Явление ядерного магнитного резонанса. Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод

Сегодня все чаще пациентов направляют не на рентгенографию или УЗИ, а на ядерную магниторезонансную томографию. В основе такого метода исследования лежит магнетизм ядра. Рассмотрим, что такое ямр томография, какие ее преимущества и в каких случаях она проводится.

Что это за исследование?

Этот метод диагностики основан на ядерном магнитном резонансе. Во внешнем магнитном поле ядро атома водорода, или протон, находится в двух взаимно противоположных состояниях. Изменить направление магнитного момента ядра можно, подействовав на него электромагнитными лучами с некоторой определенной частотой.

Помещение протона во внешнее магнитное поле вызывает изменение его магнитного момента с возвращением в исходное положение. При этом выделяется определенное количество энергии. Магнитно резонансный томограф фиксирует изменение количества такой энергии.

Томограф использует очень сильные магнитные поля. Электромагниты обычно способны развивать магнитное поле напряженностью 3, иногда до 9 Тл. Оно является полностью безвредным для человека. Система томографа позволяет локализировать направленность магнитного поля с тем, чтобы получить наиболее качественные изображения.

Ядерно магнитный томограф

Способ диагностики основывается на фиксации электромагнитного отклика ядра атома (протона), происходящего из-за возбуждения его электромагнитными волнами в высоконапряженном магнитном поле. Впервые о магнитно резонансной томографии заговорили еще в 1973 году. Тогда американский ученый П. Латербур предложил провести исследование объекта в изменяющемся магнитном поле. Работы этого ученого послужили началу новой эры в медицине.

С помощью магнитно резонансного томографа стало возможным изучать ткани и полости организма человека благодаря степени насыщенности тканей водородом. Часто применяются магнито-резонансные контрастные вещества. Чаще всего это препараты гадолиния, которые способны изменять отклик протонов.
Термин «ядерная МР томография» существовал до 1986 года.

В связи с радиобоязнью у населения в связи с катастрофой на Чернобыльской атомной электростанции из названия нового метода диагностики решено было убрать слово «ядерный». Впрочем, это позволило магнито-резонансной томографии быстро войти в практику диагностики многих заболеваний. На сегодня этот метод является ключевым в определении множества еще недавно труднодиагностируемых заболеваний.

Как проводится диагностика?

При проведении МРТ используется очень сильное магнитное поле. И хотя оно не опасно для человека, все же врачу и пациенту нужно придерживаться определенных правил.

Прежде всего, перед процедурой диагностики пациент заполняет специальную анкету. В ней он указывает состояние здоровья, а также ведомости о себе. Обследование делается в специально подготовленном помещении с кабинкой для переодевания и личных вещей.

Чтобы не навредить самому себе, а также для обеспечения правильности результатов пациент должен снять с себя все вещи, которые содержат металл, оставить в шкафчике для личных вещей мобильные телефоны, кредитные карточки, часы и проч . Женщинам желательно смыть с кожи декоративную косметику.
Дале пациента помещают внутрь трубы томографа. По указанию врача определяется зона обследования. Каждая зона обследуется в течение десяти – двадцати минут. Все это время пациент должен находиться неподвижно. От этого будет зависеть качество снимков. Врач может зафиксировать положение пациента, если это необходимо.

Во время работы аппарата слышатся равномерные звуки. Это нормально и свидетельствует о том, что исследование проходит правильно. Для получения более точных результатов пациенту может быть введено внутривенно контрастное вещество. В отдельных случаях при введении такого вещества ощущается прилив тепла. Это совершенно нормально.

Приблизительно через полчаса после исследования врач может получить протокол исследования (заключение). Выдается также диск с результатами.

Преимущества ядерной МРТ

К преимуществам такого обследования относят следующее.

  1. Возможность получить высококачественные изображения тканей организма в трех проекциях. Это значительно повышает визуализацию тканей и органов. В таком случае ЯМРТ намного лучше, чем компьютерная томография, рентгенография и ультразвуковая диагностика.
  2. Высококачественные объемные изображения дают возможность получить точный диагноз, что улучшает лечение и повышает вероятность выздоровления.
  3. Так как на МРТ можно получить высококачественное изображение, то такое исследование – лучшее для обнаружения опухолей, нарушений деятельности центральной нервной системы, патологических состояний опорно-двигательного аппарата. Так появляется возможность диагностировать те заболевания, которые еще недавно было сложно или невозможно обнаружить.
  4. Современные аппараты для томографии позволяют получить качественные снимки без изменения положения пациента. А для кодирования информации применяются те же методы, что и в компьютерной томографии. Это облегчает диагностику, так как врач видит трехмерные изображения целых органов. Также врач может получить изображения того или иного органа послойно.
  5. Такое обследование хорошо определяет самые ранние патологические изменения в органах. Таким образом можно обнаружить болезнь на стадии, когда пациент еще не ощущает симптомов.
  6. При проведении такого исследования больной не подвергается ионизирующему излучению. Это существенно расширяет сферы применения МРТ.
  7. Процедура МРТ полностью безболезненна и не доставляет больному никакого дискомфорта.

Показания к МРТ

Показаний к проведению магнитно резонансной томографии много.

  • Нарушения мозгового кровообращения.
  • Подозрения на новообразование мозга, поражение его оболочек.
  • Оценка состояния органов после оперативного вмешательства.
  • Диагностика воспалительных явлений.
  • Судороги, эпилепсии.
  • Черепно-мозговая травма.
  • Оценка состояния сосудов.
  • Оценка состояния костей и суставов.
  • Диагностика мягких тканей организма.
  • Заболевания позвоночника (в том числе остеохондроз, спондилоартроз).
  • Травмы позвоночника.
  • Оценка состояния спинного мозга, в том числе подозрения на злокачественные процессы.
  • Остеопороз.
  • Оценка состояния органов брюшины, а также забрюшинного пространства. МРТ показано при желтухе, хроническом гепатите, холецистите, желчнокаменной болезни, опухолевидном поражении печени, панкреатите, заболеваниях желудка, кишечника, селезенки, почек.
  • Диагностика кист.
  • Диагностика состояния надпочечников.
  • Заболевания органов малого таза.
  • Урологические патологии.
  • Гинекологические заболевания.
  • Болезни органов грудной полости.

Кроме того, показано магнито-резонансное исследование всего организма при подозрении на новообразование. С помощью МРТ можно проводить поиск метастазов, если диагностирована первичная опухоль.

Это далеко не полный перечень показаний для проведения магнито-резонансной томографии. Можно с уверенностью утверждать, что нет такого организма и заболевания, которое не можно было бы обнаружить при помощи такого способа диагностики. Поскольку же возможности медицины растут, то перед врачами открываются практически безграничные возможности диагностики и лечения многих опасных болезней.

