течению в Дэвисовом проливе и у мыса Фэруэлл примыкают Западно-Гренландское и Восточно-Гренландокое течения.

Бразильское течение . Является южной ветвью Южного пассатного течения, скорость его 15-20 миль,в сутки. Южнее устья р. Параны постепенно отходит от берега и с 45° S сворачивает на восток, сливаясь с течением Западных ветров, направленным к мысу Доброй Надежды.

Фолклендское течение образовано холодными водами течения Западных ветров, ветвью его, идущей к экватору вдоль восточных берегов Патагонии и Южной Америки. Это течение, доходя до 40° S, несет с собой большое число ледяных гор, главным образом летом, южного полушария (октябрь-декабрь). В дальнейшем оно примыкает к течению Западных ветров.

Бенгуэльское течение возникает как северная ветвь течения Западных ветров, отходящая от него у мыса Доброй Надежды к экватору вдоль западного берега Африки. Скорость около 20 миль в сутки. Течение доходит до 10°S и, сворачивая там на запад, дает начало Южному пассатному течению.

Течения Индийского океана

В северной части океана дрейфовые течения устанавливаются под влиянием муссонных ветров в пределах от 10°S до материка Азии. С ноября в южной части Бенгальского залива, от Малаккского пролива к Цейлону и южнее его, Муссонное течение идет на запад со скоростью 50-70 миль в сутки. Такая же картина и в Аравийском море, но скорость течения не превышает 10-20 миль. Подходя к берегам Африки, течение сворачивает на юго-запад, увеличивая суточную скорость до 50-70 миль, здесь оно называется Сомалийским. Перейдя экватор и встречаясь с ветвью Южного пассатного течения, сворачивает на восток, образуя Экваториальное противотечение, пересекающее океан между 0-10°S со скоростью у о. Суматры до 40- 60 миль в сутки. В этом районе течение частично идет на север, но главным образом сворачивает к югу и примыкает к Южному пассатному течению. С мая месяца по октябрь Муссонное течение прекращается. Южное пассатное течение разделяется на две ветви. Северная ветвь идет вдоль берегов Сомали, несколько усиливаясь после перехода экватора и достигая скоростей от 40 до 120 миль в сутки. Затем эта ветвь сворачивает на восток, уменьшая скорость до 25-50 миль, у берегов Цейлона скорость возрастает до 70- 80 миль. Подходя к о. Суматра, заворачивает на юг и примыкает к Южному пассатному течению. Течения Индийского океана южного полушария, образуют постоянную циркуляцию вод в течение года.

Южное пассатное течение . Северная граница-10°S, южная граница мало определена. Зимой скорость северного полушария больше, чем летом. Средняя скорость 35 миль, наибольшая 50-60 миль. Возникает у берегов Австралии, а доходя до о. Мадагаскара, разделяется на две ветви. Северная ветвь, доходя до северной оконечности Мадагаскара, в свою очередь разделяется на две ветви, одна из которых сворачивает к северу, и нашей зимой, не доходя до экватора и сливаясь с Муссонным течением, образует Экваториальное противотечение, а вторая ветвь проходит вдоль берегов Африки Мозамбикским проливом, образуя сильное Мозамбикское течение со средней скоростью до 40 миль и наибольшей 100 миль в сутки. Далее это течение переходит в течение Игольное, представляющее южнее 30 градуса S поток до 50 миль ширины со скоростью до 50 миль в сутки.

Течение Западных ветров . Образовано холодными водами, притекающими из Атлантического океана при слиянии их с Игольным течением, и второй основной ветвью Южного пассатного течения, называемого Мадагаскарским течением. Скорость течения Западных ветров 15-25 миль в сутки. У Австралии от него отделяется ветвь к экватору, называемая Западно-Австралийским течением, скорость его 15-30 миль, оно мало устойчиво. У тропика Западно-Австралийское течение переходит в Южное пассатное.

Течения Тихого океана

Северное пассатное течение . Заметно от южной оконечности Калифорнии. Границы между 10 и 22° N. Зимой северного полушария южная граница ближе к экватору, летом дальше от него. До Филиппинских островов средняя скорость 12-24 мили, летом скорость больше. От Филиппинских о-вов в основном отклоняется к о. Тайвань и, начиная отсюда, получает название Японского течения, или Куро-Сиво (синее течение).

