Активный транспорт веществ через мембрану. Виды активного транспорта веществ через мембрану

Обмен веществ между клеткой и окружающей её средой происходит постоянно. Механизмы транспорта веществ в клетку и из неё зависят от размеров транспортируемых частиц. Малые молекулы и ионы транспортируются клеткой непосредственно через мембрану в форме пассивного и активного транспорта.

Пассивный транспорт осуществляется без затрат энергии, по градиенту концентрации путем простой диффузии, фильтрации, осмоса или облегченной диффузии.

Диффузия – проникновение веществ через мембрану по градиенту концентрации; диффузный транспорт веществ (вода, ионы) осуществляется при участии интегральных белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

Облегченная диффузия – перенос с помощью специальных белков-переносчиков (пермеаз), которые избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. При этом частицы перемещаются быстрее, чем при обычной диффузии.

Осмос – поступление в клетки воды из гипотонического раствора.

Активный транспорт заключается в перемещении веществ против градиента концентрации с помощью транспортных белков (порины, АТФ-азы и др.), образующих мембранные насосы, с затратой энергии АТФ (калий-натриевый насос, регуляция концентрации в клетках ионов кальция и магния, поступление моносахаридов, нуклеотидов, аминокислот).

Перенос макромолекул и более крупных частиц происходит путем пиноцитоза и фагоцитоза благодаря способности мембраны клеток образовывать выпячивания. Края этих выпячиваний смыкаются, захватывая жидкость, окружающую клетку (пиноцитоз), или твердые частицы (фагоцитоз) и образуются окруженные мембраной пузырьки.

Пиноцитоз – один из основных способов проникновения в клетку высокомолекулярных соединений. Образующиеся пиноцитозные вакуоли имеют размеры от 0,01 до 1-2 мкм. Затем вакуоль погружается в цитоплазму и отшнуровывается. При этом стенка пиноцитозной вакуоли полностью сохраняет структуру породившей ее плазматической мембраны. Пиноцитоз и фагоцитоз – принципиально сходные процессы, в которых можно выделить четыре фазы: поступление веществ путем пино-или фагоцитоза, их расщепление под действием ферментов выделяемых лизосомами, перенос продуктов расщепления в цитоплазму (вследствие изменения проницаемости мембран вакуолей) и выделение наружу продуктов обмена.

В зависимости от вида и направления транспорта различают эндоцитоз (перенос в клетку путем прямого пино-или фагоцитоза) и экзоцитоз (перенос из клетки путем обратного пино - или фагоцитоза).

6. ЦИТОПЛАЗМЕ, ЕЁ СТРОЕНИЕ, ХИМИЧЕСКИЙ СОСТАВ.

Цитоплазма – обязательная составная часть клетки. В ней происходят сложные и разнообразные процессы синтеза, дыхания, роста, ей присущи явления раздражимости и наследственности, т.е. все те свойства, которые характеризуют жизнь.

Цитоплазма представляет собой вязкую прозрачную бесцветную массу с удельным весом 1,04 – 1,06. Свет преломляет чуть сильнее воды. Цитоплазма упруга, эластична, с водой не смешивается. Во многих клетках можно наблюдать ее движение: в клетках с одной крупной центральной вакуолью – круговое (циклоз), в клетках со многими вакуолями и тяжами цитоплазмы между ними – струйчатое. Ток цитоплазмы вовлекает в движение клеточные органоиды.

Цитоплазма дифференцирована на бесструктурную массу – гиалоплазму и оформленные образования – клеточные органоиды. Гиалоплазма (цитоплазматический матрикс) – сложная коллоидная система, образованная белками, нуклеиновыми кислотами, углеводами, водой и другими веществами. В зависимости от физиологического состояния и воздействия внешней среды гиалоплазма может находиться в виде золя (жидкости) или геля (более упругого плотного вещества). Гиалоплазма является внутренней средой клетки, где протекают реакции внутриклеточного обмена.

В гиалоплазме клеток, между ядерной оболочкой и цитоплазматической мембраной, расположен цито скелет. Он образован развитой сетью филаментов (белковых трубочек): микрофиламентов (6 – 8 нм), образованных белком актином; промежуточных волокон (10 нм), состоящих из разных фибриллярных белков (цитокератинов и др.); микротрубочек (около 25 нм), построенных из тубулина и способных сокращаться. Цитоскелет определяет форму клетки, участвует в различных движениях самой клетки (при делении) и во внутриклеточном перемещении органоидов и отдельных соединений.

Функции гиалоплазмы :

1) является внутренней средой клетки, в которой происходят многие химические процессы;

2) объединяет все клеточные структуры и обеспечивает химическое взаимодействие между ними;

3) определяет местоположение органоидов в клетке;

4) обеспечивает внутриклеточный транспорт веществ (аминокислот, сахаров и др.) и перемещение органоидов (движение хлоропластов в растительных клетках);

5) является зоной перемещения молекул АТФ;

6) определяет форму клетки.

Цитоплазма – сложная химическая многокомпонентная система, содержащая 75-86% воды, 10-20% белков, 2-3% липидов, 1-2% углеводов, 1% минеральных солей. Это суммарный и приблизительный состав цитоплазмы, который не отражает сложности ее химической структуры.