Когда противопоказана магнитно-резонансная томография?

Для МРТ существует ряд абсолютных и относительных противопоказаний. К абсолютным противопоказаниям относятся такие.

  1. Наличие установленного кардиостимулятора. Это связано с тем, что колебания магнитного поля способны подстраиваться под ритм сердца и таким образом могут привести к летальному исходу.
  2. Наличие установленных ферромагнитных или электронных имплантатов в среднем ухе.
  3. Большие имплантаты из металла.
  4. Наличие в организме ферромагнитных осколков.
  5. Наличие аппаратов Илизарова.

К относительным противопоказаниям (когда исследование возможно при выполнении определенных условий) относятся:


При выполнении МРТ с контрастом противопоказаниями является анемия, хроническая декомпенсированная почечная недостаточность, беременность, индивидуальная непереносимость.

Заключение

Значение магнитно-резонансной томографии для диагностики трудно переоценить. Это – совершенный, неизвазивный, безболезненный и безвредный способ обнаружения многих болезней. С внедрением магнитно-резонансной томографии улучшилось и лечение пациентов, так как врач знает точный диагноз и особенности всех процессов, протекающих в организме пациента.

Не нужно бояться проведения МРТ. Пациент не ощущает никаких болевых ощущений во время процедуры. Она ничего не имеет общего с ядерным или рентгеновским излучением. Отказываться от проведения такой процедуры также нельзя.

Ядерный магнитный резонанс

В.К. Воронов

Иркутский государственный технический университет

ВВЕДЕНИЕ

До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 10^ 3 – 10^ 6 МГц; микрорадиоволны) и высоких частот (примерно 10^(-2) – 10^ 2 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии.

Разность энергий уровней и энергия квантов, участвующих в этих процессах, составляют около 10^(-7) эВ для области радиочастот и около 10^(-4) эВ для сверхвысоких частот. В двух видах радиоспектроскопии, а именно в спектроскопии ядерного магнитного резонанса (ЯМР) и ядерного квадрупольного резонанса (ЯКР), разница энергий уровней связана с различной ориентацией соответственно магнитных дипольных моментов ядер в приложенном магнитном поле и электрических квадрупольных моментов ядер в молекулярных электрических полях, если последние не являются сферически симметричными.

Существование ядерных моментов впервые было обнаружено при изучении сверхтонкой структуры электронных спектров некоторых атомов с помощью оптических спектрометров с высокой разрешающей способностью.

Под влиянием внешнего магнитного поля магнитные моменты ядер ориентируются определенным образом и появляется возможность наблюдать переходы между ядерными энергетическими уровнями, связанными с этими разными ориентациями: переходы, происходящие под действием излучения определенной частоты. Квантование энергетических уровней ядра является прямым следствием квантовой природы углового момента ядра, принимающего 2I + 1 значений. Спиновое квантовое число (спин) I может принимать любое значение, кратное 1/2; наиболее высоким из известных значений I (> 7)обладаетLu. Наибольшее измеримое значение углового момента (наибольшее значение проекции момента на выделенное направление) равно iћ , где ћ = h /2π , а h - постоянная Планка.

Значения I для конкретных ядер предсказать нельзя, однако было замечено, что изотопы, у которых и массовое число, и атомный номер четные, имеют I = 0, а изотопы с нечетными массовыми числами имеют полуцелые значения спина. Такое положение, когда числа протонов и нейтронов в ядре четные и равны (I = 0), можно рассматривать как состояние с “полным спариванием”, аналогичным полному спариванию электронов в диамагнитной молекуле.

В конце 1945 года двумя группами американских физиков под руководством Ф. Блоха (Станфорский университет) и Э.М. Парселла (Гарвардский университет) впервые были получены сигналы ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса на протонах в парафине. За это открытие они в 1952 году были удостоены Нобелевской премии.

Ниже излагаются сущность явления ЯМР и его отличительные особенности.

СПЕКТРОСКОПИЯ ЯМР ВЫСОКОГО РАЗРЕШЕНИЯ

Сущность явления ЯМР

Сущность явления ЯМР можно проиллюстрировать следующим образом. Если ядро, обладающее магнитным моментом, помещено в однородное поле Н 0 , направленное по оси z, то его энергия (по отношению к энергии при отсутствии поля) равна μ z H 0 , где μ z , – проекция ядерного магнитного момента на направление поля.

Как уже отмечалось, ядро может находиться в 2I + 1 состояниях. При отсутствии внешнего поля Н 0 все эти состояния имеют одинаковую энергию. Если обозначить наибольшее измеримое значение компоненты магнитного момента через μ , то все измеримые значения компоненты магнитного момента (в данном случае μ z ,) выражаются в виде m μ , где m – квантовое число, которое может принимать, как известно, значения

m= I , I - 1,I - 2...-(I - 1),-I.

Так как расстояние между уровнями энергии, соответствующими каждому из 2I + 1 состояний, равно m Н 0 /I , то ядро со спиномI имеет дискретные уровни энергии

- μ H 0, -(I-1)μ z H 0 / I,..., (I-1)μ z H 0 / I, μ H 0.

Расщепление уровней энергии в магнитном поле можно назвать ядерным зеемановским расщеплением, так как оно аналогично расщеплению электронных уровней в магнитном поле (эффект Зеемана). Зеемановское расщепление проиллюстрировано на рис. 1 для системы с I = 1 (с тремя уровнями энергии).

Рис. 1. Зеемановское расщепление уровней энергии ядра в магнитном поле.

Явление ЯМР состоит в резонансном поглощении электромагнитной энергии, обусловленном магнетизмом ядер. Отсюда вытекает очевидное название явления: ядерный – речь идет о системе ядер, магнитный – имеются в виду только их магнитные свойства, резонанс – само явление носит резонансный характер. Действительно, из правил частот Бора следует, что частота ν электромагнитного поля, вызывающего переходы между соседними уровнями, определяется формулой

, (1)

Так как векторы момента количества движения (углового момента) и магнитного момента параллельны, то часто удобно характеризовать магнитные свойства ядер величиной γ , определяемой соотношением

, (2)

где γ – гиромагнитное отношение, имеющее размерность радиан * эрстед^(- 1) * секунда^(- 1) (рад * Э^(- 1) * с*(- 1) ) или радиан/(эрстед * секунда) (рад/(Э * с)). С учетом этого найдем

, (3)

Таким образом, частота пропорциональна приложенному полю.

Если в качестве типичного примера взять значениеγ для протона, равное 2,6753*10:4 рад/(Э * с), и Н 0 = 10 000 Э, то резонансная частота

Такая частота может быть генерирована обычными радиотехническими методами.