Куро - Сиво . У о-ва Тайвань имеет ширину около 100 миль, от острова уклоняется вправо, проходит западнее о-вов Лиу-Киу к Японским о-вам. Вначале скорость течения 35-40 миль в сутки, у о-вов Рюкю до 70-80 миль, а летом даже до 100 миль. У берегов Японии ширина течения достигает 300 миль и скорость уменьшается. Собственно Куро-Сиво имеет своей северной границей 35° N. К системе течений Куро-Сиво относится продолжение собственно Куро-Сиво от 35° N. к востоку-Западный дрейф Куро-Сиво, проходящий между 40 и 50° N со скоростью 10-20 миль до 160°E и дальнейшее продолжение его к берегам Северной Америки - Северо-Тихоокеанское течение. К этой же системе относится южная ветвь Северного пассатного течения, проходящая от Филиппинских о-вов вдоль о-ва Минданао, и Цусимское течение-ветвь Куро-Сиво, проходящая в Японском море у берегов Японских о-вов на север. Северо-Тихоокеанское течение доходит со скоростью 10-20 миль в сутки до 170°W, где одна ветвь отклоняется на север, причем часть вод попадает даже в Берингово море, а вторая ветвь под названием Калифорнийского течения отклоняется к югу, где имеет скорость около 15 миль. В дальнейшем Калифорнийское течение вливается в Северное пассатное течение.

Курильское течение - холодное течение, протекающее от Курильских о-вов вдоль западных берегов Японии до встречи с идущим восточнее Куро-Сиво.

Экваториальное противотечение . Летом ширина от 5 до 10° N, зимой 5-7°N. Скорость летом около 30 миль, но иногда доходит до 50-60 миль, зимой скорость 10-12 миль. Подойдя к берегам Центральной Америки, зимой это течение разделяется на две ветви, примыкающие каждая к соответствующему Пассатному течению, летом оно в основном сворачивает на север.

Южное пассатное течение идет на запад от Галапагосских о-вов к берегам Австралии и Новой Гвинеи. Летом северная граница его 1 градус N, зимой -3°N. Скорость течения в восточной его половине не менее 24 миль, а иногда доходит до 50-80 миль в сутки. Севернее Новой Гвинеи часть течения сворачивает на восток, вливаясь в Экваториальное противотечение. Вторая часть от берегов Австралии сворачивает к югу, образуя Восточно-Австралийское течение.

Восточно-Австралийское течение начинается от о-ва Новая Каледония, идет на юг к о-ву Тасмания, сворачивает там на восток и омывает берега Новой Зеландии, образуя в Тасмановом море круговорот вод против часовой стрелки. Скорость течения до 24 миль в сутки. Часть Восточно-Австралийского течения проходит между Тасманией и южной оконечностью Новой Зеландии и затем соединяется с течением Западных ветров, идущим из Индийского океана южнее Австралии.

Течение Западных ветров Тихого океана имеет северной границей 40°S и протекает на восток до м. Горн со скоростью около 15 миль. По пути к течению присоединяются холодные антарктические воды, несущие ледяные горы и теплые воды, ответвляющиеся от Южного пассатного течения. У берегов Ю. Америки часть течения Западных ветров отклоняется к югу и проходит далее в Атлантический океан, а вторая часть отклоняется к экватору вдоль западных берегов Южной Америки под названием Перуанского течения.

Перуанское течение имеет скорость 12-15 миль в сутки и идет до 5°S, где, отклоняясь к востоку, омывает Галапагосские о-ва и затем вливается в Южное пассатное течение. Ширина течения до 500 миль.

Течения Северного Ледовитого океана

Главная масса поверхностных вод, начиная приблизительно от о-ва Принс-Патрик (120°W), движется с востока на запад вдоль северных берегов Аляски по часовой стрелке, увлекая за собой поверхностные распресненные воды окраинных морей. Между 90 и 120° W это течение перестает быть сплошным, подходя к о. Элсмир, оно частично сворачивает вдоль берегов Гренландии в Гренландское море. Сюда же течением, направленным с востока на запад и идущим севернее о-ва Шпицбергена, выносятся поверхностные холодные полярные воды. Сливаясь вместе на севере Гренландского моря, эти течения образуют холодное Восточно-Гренландское течение.

Поверхностные течения центральной части Арктики возникают главным образом под влиянием воздушных потоков. Скорость течений незначительна - от 0,5 до 1 мили в сутки. У полюса скорость течения несколько больше-до 1,4 мили и на выходе в Гренландское море доходит до 3,4 миль в сутки. С юга вдоль берегов Скандинавского п-ова в Северный Ледовитый океан движется теплое Нордкапское течение, огибающее с севера о. Шпицберген одной ветвью и второй, проходящее к о. Новая Земля. Обе ветви течения постепенно затухают и уходят на глубину.

Приливо-отливные течения характеризуются своей периодичностью в смене скорости и направления за полусуточный или суточный период. Характеристики приливо-отливных течений даются в соответствующих навигационных пособиях.

Дрейфовые течения в неглубоких морях устанавливаются через несколько дней после начала ветра, в открытом океане через 3-1 месяца и в области постоянных ветров достигают большой мощности. В открытом океане поверхностные течения отклоняются приблизительно на 45° от направления ветра, вправо от ветра в северном полушарии и влево в южном. На мелководье и вблизи берегов отклонение очень незначительно, чаще направление ветра совпадает с направлением течения.

В лоциях дается иногда только краткая, иногда весьма подробная (с картами, схемами, таблицами) словесная характеристика волнения, дающая представление о величине и характере волнения по сезонам года и в отдельных районах моря.

Атласы физико-геграфических данных. Они состоят из набора различных карт, характеризующих волнение того или иного бассейна по месяцам и сезонам года. На этих картах «розами» по восьми румбам показаны повторяемость волнения и зыби по направлению и силе в отдельных квадратах океана. Длина лучей в масштабе определяет процент повторяемости направления волнения, а цифры в кружках – процент отсутствия волнения. В нижнем углу квадрата – число наблюдений в данном квадрате.

Справочники и таблицы по волнениям. В пособии имеются таблицы повторяемости ветров и волнения, таблица зависимости элементов волны от скорости ветра продолжительности и длины разгона ветра, а также даны значения наибольших высот, длин и периодов волн. С помощью этой таблицы для районов открытого моря по скорости ветра (в м/с) и длине разгона (в км.) можно определять их высоту, период и продолжительность роста.

Указанные пособия позволяют мореплавателю правильно оценить условия плавания и выбрать наиболее выгодные и безопасные навигационные пути с учетом ветра и волнения.

Карты волнения

На картах волнения приводятся положения синоптических объектов

(циклонов, антициклонов с указанием давления в центре; атмосферных фронтов), картина волновых полей в виде изолиний равных высот волн с оцифровкой их значений и указанием контурной стрелкой направления распространения, а также в отдельных точках станций характеристика ветровой и волновой обстановки.

12. Причины морских течений. Морскими течениями называется поступательное движение масс воды в море под воздействием природных сил. Основными характеристиками течений являются скорость, направление и продолжительность действия.

Основные силы (причины), вызывающие морские течения, делятся на внешние и внутренние. К внешним относятся ветер, атмосферное давление, приливообразующие силы Луны и Солнца, к внутренним - силы возникающие вследствие неравномерного распределения по горизонтали плотности водных масс. Сразу же после возникновения движения водных масс появляются вторичные силы: сила Кориолиса и сила трения, замедляющая всякое движение. На направление течения оказывают влияние конфигурация берегов и рельеф дна.

13. Классификация морских течений.

Морские течения классифицируются:

По факторам их вызывающим, т.е.

1. По происхождению: ветровые, градиентные, приливо-отливные.

2. По устойчивости: постоянные, непериодические, периодические.

3. По глубине расположения: поверхностные, глубинные, придонные.

4. По характеру движения: прямолинейные, криволинейные.

5. По физико-химическим свойствам: теплые, холодные, соленые, пресные.

По происхождению течения бывают:

1 Ветровые течения возникают под действием силы трения о водную поверхность. После начала действия ветра скорость течения растет, а направление, под воздействием ускорения Кориолиса, отклоняется на определенный угол (в северном полушарии вправо, в южном – влево).

2. Градиентные течения также являются и непериодическими и вызываются рядом природных сил. Они бывают:

3. сточные, связанные с нагоном и сгоном вод. Примером сточного течения служит Флоридское течение, которое является результатом нагона вод в Мексиканский залив ветровым Карибским течением. Избыточные воды залива устремляются в Атлантический океан, давая начало мощному течению Гольфстрим.

4. стоковые течения возникают в результате стока речных вод в море. Это Обь-Енисейское и Ленское течения, проникающие на сотни километров в Северный Ледовитый океан.

5. бароградиентные течения, возникающие за счет неравномерного изменения атмосферного давления над соседними районами океана и связанного с ним повышения или понижения уровня воды.

По устойчивости течения бывают:

1. Постоянными - векторной суммой ветрового и градиентного течений является дрейфовое течение. Примером дрейфовых течений являются пассатные течения в Атлантическом и Тихом океанах и муссонные в Индийском океане. Эти течения постоянны.