Спектроскопия ЯМР характеризуется рядом особенностей, выделяющих ее среди других аналитических методов. Около половины (~ 150) ядер известных изотопов имеют магнитные моменты, однако только меньшая часть их систематически используется.

До появления спектрометров, работающих в импульсном режиме, большинство исследований выполнялось с использованием явления ЯМР на ядрах водорода (протонах) 1 H (протонный магнитный резонанс – ПМР) и фтора 19 F. Эти ядра обладают идеальными для спектроскопии ЯМР свойствами:

Высокое естественное содержание “магнитного” изотопа (1 H 99,98%, 19 F 100%); для сравнения можно упомянуть, что естественное содержание “магнитного” изотопа углерода 13 C составляет 1,1%;

Большой магнитный момент;

Спин I = 1/2.

Это обусловливает прежде всего высокую чувствительность метода при детектировании сигналов от указанных выше ядер. Кроме того, существует теоретически строго обоснованное правило, согласно которому только ядра со спином, равным или большим единицы, обладают электрическим квадрупольным моментом. Следовательно, эксперименты по ЯМР 1 H и 19 F не осложняются взаимодействием ядерного квадрупольного момента ядра с электрическим окружением. Большое количество работ было посвящено резонансу на других (помимо 1 H и 19 F) ядрах, таких, как 13 C, 31 P, 11 B, 17 O в жидкой фазе (так же, как и на ядрах 1 1 H и 19 F).

Внедрение импульсных спектрометров ЯМР в повседневную практику существенно расширило экспериментальные возможности этого вида спектроскопии. В частности, запись спектров ЯМР 13 C растворов – важнейшего для химии изотопа – теперь является фактически привычной процедурой. Обычным явлением стало также детектирование сигналов от ядер, интенсивность сигналов ЯМР которых во много раз меньше интенсивности для сигналов от 1 H, в том числе и в твердой фазе.

Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки.

Еще одна особенность ЯМР – влияние обменных процессов, в которых участвуют резонирующие ядра, на положение и ширину резонансных сигналов. Таким образом, по спектрам ЯМР можно изучать природу таких процессов. Линии ЯМР в спектрах жидкостей обычно имеют ширину 0,1 – 1 Гц (ЯМР высокого разрешения), в то время как те же самые ядра, исследуемые в твердой фазе, будут обусловливать появление линий шириной порядка 1*10^ 4 Гц (отсюда понятие ЯМР широких линий).

В спектроскопии ЯМР высокого разрешения имеются два главных источника информации о строении и динамике молекул:

Химический сдвиг;

Константы спин-спинового взаимодействия.

Химический сдвиг

В реальных условиях резонирующие ядра, сигналы ЯМР которых детектируются, являются составной частью атомов или молекул. При помещении исследуемых веществ в магнитное поле (H 0 ) возникает диамагнитный момент атомов (молекул), обусловленный орбитальным движением электронов. Это движение электронов образует эффективные токи и, следовательно, создает вторичное магнитное поле, пропорциональное в соответствии с законом Ленца полю H 0 и противоположно направленное. Данное вторичное поле действует на ядро. Таким образом, локальное поле в том месте, где находится резонирующее ядро,

, (4)

где σ – безразмерная постоянная, называемая постоянной экранирования и не зависящая от H 0 , но сильно зависящая от химического (электронного) окружения; она характеризует уменьшение Hлок по сравнению с H 0 .

Величина σ меняется от значения порядка 10^(- 5) для протона до значений порядка 10^(- 2) для тяжелых ядер. С учетом выражения для Hлок имеем

, (5)

Эффект экранирования заключается в уменьшении расстояния между уровнями ядерной магнитной энергии или, другими словами, приводит к сближению зеемановских уровней (рис. 2). При этом кванты энергии, вызывающие переходы между уровнями, становятся меньше и, следовательно, резонанс наступает при меньших частотах (см. выражение (5)). Если проводить эксперимент, изменяя поле H 0 до тех пор, пока не наступит резонанс, то напряженность приложенного поля должна иметь большую величину по сравнению со случаем, когда ядро не экранировано.

Рис. 2. Влияние электронного экранирования на зеемановские уровни ядра: а – неэкранированного, б – экранированного.

В подавляющем большинстве спектрометров ЯМР запись спектров осуществляется при изменении поля слева направо, поэтому сигналы (пики) наиболее экранированных ядер должны находиться в правой части спектра.

Смещение сигнала в зависимости от химического окружения, обусловленное различием в константах экранирования, называется химическим сдвигом.

Впервые сообщения об открытии химического сдвига появились в нескольких публикациях 1950 – 1951 годов. Среди них необходимо выделить работу Арнольда с соавторами (1951 год), получивших первый спектр с отдельными линиями, соответствующими химически различным положениям одинаковых ядер 1 H в одной молекуле. Речь идет об этиловом спирте CH 3 CH 2 OH, типичный спектр ЯМР 1 H которого при низком разрешении показан на рис. 3.

Рис. 3. Спектр протонного резонанса жидкого этилового спирта, снятый при низком разрешении.

В этой молекуле три типа протонов: три протона метильной группы CH 3 –, два протона метиленовой группы –CH 2 – и один протон гидроксильной группы –OH. Видно, что три отдельных сигнала соответствуют трем типам протонов. Так как интенсивность сигналов находится в соотношении 3: 2: 1, то расшифровка спектра (отнесение сигналов) не представляет труда.

Поскольку химические сдвиги нельзя измерять в абсолютной шкале, то есть относительно ядра, лишенного всех его электронов, то в качестве условного нуля используется сигнал эталонного соединения. Обычно значения химического сдвига для любых ядер приводятся в виде безразмерного параметра 8, определяемого следующим образом:

, (6)

где H - Hэт есть разность химических сдвигов для исследуемого образца и эталона, Hэт – абсолютное положение сигнала эталона при приложенном поле H 0 .

В реальных условиях эксперимента более точно можно измерить частоту, а не поле, поэтому δ обычно находят из выражения

, (7)

где ν - ν эт есть разность химических сдвигов для образца и эталона, выраженная в единицах частоты (Гц); в этих единицах обычно производится калибровка спектров ЯМР.

Строго говоря, следовало бы пользоваться не ν 0 – рабочей частотой спектрометра (она обычно фиксирована), а частотой ν эт , то есть абсолютной часто-той, на которой наблюдается резонансный сигнал эталона. Однако вносимая при такой замене ошибка очень мала, так как ν 0 и ν эт почти равны (отличие составляет 10^ (-5), то есть на величину σ для протона). Поскольку разные спектрометры ЯМР работают на разных частотах ν 0 (и, следовательно, при различных полях H 0 ), очевидна необходимость выражения δ в безразмерных единицах.