1.1. Мощные устойчивые течения со скоростями 2-5 уз. К таким течениям относятся Гольфстрим, Куросио, Бразильское и Карибское.

1.2. Постоянные течения со скоростями 1,2-2,9 уз. Это Северное и Южное пассатные течения и экваториальное противотечение.

1.3. Слабые постоянные течения со скоростями 0,5-0,8 уз. К ним относятся Лабрадорское, Северо-Атлантическое, Канарское, Камчатское и Калифорнийское течения.

1.4. Локальные течения со скоростями 0,3-0,5 уз. Такие течения для отдельных районов океанов, в которых отсутствуют четко выраженные течения.

2. Периодические течения – это такие течения, направление и скорость которых изменяются через равные промежутки времени и в определенной последовательности. Примером таких течений являются приливно- отливные течения.

3. Непериодические течения вызываются непериодическим воздействием внешних сил и в первую очередь рассмотренными выше воздействиями ветра и градиента давления.

По глубине течения бывают:

Поверхностные - течения наблюдаются в так называемом навигационном слое (0-15 м), т.е. слое, соответствующем осадке надводных судов.

Основной причиной возникновения поверхностных течений в открытом океане является ветер. Существует тесная связь между направлением и скоростью течений и преобладающими ветрами. Устойчивые и продолжительные ветры оказывают большее влияние на образование течений, чем ветры переменных направлений или местные.

Глубинные течения наблюдаются на глубине между поверхностным и придонным течениями.

Придонные течения имеют место в слое, прилегающем ко дну, где большое влияние на них оказывает трение о дно.

Скорость движения поверхностных течений наиболее высока в самом верхнем слое. Глубже она снижается. Глубинные воды движутся значительно медленнее, а скорость перемещения придонных вод 3 – 5 см/с. Скорости течений неодинаковы в разных районах океана.

По характеру движения течения бывают:

По характеру движения выделяют меандрирующие, прямолинейные, циклонические и антициклонические течения. Меандрирующими называют течения, которые движутся не прямолинейно, а образуют горизонтальные волнообразные изгибы – меандры. Вследствие неустойчивости потока меандры могут отделяться от течения и образовывать самостоятельно существующие вихри. Прямолинейные течения характеризуются перемещением воды по относительно прямым линиям. Круговые течения образуют замкнутые окружности. Если движение в них направлено против часовой стрелки, то это – циклонические течения, а если по часовой стрелке– то антициклонические (для северного полушария).

По характеру физико-химических свойств различают теплые, холодные, нейтральные, соленые и распресненные течения (подразделение течений по этим свойствам в известной степени условно). Для оценки указанной характеристики течения производится сопоставление его температуры (солености) с температурой (соленостью) окружающих его вод. Так, теплым (холодным) называется течение температура воды в котором выше (ниже) температуры окружающих вод.

Теплыми называются течения, у которых температура выше температуры окружающих вод, если она ниже течения называются холодными. Таким же образом определяются соленые и распресненные течения.

Теплые и холодные течения . Эти течения можно разделить на два класса. К первому классу относятся течения, температура воды которых соответствует температуре окружающих водных масс. Примерами таких течений являются теплые Северное и Южное пассатные течения и холодное течение Западных Ветров. Ко второму классу принадлежат течения, температура воды которых отличается от температуры окружающих водных масс. Примерами течений этого класса служат теплые течения Гольфстрим и Куросио, которые переносят теплые воды в более высокие широты, а также холодные Восточно-Гренландское и Лабрадорское течения, несущие холодные воды Арктического бассейна в более низкие широты.

Холодные течения, относящиеся ко второму классу, в зависимости от происхождения несомых ими холодных вод могут быть разделены: на течения, несущие холодные воды полярных районов в более низкие широты, такие как Восточно-Гренландское, Лабрадорское. Фолклендское и Курильское, и на течения более низких широт, такие как Перуанское и Канарское (низкая температура вод этих течений вызвана подъемом на поверхность холодных глубинных вод; но глубинные воды не такие холодные, как воды течений, идущих из более высоких широт в низкие).

Теплые течения, переносящие теплые водные массы в более высокие широты, действуют на западной стороне основных замкнутых циркуляции в обоих полушариях, тогда как на восточной их стороне действуют холодные течения.

На восточной стороне южной части Индийского океана не наблюдается подъем глубинных вод. Течения на западной стороне океанов по сравнению с окружающими водами на тех же широтах зимой относительно теплее, чем летом. Холодные течения, приходящие из более высоких широт, имеют особое значение для мореплавания, так как они переносят лед в более низкие широты и обусловливают в некоторых районах большую повторяемость туманов и плохой видимости.

В Мировом океане по характеру и скоростям можно выделить следующие группы течений. Основные характеристики морского течения: скорость и направление. Последнее определяется обратным способом по сравнению со способом направления ветра, т. е. в случае с течением указывается, куда течет вода, тогда как в случае с ветром указывается, откуда он дует. Вертикальные движения масс воды при исследовании морских течений обычно не учитываются, т. к. они не велики.

Не существует ни одного района в Мировом океане, где скорость течений не достигала бы 1 уз. Со скоростью 2–3 уз идут главным образом пассатные течения и теплые течения у восточных побережий материков. С такой скоростью идет Межпассатное противотечение, течения в северной части Индийского океана, в Восточно-Китайском и Южно-Китайском морях.

Вопросы типизации течений рассматривались многими авторами (Б. Д. Зайков (1955), А. В. Караушев (1969), Б. Б. Богословский (1960), Д. Хатчинсон (Hutchinson, 1957), Б. Дюссар (Dussart, 1954, 1966). Наиболее полно учитывают особенности течений в открытом водоеме и в прибрежной зоне типизации Б. Д. Зайкова и А. В. Караушева. Однако и эти типизации не отражают специфику их развития в искусственных водоемах. По мнению гидрологов Пермского государтсвенного университета более приемлема для водохранилищ типизации Т. Н. Филатовой (1972). В соответствии с этой типизацией течения внутренних водоемов подразделяются на две группы: течения наблюдаемые по всей акватории (в т.ч. и в прибрежной зоне) и течения развивающиеся только в прибрежной зоне. К первой группе относятся стоковые, проточные, ветровые, волновые, плотностные, барогра-диентные, сейшевые, внутриволновые и инерционные течения. К второй группе относятся вдольбереговые ветровые, компенсационные течения (Матарзин, Богословский, Мацкевич, 1977).

Стоковые течения возникаютв результате наклона водной поверхности при изменении соотношения основных элементов водного баланса - притока в водоем и стока из него.

Ветровые течения обусловлены действием касательного напряжения ветра. Разновидностью ветровых течений являются дрейфовые течения , возникшие непосредственно в результате действия ветра на поверхность воды и захвата водных масс приповерхностного слоя. Ветровые градиентные и вторичные ветровые течения наблюдаются на некоторой глубине и в поверхностном слое.

Волновые (стоксовы) течения - составная часть дрейфового течения - определяются поступательным перемещением вод, имеющим место при волнении (одновременно с движением частиц по орбитам). В чистом виде наблюдается в волнах зыби.

Плотностные (конвективные) течения возникают в результате неравномерного распределения плотности воды, что обусловлено в основном пространственным изменением ее температуры и минерализации. Неравномерность распределения водной массы при плотностных течениях восстанавливается компенсационными течениями.

Бароградиентные течения возникают в результате перекоса водной поверхности под воздействием резких перепадов атмосферного давления и носят компенсационный характер. Бароградиентные течения являются разновидностью сейшевых течений.

Сейшевые течения развиваются при сейшевых колебаниях поверхности водохранилищ, которые возникают при периодических воздейдействиях метеорологических элементов на водную поверхность водохранилищ (ветер, давление, а также сгонно-нагонных явлениях, при интенсивном выпадении атмосферных осадков). При сейшах происходят колебательные движения всей водной массы с периодическим изменением уклона.

Внутриволновые течения развиваются при формировании внутренних волн и наблюдаются на границе раздела вод различной плотности.

Инерционные течения имеют место после прекращения действия силы, вызвавшей перемещение водной массы. Частным случаем инерционных течений являются инерционные спиралеобразные течения . Их направление в значительной мере определяется действием силы Кориолиса.

К первой группе течений относятся также волновые - сточные течения, появление и развитие которых обусловлено неравномерной работой гидросооружений (гидроэлектростанций, шлюзов, водозаборов). Эти течения имеют локальное развитие и наблюдаются только в искусственных водоемах на участках работы этих гидротехнических сооружений.

Среди течений первой группы наибольшую повторяемость и значение имеют стоковые (проточные) и ветровые течения. По этому признаку Т. Н. Филатова (1969) их определяет как течения первого порядка , а все остальные виды течений объединяет как течения второго порядка .