За единицу химического сдвига принимается одна миллионная доля напряженности поля или резонансной частоты (м.д.). В зарубежной литературе этому сокращению соответствует ppm (parts per million). Для большинства ядер, входящих в состав диамагнитных соединений, диапазон химических сдвигов их сигналов составляет сотни и тысячи м.д., достигая 20000 м.д. в случае ЯМР 59 Co (кобальта). В спектрах 1 H сигналы протонов подавляющего числа соединений лежат в интервале 0 – 10 м.д.

Спин-спиновое взаимодействие

В 1951 – 1953 годах при записи спектров ЯМР ряда жидкостей обнаружилось, что в спектрах некоторых веществ больше линий, чем это следует из простой оценки числа неэквивалентных ядер. Один из первых примеров – это резонанс на фторе в молекуле POCl 2 F. Спектр 19 F состоит из двух линий равной интенсивности, хотя в молекуле есть только один атом фтора (рис. 4). Молекулы других соединений давали симметричные мультиплетные сигналы (триплеты, квартеты и т.д.).

Другим важным фактором, обнаруженным в таких спектрах, было то, что расстояние между линиями, измеренное в частотной шкале, не зависит от приложенного поля H 0 , вместо того чтобы быть ему пропорциональным, как должно быть в случае, если бы мультиплетность возникала из-за различия в константах экранирования.

Рис. 4. Дублет в спектре резонанса на ядрах фтора в молекуле POCl 2 F

Рэмзи и Парселл в 1952 году первыми объяснили это взаимодействие, показав, что оно обусловленомеханизмом косвенной связи через электронное окружение. Ядерный спин стремится ориентировать спины электронов, окружающих данное ядро. Те, в свою очередь, ориентируют спины других электронов и через них – спины других ядер. Энергия спин-спинового взаимодействия обычно выражается в герцах (то есть постоянную Планка принимают за единицу энергии, исходя из того, что E = hν ). Ясно, что нет необходимости (в отличие от химического сдвига) выражать ее в относительных единицах, так как обсуждаемое взаимодействие, как отмечалось выше, не зависит от напряженности внешнего поля. Величину взаимодействия можно определить измеряя расстояние между компонентами соответствующего мультиплета.

Простейшим примером расщепления из-за спин-спиновой связи, с которым можно встретиться, является резонансный спектр молекулы, содержащей два сорта магнитных ядер А и Х. Ядра А и Х могут представлять собой как различные ядра, так и ядра одного изотопа (например, 1 H) в том случае, когда химические сдвиги между их резонансными сигналами велики.

Рис. 5. Вид спектра ЯМР системы, состоящей из магнитных ядер А и Х со спином I = 1/2 при выполнении условия δ AX > J AX .

На рис. 5 показано, как выглядит спектр ЯМР, если оба ядра, то есть А и Х, имеют спин, равный 1/2. Расстояние между компонентами в каждом дублете называют константой спин-спинового взаимодействия и обычно обозначают как J (Гц); в данном случае это константа J АХ .

Возникновение дублетов обусловлено тем, что каждое ядро расщепляет резонансные линии соседнего ядра на 2I + 1 компонент. Разности энергий между различными спиновыми состояниями так малы, что при тепловом равновесии вероятности этих состояний в соответствии с больцмановским распределением оказываются почти равными. Следовательно, интенсивности всех линий мультиплета, получающегося от взаимодействия с одним ядром, будут равны. В случае, когда имеется n эквивалентных ядер (то есть одинаково экранированных, поэтому их сигналы имеют одинаковый химический сдвиг), резонансный сигнал соседнего ядра расщепляется на 2nI + 1 линий.

ЗАКЛЮЧЕНИЕ

Вскоре после открытия явления ЯМР в конденсированных средах стало ясно, что ЯМР будет основой мощного метода исследования строения вещества и его свойств. Действительно, исследуя спектры ЯМР, мы используем в качестве резонирующей систему ядер, чрезвычайно чувствительных к магнитному окружению. Локальные же магнитные поля вблизи резонирующего ядра зависят от внутри- и межмолекулярных эффектов, что и определяет ценность этого вида спектроскопии для исследования строения и поведения многоэлектронных (молекулярных) систем.

В настоящее время трудно указать такую область естественных наук, где бы в той или иной степени не использовался ЯМР. Методы спектроскопии ЯМР широко применяются в химии, молекулярной физике, биологии, агрономии, медицине, при изучении природных образований (слюд, янтаря, полудрагоценных камней, горючих минералов и другого минерального сырья), то есть в таких научных направлениях, в которых исследуются строение вещества, его молекулярная структура, характер химических связей, межмолекулярные взаимодействия и различные формы внутреннего движения.

Методы ЯМР находят все более широкое применение для изучения технологических процессов в заводских лабораториях, а также для контроля и регулирования хода этих процессов в различных технологических коммуникациях непосредственно на производстве. Исследования последних пятидесяти лет показали, что магнитно-резонансные методы позволяют обнаруживать нарушения протекания биологических процессов на самой ранней стадии. Разработаны и выпускаются установки для исследования всего тела человека методами магнитного резонанса (методами ЯМР-томографии).

Что касается стран СНГ, и прежде всего России, то методы магнитного резонанса (особенно ЯМР) к настоящему времени заняли прочное место в научно-исследовательских лабораториях этих государств. В различных городах (Москве, Новосибирске, Казани, Таллине, Санкт-Петербурге, Иркутске, Ростове-на-Дону и др.) возникли научные школы по использованию указанных методов со своими оригинальными задачами и подходами к их решению.

1. Попл Дж., Шнейдер В., Бернстейн Г. Спектры ядерного магнитного резонанса высокого разрешения. М.: ИЛ, 1962. 292 с.

2. Керрингтон А., Мак-Лечлан Э. Магнитный резонанс и его применение в химии. М.: Мир, 1970. 447 с.

3. Бови Ф.А. ЯМР высокого разрешения макро-молекул.М.: Химия, 1977. 455 с.

4. Хеберлен У., Меринг М. ЯМР высокого разрешения в твердых телах. М.: Мир, 1980. 504 с.

5. Сликтер Ч. Основы теории магнитного резонанса. М.: Мир, 1981. 448 с.

6. Ионин Б.И., Ершов Б.А., Кольцов А.И. ЯМР-спектроскопия в органической химии. Л.: Химия, 1983. 269 с.

7. Воронов В.К. Методы парамагнитных добавок в спектроскопии ЯМР. Новосибирск: Наука, 1989. 168 с.

8. Эрнст Р., Боденхаузен Дж., Вокаун А. ЯМР в одном и двух измерениях. М.: Мир, 1990. 709 с.

9. Дероум Э. Современные методы ЯМР для химических исследований. М.: Мир, 1992. 401 с.