Течения второй группы развиваются исключительно в прибрежной зоне. Они отличаются сложной структурой и на их развитие большое влияние оказывают конфигурация берега и рельеф дна. Наибольшее практическое значение имеют вдольбереговые ветровые течения. Они представляют разновидность ветровых течений, наблюдаемых в открытом водоеме. В результате трансформации волновой энергии при косом подходе волн к берегу образуются вдольбереговые волноприбойные течения, которые от­носятся к разряду энергетических. Частный случай волноприбойных представляют разрывные течения . В отличие от первых они возникают при нормальном подходе волн к берегу, в результате накопления масс воды в прибрежной зоне. Они компенсируют в виде отдельных сосредоточенных струй приток воды в волноприбойную зону и направлены всегда от берега в открытую часть водоема часто в виде «языков» насыщенных наносами.

Некоторые из рассмотренных разновидностей течений могут рассматриваться как компенсационные течения . По существу компенсационные течения представляют движение воды, возникающее при различном гидростатическом давлении на отдельных участках водоема и стремящееся восстановить его нарушенное состояние.

На практике редко наблюдаются течения только одного какого-нибудь вида. Как правило, несколько видов течений развиваются и действуют одновременно. В результате в определенных ситуациях образуются системы поверхностных и глубинных течений. В практике наблюдений такие течения называются суммарными . Обычно в отдельные сезоны отмечается преобладание определенных видов суммарных течений, которые действуют длительный период образуя циркуляционные схемы . При одновременном действии дву основных течений их называют их сочетанием (стоково-ветровые, плотностно-ветровые, стоково-волновые и др.

Суммарные течения - это течения со сложной структурой. Однако в водоемах возникает различная форма перемещения водных масс: прямолинейная, обратная, циркуляционная, круговая и др.

По устойчивости или изменчивости течения искусственных водоемов подразделяются на постоянные и временные. Постоянные течения наблюдаютсмя по всему водоему или на отдельных его участках. В случае устойчивого выдерживания генерального направления течения относят к квазипостоянным, или квазистационарным.

Большая часть течений, наблюдаемых в водохранилищах, относится к временным . В соответствии с изменчивостью основных характеристик (направление и скорость) все временные течения делятся на непериодические, периодические и течения с периодическими изменениями одной из характеристик.

К непериодическим относятся течения, возникающие и изменяющиеся в ходе развития, без определенной периодичности. Этот тип течений наблюдается преимущественно в результате непосредственного ветрового воздействия. К непериодическим относятся течения, скорость и направление которых регулярно изменяются через определенный промежуток времени. Повторяемость измене­ний течения может составлять от нескольких часов и минут до сезона или года.

Примером периодически действующих факторов могут служить регулярное уменьшение сброса через гидростанцию в ночные часы и выходные дни или ежегодные весенние половодья. Периодические течения могут формироваться и непериодическим действием силы. К таким течениям относится перемещение водной массы, наблюдаемое при сейшах и внутренних волнах.

В случаях, когда изменения, наблюдаемые в характеристиках течений, кратковременны и не имеют определенной закономерности, их следует называть квазипериодическими. Филатова Т. Н. (1970) относит к временным течениям, характеризующимся квазипериодичностью в направлении, инерционные спиралеобразные течения.

По положению (локализации ) течения разделяются в зависимости от их развития по акватории водоема (по всему водохранилищу или только в прибрежной зоне) и по глубине. Течения, распространяющиеся на поверхности с захватом небольшого слоя в глубину, относятся к поверхностным . Течения, наблюдающиеся в глубинных слоях и не выраженные на поверхности, называются глубинными . Течения, отмеченные только в непосредственной близости от дна водоема, называются придонными .

По характеру и форме движения течения подразделяются на прямолинейные и циркуляционные , В последнем случае перемещение водных масс происходит по замкнутым круговым или эллиптическим траекториям. В зависимости от направления различают циклональную (движение против часовой стрелки) и антициклональную циркуляции.-В зависимости от плоскости развития циркуляции различают горизонтальную и вертикальную циркуляции.

По физико-химическим свойствам выделяются холодные и теплые течения.

Среди рассмотренных типов течений наиболее часто встречаются стоковые и ветровые течения, или суммарные, т.е. производные от них.

Морские течения – о главном. Заголовки газет и журналов, а порой и сюжеты телевизионных передач пестрят и мелькают громкими словами о том, что человечество в очередной раз обрекло себя на погибель, поскольку своими действиями заставило исчезнуть одно из ключевых океанских течений .

Несмотря на то, что таких заявлений за последние десятилетия было выдвинуто немало, разительных изменений в климате по какой-то причине не наблюдается.

Находятся люди, которые верят, что в течение нескольких месяцев или лет наступит ледниковый период. Есть и те, кто не верит. Но что, если перед тем, как сразу делать вывод об оправданности таких смелых заявлений, разобраться в самом явлении океанских течений?

Некоторым может показаться странным сам факт того, что вода на нашей планете не стоит на месте, а непрерывно путешествует. Однако здесь все довольно просто: таким образом ее заставляет вести себя собственный состав.

В качестве простого примера можно привести тот факт, что соленая вода тяжелее пресной, а плотность различается в зависимости от температуры. Добавим к этому то, что в разных океанах соленость жидкости различается, а в различных климатических поясах солнце нагревает ее в различной степени и с различной скоростью.

Совокупность всех этих факторов и образуют такие феноменальные явления, как морские течения.

Течения, возникающие вследствие температурных и химических особенностей Мирового океана, называют термохалинными. Есть и такие, которые своим появлением обязаны географическим особенностям морского дна: в одном месте глубина больше, в другом меньше. Тем не менее, самые значительные факторы, влияющие на появление течений - это сила Кориолиса и ветер.

Морские течения Гольфстрим и сила Кориолиса

Одно из течений, которое можно отнести к ветровым - это довольно приличная по масштабам циркуляция воды, происходящая в северной части Атлантики. Там, на поверхности океана, вся вода передвигается крайне медленно - всего несколько сантиметров в секунду.

На первый взгляд, ничего особенного: с одной стороны (восточной) вода перемещается на юг, а с другой (западной) на север. Но ключевую роль здесь играет нечто другое.

Сила Кориолиса - это возникающая в результате вращения Земли инерционная сила. Она как бы «прижимает» течение к материку, где большое количество воды, двигающейся с небольшой скоростью, вдруг ускоряется до 2 метров в секунду.

Это течение называется западным пограничным течением, и возникает из-за резкого столкновения с материком. Так как воде больше некуда деваться, ее давление возрастает и она, выталкивая сама себя, следует вдоль берега, после чего и превращается в Гольфстрим.

Разумеется, несмотря на огромную энергию, что несет в себе это океанское течение, со временем его сила ослабевает. От него в процессе движения отделяются так называемые ринги, подобные ответвлениям у рек.

Их диаметр - приблизительно 200 километров, и в Северной Атлантике они хоть и проявляют динамику, но их число всегда больше десяти.

Надо сказать, они тоже играют свою роль в создании климатических условий.

К примеру, если один из таких рингов отправляется в южную сторону океана, то он привносит холодную воду в относительно теплую часть Атлантики. Если ринг отправляется на север, то несет теплую воду в более холодные области океана.

Морские течения и вихри

Неизменным попутчиком морских течений были и остаются вихри. Само по себе течение - это фронт, другими словами - жидкость, имеющая отличные от других участков океана характеристики. Этот фронт непрерывно меняет свое положение в океане, а рядом с ним образуются вихри, порой в диаметре достигая сотен километров.

В пример можно привести Гибралтарский пролив. Разумеется, вода в нем не стоит, как многие могут подумать, а постоянно движется. Более того, движется в двух направлениях - сверху жидкость входит в Средиземное море, а снизу, наоборот, покидает огромный водоем.

Почему именно так? Ответ достаточно прост: в океане вода менее соленая, нежели в Средиземном море. Чем соленее вода, тем тяжелее она, а чем тяжелее, тем ниже опускается.

И в этой ситуации возникает вихрь, вопреки тому, что есть все нужные условия для возникновения течения по градиенту давлений.

Но сила Кориолиса не позволяет этому случиться, и, компенсируя перепад гидростатических давлений, заставляет воду из-за сложившихся условий вырваться из глубин в перпендикулярном дну направлении. Таким образом возникает чудовищных размеров вихрь, в диаметре достигающий около 100 километров.

Еще один интересный пример, который на протяжении долгого времени не получалось объяснить ученым - это Агульясское течение. Оно движется вдоль восточного берега Африки в южную сторону, и, достигая конца материка, поворачивает обратно в Индийский океан.

В том месте, где вода меняет свое направление, рядом с течением образуются вихри, направленные в Атлантический океан. На протяжении трех лет каждый из этих вихрей путешествует через океан, после чего, оказавшись у берегов Южной Америки, теряется в мощных прибрежных течениях.