10. Воронов В.К., Сагдеев Р.З. Основы магнитного резонанса. Иркутск: Вост.-Сиб. кн. изд-во, 1995.352 с.

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

Физика ЯМР

Расщепление энергетических уровней ядра с I = 1/2 в магнитном поле

В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер, состоящих из нуклонов с полуцелым спином 1/2, 3/2, 5/2.... Ядра с чётными массовым и зарядовым числами (чётно-чётные ядра) не обладают магнитным моментом, в то время как для всех прочих ядер магнитный момент отличен от нуля.

Таким образом, ядра обладают угловым моментом , связанным с магнитным моментом соотношением

,

где - постоянная Планка , - спиновое квантовое число, - гиромагнитное отношение .

Угловой момент и магнитный момент ядра квантованы и собственные значения проекции и углового и магнитного моментов на ось z произвольно выбранной системы координат определяются соотношением

и ,

где - магнитное квантовое число собственного состояния ядра, его значения определяются спиновым квантовым числом ядра

то есть ядро может находиться в состояниях.

Так, у протона (или другого ядра с I = 1/2 - 13 C, 19 F, 31 P и т. п.) может находиться только в двух состояниях

,

такое ядро можно представить как магнитный диполь , z-компонента которого может быть ориентирована параллельно либо антипараллельно положительному направлению оси z произвольной системы координат.

Следует отметить, что в отсутствие внешнего магнитного поля все состояния с различными имеют одинаковую энергию, то есть являются вырожденными. Вырождение снимается во внешнем магнитном поле, при этом расщепление относительно вырожденного состояния пропорционально величине внешнего магнитного поля и магнитного момента состояния и для ядра со спиновым квантовым числом I во внешнем магнитном поле появляется система из 2I+1 энергетических уровней , то есть ядерный магнитный резонанс имеет ту же природу, что и эффект Зеемана расщепления электронных уровней в магнитном поле.

В простейшем случае для ядра со спином с I = 1/2 - например, для протона, расщепление

и разность энергии спиновых состояний

Ларморовские частоты некоторых атомных ядер

Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м) .

Применение ЯМР

Спектроскопия

Основная статья : ЯМР-спектроскопия

Приборы

Сердцем спектрометра ЯМР является мощный магнит . В эксперименте, впервые осуществленном на практике Пёрселлом , образец, помещенный в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем ампула начинает вращаться, а магнитное поле , действующее на нее, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности . Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте чуть меньшей, чем номинальная частота резонанса (и прибора).

Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его еще называют методом постоянного поля (CW).

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от ν 0 . Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких ватт .

В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер - так называемый «спад свободной индукции» (FID, free induction decay ). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование , по которому любая функция может быть представлена в виде суммы множества гармонических колебаний .

Спектры ЯМР

Спектр 1 H 4-этоксибензальдегида. В слабом поле (синглет ~9,25 м.д) сигнал протона альдегидной группы, в сильном (триплет ~1,85-2 м.д.) - протонов метила этоксильной группы.

Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

  • сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра;
  • интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;
  • ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1 Н и 13 С применяют тетраметилсилан Si(CH 3) 4 . Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу δ. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой τ, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчета констант экранирования и на их основании соотнести сигналы.

ЯМР-интроскопия

Явление ядерного магнитного резонанса можно применять не только в физике и химии , но и в медицине : организм человека - это совокупность все тех же органических и неорганических молекул.

Чтобы наблюдать это явление, объект помещают в постоянное магнитное поле и подвергают действию радиочастотных и градиентных магнитных полей. В катушке индуктивности, окружающей исследуемый объект, возникает переменная электродвижущая сила (ЭДС), амплитудно-частотный спектр которой и переходные во времени характеристики несут информацию о пространственной плотности резонирующих атомных ядер, а также о других параметрах, специфических только для ядерного магнитного резонанса. Компьютерная обработка этой информации формирует объёмное изображение, которое характеризует плотность химически эквивалентных ядер, времена релаксации ядерного магнитного резонанса, распределение скоростей потока жидкости, диффузию молекул и биохимические процессы обмена веществ в живых тканях.

Сущность ЯМР-интроскопии (или магнитно-резонансной томографии) состоит, по сути дела, в реализации особого рода количественного анализа по амплитуде сигнала ядерного магнитного резонанса. В обычной ЯМР-спектроскопии стремятся реализовать, по возможности, наилучшее разрешение спектральных линий. Для этого магнитные системы регулируются таким образом, чтобы в пределах образца создать как можно лучшую однородность поля. В методах ЯМР-интроскопии, напротив, магнитное поле создается заведомо неоднородным. Тогда есть основание ожидать, что частота ядерного магнитного резонанса в каждой точке образца имеет свое собственное значение, отличающееся от значений в других частях. Задав какой-либо код для градаций амплитуды ЯМР-сигналов (яркость или цвет на экране монитора), можно получить условное изображение (

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Спектроскопия ядерного ОФС.1.2.1.1.0007.15
магнитного резонанса Взамен ГФ
XII , ч.1,
ОФС 42-0046-07

Спектроскопия ядерного магнитного резонанса (ЯМР) – метод, основанный на поглощении радиочастотного электромагнитного излучения ядрами образца с ненулевым магнитным моментом, помещенного в постоянное магнитное поле (B 0). Ненулевые магнитные моменты имеют изотопы ядер элементов с нечетной атомной массой (1 H, 13 C, 15 N, 19 F, 31 P и др.).

Общие принципы

Вращающееся вокруг своей оси ядро имеет собственный момент количества движения (угловой момент, или спин) P . Магнитный момент ядра μ прямо пропорционален спину: μ = γ ∙ P (γ – коэффициент пропорциональности или гиромагнитное отношение). Угловой и магнитный моменты являются квантованными, т.е. могут находиться в одном из 2I + 1 спиновых состояний (I спиновое квантовое число ). Различные состояния магнитных моментов ядер обладают одинаковой энергией, если на них не действует внешнее магнитное поле. При помещении ядер во внешнее магнитное поле B 0 энергетическое вырождение ядер снимается и возникает возможность энергетического перехода с одного уровня на другой. Процесс распределения ядер между различными энергетическими уровнями протекает в соответствии с законом распределения Больцмана и приводит к появлению макроскопической равновесной продольной намагниченности М z . Время, которое требуется для создания М z после включения внешнего магнитного поля В 0 , называется временем продольной или спин решеточной релаксации (Т 1). Нарушение равновесного распределения ядер происходит под действием радиочастотного магнитного поля (B 1), перпендикулярного B 0 , которое вызывает дополнительные переходы между энергетическими уровнями, сопровождающиеся поглощением энергии (явление ядерного магнитного резонанса) . Частота ν 0 , при которой возникает поглощение энергии ядрами (Ларморова или резонансная частота поглощения ), изменяется в зависимости от величины постоянного поля B 0: ν 0 = γB 0 /2π. В момент резонанса происходит взаимодействие между индивидуальными ядерными магнитными моментами и полем В 1 , которое выводит вектор М z из его равновесного положения вдоль оси z . В результате появляется поперечная намагниченность М xy . Ее изменение, связанное с обменом внутри спиновой системы, характеризуется временем поперечной или спин-спиновой релаксации (Т 2).