Сами по себе эти вихри представляют из себя удивительное явление. Их диаметр значительно превышает их толщину, и в сущности они являются образованиями, которые выглядят как водные диски, вращающиеся на поверхности океана.

На протяжении долгого времени ученые не могли разгадать этой загадки, ведь по законам физики эти диски должны были распасться, столкнувшись с менее подвижной жидкостью.

Но, как оказалось, еще находясь в Агульясском течении, эти вихри вращаются подобно твердым телам. Только благодаря тому, что характеристики воды в Индийском океане отличаются от характеристик воды в Атлантическом, эти уникальные образования успешно путешествуют с одного конца света на другой.

Может быть, а может и не быть

То, что происходит с водой в океане, в частности - поведение вихрей, живое подтверждение слов о том, что Мировой океан своими «трюками» способен удивить практически любого человека. Отдельного внимания заслуживают экваториальные течения, где сила Кориолиса не оказывает почти никакого действия.

Однако невероятно важную роль играет Антарктическое круговое течение. Это единственное течение на нашей планете, которое проходит через все меридианы и единственное течение, которое можно назвать абсолютно замкнутым. Его еще называют «течением Западных Ветров».

Самые мощные морские течения, впрочем, находятся на западе Атлантического океана. Гольфстрим в Атлантике на пару с Куросио в Тихом океане в буквальном смысле решают, где будет холодно, а где - тепло.

Благоприятным климатическим условиям в одном регионе и неблагоприятным в другом материки обязаны именно им. И говорить об исчезновении Гольфстрима, учитывая расположение суши относительно океанов, крайне трудно.

Если же представить, что Гольфстрим видоизменится и удлинится ближе к Европе, то там станет теплее, в то время как Россия рискует немного «примерзнуть» к Арктике. В противном случае - трудно сказать, что именно произойдет.

Вероятнее всего, Великобританию ожидает серьезное похолодание, а вот в Северном Ледовитом океане льда больше не будет, после чего он включится в общую систему обмена энергией между океанами и атмосферой.

Впоследствии возникнут новые потоки воздуха, а те, в свою очередь, создадут новые иорские течения. И что случится с климатом на Земле в итоге - точно сказать невозможно.

Однако, возвращаясь к основному вопросу о том, возможно ли это вообще, можно лишь исходить из того, что единственную опасность на данный момент представляет из себя лед вокруг Гренландии.

Медленно, но уверенно ледники Гренландии продолжают таять, постепенно повышая уровень Мирового океана. Однако до сих пор нет ни одного повода полагать, что в ближайшем времени стоит ожидать катастрофы.

Что будет потом? Как уже было отмечено, точно сказать нельзя. Многие, впрочем, пытаются. И, исходя из тех расчетов, которые были предоставлены, по одной версии океан на Земле испарится от невероятной жары, по другой - экватор покроется метровой коркой льда.

Поэтому относиться серьезно к таким сценариям не стоит. Земля - это саморегулирующаяся система, которая способна поддерживать жизнь миллионами лет, чем она и занималась все это время.

Если говорить о том, что официальная наука думает об исчезновении Гольфстрима или любом другом кардинальном изменении в Мировом океане, то все современные публикации и приведенные в них факты говорят о том, что этого не произойдет. Та система, которая образовалась на Земле, приобрела слишком большую устойчивость, чтобы в мгновение ока измениться до неузнаваемости.

Как исследуют морские течения

Чтобы изучать океанские течение, еще в конце прошлого столетия были разработаны устройства, представляющие из себя буи, называющиеся ARGO. Они расположены вдоль всех основных границ Мирового океана.

Расстояние между каждым буем - приблизительно 300 километров. Сперва планировалось, что их общее число будет равно трем тысячам, но этой отметки удалось достичь еще в 2007 году, и их число все еще увеличивается. Буи ARGO проводят замеры электропроводимости воды, ее оптические характеристики и плотность.

Основное функциональное назначение этих «поплавков» заключается в том, чтобы погружаться на разные глубины для сбора данных о воде и про морские течения. Это возможно благодаря изменению объема буя. Внутри него находится гибкий резервуар в виде резинового мешка, куда для погружения закачивается вода, и буй скрывается в глубине океана.

Большую часть времени аппарат под водой, работая циклами по 10 дней. Всплывая в конце этого периода лишь на один день, чтобы отправить на спутник всю собранную информацию, он сразу же приступает к новому циклу, изучая морские течения.

На это все, удачи вам!

Морские течения видео