Зависимость интенсивности поглощения энергии ядрами одного типа от частоты радиочастотного магнитного поля при фиксированном значении В 0 называется одномерным спектром ядерного магнитного резонанса ядра данного типа. Спектр ЯМР может быть получен двумя способами: при непрерывном облучении образца радиочастотным полем с изменяющейся частотой, в результате чего регистрируется непосредственно спектр ЯМР (спектроскопия с непрерывным облучением), или при воздействии на образец короткого радиочастотного импульса (импульсная спектроскопия ). В импульсной спектроскопии ЯМР регистрируется затухающее во времени когерентное излучение, испускаемое ядрами при возвращении в исходное спиновое состояние (сигнал спада свободной индукции ) с последующим преобразованием временной шкалы в частотную (Фурье-преобразование ).

В молекулах электроны атомов уменьшают величину действующего внешнего магнитного поля B 0 в месте нахождения ядра, т.е. проявляется диамагнитное экранирование :

B лок = B 0 ∙ (1 – σ),

B лок – напряженность результирующего поля;

σ – константа экранирования.

Разница в резонансных частотах сигналов ядер, равная разнице в их константах экранирования, называется химическим сдвигом сигналов, обозначается символом δ , измеряется в миллионных долях (м.д.). Взаимодействие магнитных моментов ядер через посредство электронов химической связи (спин-спиновое взаимодействие ) вызывает расщепление сигнала ЯМР (мультиплетность, m ). Количество компонент в мультиплетах определяется спином ядра и количеством взаимодействующих ядер. Мерой спин-спинового взаимодействия является константа спин-спинового взаимодействия (J , измеряется в герцах, Гц). Значения δ, m и J не зависят от величины постоянного магнитного поля.

Интенсивность сигнала ЯМР ядра в спектре определяется заселенностью его энергетических уровней. Из ядер с естественным содержанием изотопов наиболее интенсивные сигналы дают ядра водорода. На интенсивность сигналов ЯМР также влияет время продольно-поперечной релаксации (большие Т 1 ведут к уменьшению интенсивности сигнала).

Ширина сигналов ЯМР (разница между частотами на полувысоте сигнала) зависит от Т 1 и Т 2 . Малые времена T 1 и Т 2 обуславливают широкие и мало интерпретируемые сигналы спектра.

Чувствительность метода ЯМР (предельно обнаруживаемая концентрация вещества) зависит от интенсивности сигнала ядра. Для ядер 1 Н чувствительность составляет 10 -9 ÷ 10 -11 моль.

Корреляции различных спектральных параметров (например, химических сдвигов различных ядер в пределах одной молекулярной системы) могут быть получены гомо- и гетероядерными методами в формате 2D или 3D.

Прибор

Импульсный спектрометр ЯМР (ЯМР-спектрометр) с высокой разрешающей способностью состоит из:

  • магнита для создания постоянного магнитного поля B 0 ;
  • термостатируемого датчика с держателем образца для подачи радиочастотного импульса и определения излучения, испускаемого образцом;
  • электронного устройства для создания радиочастотного импульса, регистрации, усиления и преобразования сигнала спада свободной индукции в цифровую форму;
  • устройства для настройки и регулировки электронных контуров;
  • устройства сбора и обработки данных (компьютер);

и может также включать:

проточную кювету для проведения жидкостной хроматографии ядерного магнитного резонанса или проточно-инъекционного анализа;

  • систему для создания импульсного градиента магнитного поля.

Сильное магнитное поле генерируется катушкой сверхпроводимости в сосуде Дьюара, заполненном жидким гелием.

Следует проверять надлежащее функционирование ЯМР-спектрометра. Для проверки проводят соответствующие испытания, включающие, как правило, измерение ширины спектральной линии на полувысоте определенных пиков при определенных условиях (разрешение ), воспроизводимость положения сигнала и отношение сигнал/шум (отношение между интенсивностью определенного сигнала в спектре ЯМР и случайных колебаний в области спектра, не содержащего сигналов от анализируемого вещества, S /N ) для стандартных смесей. В программном обеспечении спектрометров имеются алгоритмы по определению S/N . Все изготовители приборов предоставляют спецификации и протоколы измерения этих параметров.

Спектроскопия ЯМР образцов в растворах

Методика

Испытуемый образец растворяют в растворителе, к которому может быть добавлен соответствующий эталон для калибровки химического сдвига, как указано в нормативной документации. Величина относительного химического сдвига ядра вещества (δ в-во) определяется следующим выражением:

δ в-во = (ν в-во – ν эталон)/ν прибора,

ν в-во – частота резонанса ядра вещества, Гц;

ν эталон – частота резонанса ядра эталона, Гц;

ν прибора – рабочая частота ЯМР-спектрометра (частота, на которой выполняются условия резонанса для ядер водорода при данном B 0 , МГц).

Для растворов в органических растворителях химический сдвиг в спектрах 1 H и 13 C измеряется относительно сигнала тетраметилсилана, положение которого принято за 0 м.д. Отсчет химических сдвигов ведется в сторону слабого поля (влево) от сигнала тетраметилсилана (дельта – шкала химических сдвигов). Для водных растворов в качестве эталона в спектрах ЯМР 1 H используется 2,2-диметил-2-силанпентан-5-сульфонат натрия, химический сдвиг протонов метильной группы которого равен 0,015 м.д. Для спектров 13 C водных растворов в качестве эталона используют диоксан, химический сдвиг которого равен 67,4 м.д.

При калибровке спектров 19 F в качестве первичного эталона с нулевым значением химического сдвига используют трифторуксусную кислоту или трихлорфторметан; спектров 31 P – 85 % раствор ортофосфорной кислоты или триметилфосфат; спектров 15 N – нитрометан либо насыщенный раствор аммиака. В 1 Н и 13 С ЯМР, как правило, используют внутренний эталон, который непосредственно прибавляют к испытуемому образцу. В 15 N, 19 F и 31 Р ЯМР часто используют внешний эталон, который находится отдельно в коаксиальной цилиндрической пробирке или капилляре.

При описании спектров ЯМР необходимо указывать растворитель, в котором растворено вещество, и его концентрацию. В качестве растворителей используют легкоподвижные жидкости, в которых для уменьшения интенсивности сигналов растворителей атомы водорода заменены атомами дейтерия. Дейтерированный растворитель выбирают, исходя из следующих критериев:

  • 1) растворимости в нем испытуемого соединения;
  • 2) отсутствия перекрывания сигналов остаточных протонов дейтерированного растворителя с сигналами испытуемого соединения;
  • 3) отсутствия взаимодействия между растворителем и испытуемым соединением, если не указано иначе.

Атомы растворителя дают сигналы, которые легко идентифицируются по их химическому сдвигу и могут использоваться для калибровки оси химического сдвига (вторичный эталон). Химические сдвиги сигналов остаточных протонов дейтерированных растворителей имеют следующие значения (м.д.): хлороформ — 7,26; бензол — 7,16; вода — 4,7; метанол -3,35 и 4,78; диметилсульфоксид — 2,50; ацетон — 2,05; положение сигнала воды и протонов гидроксильных групп спиртов зависит от pH среды и температуры.

Для количественного анализа растворы не должны содержать нерастворенных частиц. При некоторых количественных определениях может потребоваться добавление внутреннего стандарта для сравнения интенсивности испытуемого и стандартного образцов. Соответствующие стандартные образцы и их концентрации должны быть указаны в нормативной документации. После помещения образца в пробирку и укупорки образец вводят в магнит ЯМР-спектрометра, устанавливают параметры испытания (параметры настройки, регистрации, оцифровки сигнала спада свободной индукции). Основные параметры испытания, приводимые в нормативной документации, записывают или сохраняют в компьютере.

Для предотвращения дрейфа спектра во времени выполняют стабилизационную процедуру (дейтериевый лок), используя сигнал дейтерия, вызываемый дейтерированными растворителями, если не указано иначе. Прибор регулируют для получения наиболее оптимальных условий резонанса и максимального соотношения S/N (шиммирование ).

В ходе испытания возможно выполнение многократных последовательностей циклов «импульс – сбор данных – пауза» с последующим суммированием отдельных сигналов спада свободной индукции и усреднением уровня шума. Время задержки между импульсными последовательностями, в течение которого система ядерных спинов восстанавливает свою намагниченность (D 1), для количественных измерений должно превышать время продольной релаксации T 1: D 1 ≥ 5 T 1 . В программном обеспечении спектрометров имеются алгоритмы по определению T 1 . Если величина T 1 неизвестна, рекомендуется использовать значение D 1 = 25 c.

После проведения Фурье-преобразования сигналы в частотном представлении калибруют под выбранный эталон и измеряют их относительную интенсивность путем интегрирования – измерения отношения площадей резонансных сигналов. В спектрах 13 С интегрируют только однотипные сигналы. Точность интегрирования сигнала зависит от соотношения сигнал шум (S/N) :

где u (I ) – стандартная неопределенность интегрирования.

Число накоплений спада свободной индукции, необходимое для достижения удовлетворительного соотношения S / N , должно быть приведено в нормативной документации.

Наряду с одномерными в аналитических целях используют гомо- и гетероядерные двумерные корреляционные спектры, основанные на определенной последовательности импульсов (COSY, NOESY, ROESY, HSQC, HMBC, HETCOR, CIGAR, INADEQUATE и др.). В двумерных спектрах взаимодействие между ядрами проявляется в виде сигналов, называемых кросс-пиками. Положение кросс-пиков определяется значениями химических сдвигов двух взаимодействующих ядер. Двумерные спектры предпочтительно использовать для определения состава сложных смесей и экстрактов, т.к. вероятность наложения сигналов (кросс-пиков) в двумерных спектрах существенно ниже, чем вероятность наложения сигналов в одномерных спектрах.

Для быстрого получения спектров гетероядер (13 C, 15 N и др.) применяют методики (HSQC, HMBC), которые позволяют получать на ядрах 1 H спектры других ядер, используя механизмы гетероядерного взаимодействия.

Методика DOSY, основанная на регистрации потери фазовой когерентности ядерных спинов за счет трансляционных перемещений молекул под действием градиента магнитного поля, позволяет получать спектры индивидуальных соединений (спектральное разделение) в смеси без их физического разделения и определять размеры, степени агрегированности и молекулярные массы молекулярных объектов (молекул, макромолекул, молекулярных комплексов, супрамолекулярных систем).

Области применения

Многообразие структурной и аналитической информации, содержащейся в спектрах ядерного магнитного резонанса, позволяет использовать метод ядерного магнитного резонанса для проведения качественного и количественного анализа. Применение спектроскопии ядерного магнитного резонанса в количественном анализе основано на прямой пропорциональности молярной концентрации магнитно-активных ядер интегральной интенсивности соответствующего сигнала поглощения в спектре.

  1. Установление подлинности действующего вещества . Установление подлинности действующего вещества осуществляют путем сравнения спектра испытуемого образца со спектром стандартного образца или с опубликованным эталонным спектром. Спектры стандартных и испытуемых образцов должны быть получены с использованием одних и тех же методик и условий. Пики в сравниваемых спектрах должны совпадать по положению (отклонения значений δ испытуемого и стандартных образцов в пределах ± 0,1 м.д. для ядерного магнитного резонанса 1 Н и ± 0,5 м.д. для ядерного магнитного резонанса 13 С), интегральной интенсивности и мультиплетности, значения которых следует приводить при описании спектров. При отсутствии стандартного образца можно использовать фармакопейный стандартный образец, идентичность которого подтверждают самостоятельной структурной интерпретацией спектральных данных и альтернативными методами.

При подтверждении подлинности образцов нестехиометрического состава (например, природных полимеров переменного состава) допускают несовпадение пиков испытуемого и стандартных образцов по положению и интегральной интенсивности сигналов. Сравниваемые спектры должны быть подобны, т.е. содержать одинаковые характеристические области сигналов, подтверждающие совпадение фрагментного состава испытуемого и стандартных образцов.

Для установления подлинности смеси веществ (экстрактов) допускают использование одномерных спектров ЯМР целиком, как «отпечатков пальца» объекта, без детализации значений δ и мультиплетности отдельных сигналов. В случае использования двумерной спектроскопии ЯМР при описании спектров (фрагментов спектра), заявленных на подлинность, следует приводить значения кросс-пиков.

  1. Идентификация посторонних примесей/остаточных органических растворителей . Идентификацию посторонних примесей/остаточных органических растворителей осуществляют аналогично установлению подлинности действующего вещества, ужесточая требования к чувствительности и цифровому разрешению.
  2. Определение содержания посторонних примесей/остаточных органических растворителей относительно действующего вещества . Метод ЯМР является прямым абсолютным методом определения мольного соотношения действующего вещества и примесного соединения (n /n примесь):

где S и S примесь – нормированные значения интегральных интенсивностей сигналов действующего вещества и примеси.

Нормирование проводят по числу ядер в структурном фрагменте, обуславливающих измеряемый сигнал.

Массовую долю примеси/остаточного органического растворителя относительно действующего вещества (X пр) определяют по формуле:

M пр – молекулярная масса примеси;

M – молекулярная масса действующего вещества;

S пр – нормированное значение интегральной интенсивности сигнала примеси;

S’ – нормированное значение интегральной интенсивности сигнала действующего вещества.

  1. Количественное определение содержания вещества (действующего вещества, примеси/остаточного растворителя) в фармацевтической субстанции . Абсолютное содержание вещества в фармацевтической субстанции определяется методом внутреннего стандарта, в качестве которого выбирается вещество, сигналы которого находятся вблизи сигналов определяемого вещества, не перекрываясь с ними. Интенсивности сигналов определяемого вещества и стандарта не должны существенно различаться.

Процентное содержание определяемого вещества в испытуемом образце в пересчете на сухое вещество (X, % масс) вычисляют по формуле:

X, % масс = 100 ∙ (S ‘ /S ‘ 0) ∙ (M a 0 /M 0 ∙ a ) ∙ ,

S’ – нормированное значение интегральной интенсивности сигнала определяемого вещества;

S ‘ 0 – нормированное значение интегральной интенсивности сигнала стандарта;

M – молекулярная масса определяемого вещества;

M 0 – молекулярная масса;

a – навеска испытуемого образца;

a 0 – навеска вещества-стандарта;

W – содержание влаги, %.

В качестве веществ-стандартов можно использовать следующие соединения: малеиновая кислота (2H; 6,60 м.д., M = 116,07), бензилбензоат (2H; 5,30 м.д., M = 212,25), малоновая кислота (2H; 3,30 м.д., M = 104,03), сукцинимид (4H; 2,77 м.д., M = 99,09), ацетанилид (3H; 2,12 м.д., M = 135,16), трет -бутанол (9H; 1,30 м.д., M = 74,12).

Относительное содержание вещества как доля компонента в смеси компонентов фармацевтической субстанции определяется методом внутренней нормализации. Мольная (X моль) и массовая (X масс) доля компонента i в смеси n веществ определяется по формулам:

  1. Определение молекулярной массы белков и полимеров . Молекулярные массы белков и полимеров определяют сравнением их подвижности с подвижностью соединений-стандартов с известной молекулярной массой, используя методики DOSY. Измеряют коэффициенты самодиффузии (D ) испытуемых и стандартных образцов, строят график зависимости логарифмов молекулярных масс соединений-стандартов от логарифмов D . По полученному таким образом графику методом линейной регрессии определяют неизвестные молекулярные массы испытуемых образцов. Полное описание DOSY-эксперимента должно быть приведено в нормативной документации.

Спектроскопия ЯМР твердых веществ

Образцы в твердом состоянии анализируют с помощью специально оборудованных ЯМР-спектрометров. Определенные технические операции (вращение порошкообразного образца в роторе, наклоненном под магическим углом (54,7°) к оси магнитного поля В 0 , силовое распаривание, перенос поляризации от легковозбудимых ядер к менее поляризуемым ядрам – кросс-поляризация) позволяют получать спектры органических и неорганических соединений с высокой разрешающей способностью. Полное описание процедуры должно быть приведено в нормативной документации. Основная область применения данной разновидности спектроскопии ЯМР – изучение полиморфизма твёрдых лекарственных средств.

Ядерный магнитный резонанс
Nuclear magnetic resonance

Ядерный магнитный резонанс (ЯМР) – резонансное поглощение электромагнитных волн атомными ядрами, происходящее при изменении ориентации векторов их собственных моментов количества движения (спинов). ЯМР возникает в образцах, помещённых в сильное постоянное магнитное поле, при одновременном воздействии на них слабого переменного электромагнитного поля радиочастотного диапазона (силовые линии переменного поля должны быть перпендикулярны силовым линиям постоянного поля). Для ядер водорода (протонов) в постоянном магнитном поле напряжённостью 10 4 эрстед резонанс наступает при частоте радиоволн 42.58 МГц. Для других ядер в магнитных полях 10 3 –10 4 эрстед ЯМР наблюдается в диапазоне частот 1–10 МГц. ЯМР широко используется в физике, химии и биохимии для исследования структуры твёрдых тел и сложных молекул. В медицине с помощью ЯМР с разрешением 0.5–1 мм получают пространственное изображение внутренних органов человека.

Рассмотрим явление ЯМР на примере простейшего ядра – водорода. Ядро водорода это протон, имеющий определённое значение собственного механического момента количества движения (спина). В соответствии с квантовой механикой вектор спина протона может иметь только два взаимно противоположных направления в пространстве, условно обозначаемых словами “вверх” и “вниз”. Протон имеет также и магнитный момент, направление вектора которого жёстко привязано к направлению вектора спина. Поэтому и вектор магнитного момента протона может быть направлен либо “вверх”, либо “вниз”. Таким образом, протон можно представить как микроскопический магнитик с двоякой возможной ориентацией в пространстве. Если поместить протон во внешнее постоянное магнитное поле, то энергия протона в этом поле будет зависеть от того, куда направлен его магнитный момент. Энергия протона будет больше в том случае, если его магнитный момент (и спин) направлен в сторону, противоположную полю. Эту энергию обозначим E ↓ . Если магнитный момент (спин) протона направлен в ту же сторону, что и поле, то энергия протона, обозначаемая E , будет меньше (E < E ↓). Пусть протон оказался именно в этом последнем состоянии. Если теперь протону добавить энергию Δ Е = E ↓ − E , то он сможет скачком перейти в состояние с большей энергией, в котором его спин будет направлен против поля. Добавить энергию протону можно, “облучая” его квантами электромагнитных волн с частотой ω, определяемой соотношением ΔЕ = ћω.
Перейдём от отдельного протона к макроскопическому образцу водорода, содержащему большое число протонов. Ситуация будет выглядеть так. В образце из-за усреднения случайных ориентаций спинов примерно равные количества протонов при наложении постоянного внешнего магнитного поля окажутся относительно этого поля со спинами, направленными “вверх” и “вниз”. Облучение образца электромагнитными волнами с частотой ω = (E ↓ − E )/ћ, вызовет “массовый” переворот спинов (магнитных моментов) протонов, в результате которого все протоны образца окажутся в состоянии со спинами, направленными против поля. Такой массовое изменение ориентации протонов будет сопровождаться резким (резонансным) поглощением квантов (и энергии) облучающего электромагнитного поля. Это и есть ЯМР. ЯМР можно наблюдать лишь в образцах с большим числом ядер (10 16), используя специальные методики и высокочувствительные приборы.