В цитоплазме в растворенном состоянии содержится большое количество свободных аминокислот и нуклеотидов, множество промежуточных продуктов, возникающих при синтезе и распаде молекул. Также обнаруживается большое количество ионов Na + , K + , Mg 2+ , Cl - , HCO 3 2- , HPO 4 2- и др.


Похожая информация.


Технологическая карта урока

Тема: Биологическая мембрана. Транспорт веществ через биологические мембраны.

Класс: 10 класс

Тип урока: урок усвоения новых знаний

Цель: формирование представлений о структуре клеточной мембраны и ее транспортных системах

Задачи:

Образовательные:

    познакомить с краткой историей открытия биомембраны;

    углубить знания о строении плазматической мембраны;

    рассмотреть основные типы транспортных систем клеточной мембаны;

    раскрыть значение этим систем в жизни человека.

Развивающие:

    способствовать развитию речи учащихся путем постановки вопроса, требующих развернутого и связного ответа.

    создать условия для развития произвольного внимания при объяснении нового материала.

    способствовать развитию наглядно-образного мышления при демонстрации презентации, наглядных материалов.

Воспитательные:

    создать условия для воспитания у учащихся правильной научной картины мира.

    умения планировать учебное сотрудничество со сверстниками и учителем.

Основные термины и понятия: клеточная мембрана, пассивный транспорт, диффузия, осмос, активный транспорт, натрий-калиевый насос, белок-пермиаза, везикулярный транспорт, везикула, эндоцитоз, фагоцитоз, пиноцитоз, экзоцитоз.

Методы обучения: словесные (беседа, объяснение), наглядные, частично-поисковые, проблемные, работа с текстом презентации.

Формы обучения: фронтальная

Оборудование: ИКТ презентация «Биологические мембраны»

План урока:

    Организационный этап.

    Постановка цели и задач урока. Мотивация учебной деятельности учащихся.

    Актуализация знаний.

    Изучение нового материала

    Первичная проверка понимания

    Информация о домашнем задании, инструктаж по его выполнению

    Рефлексия

Ход урока:

приветствие;

фиксация отсутствующих

Приветствует обучающихся, проверяет их готовность к уроку.

Учащиеся встают, приветствуя учителя, готовятся к уроку

Личностные: самоорганизация

Коммуникативные : планирование учебного сотрудничества с учителем и одноклассниками.

2. Постановка цели и задач урока. Мотивация учебной деятельности учащихся

8 мин.

создать условия для возникновения внутренней потребности включения в деятельность

Что изучает наука «цитология»?

Что такое клетка? Как зовут ученого, в результате открытий которого было введено понятие “клетка”?

Все живые организмы на Земле состоят из клеток, а каждая клетка окружена защитной оболочкой – мембраной

Может кто то знает, что означает мембрана?

Какие у вас ассоциации с этим словом?

Само слово «мембрана» в переводе с латыни означает «кожица, пленка». Мембрана – весьма активная, постоянно работающая структура клетки, на которую природой возложено множество функций.

Сегодня мы с вами поговорим об устройстве клеточной мембраны и о том как проходят вещества внутрь клетки и наружу из клетки.

    Объяснение для чего необходимы знания строения и свойства клеточной мембраны и транспортных механизмов.

    Рассмотрение истории исследования клеточной мембраны.

Ребята, может быть кто то из вас знает какие были модели и какая модель сейчас является общепринятой?

В 1925 году И. Гортер и А. Грендель показали, что клеточная мембрана представляет собой двойной слой (бислой) из молекул липидов.

В 1935 году Дж. Даниэлли и Х. Доусон показали, что в клеточной мембране, помимо липидов, содержатся белки. Так возникла модель «сэндвича», в которой плазматическая мембрана представлялась в виде двух слоев белков, между которыми располагался липидный бислой.

Почему модель мембраны, созданную учеными Давсоном и Даниэли, назвали «модель сэндвича»? (Для справки: сэндвич – закрытый бутерброд).

1972 году С.Д. Сингером и Г.Л. Николсоном была предложена жидкостно-мозаичная модель мембраны

Чем модель клеточной мембраны, созданная учеными Сингером и Николсоном, отличается от модели, созданной Давсоном и Даниэли?

Почему проводится аналогия второй модели с бушующим морем, в котором плавают айсберги? Какое органическое вещество символизирует айсберги, а какое – бушующее море? (где мембранные белки «плавают» в жидком липидном бислое, как айсберги в открытом море. При этом предполагалось, что белки никак не упорядочены и могут свободно перемещаться в мембране).

-Ребята, а попробуйте дать определение клеточной мембране.

Клеточной мембраны её еще называют цитоплазматическая мембрана (плазмалемма) или биомембрана - которая представляет основную, универсальную для всех клеток часть поверхностного аппарата. Ее толщина составляет около 5-10 нм. (нанометров).

Давайте посмотрим на современную модель и ответим, что является основным компонентом?

Вспомните функции белков и свойства липидов.

Строение фосфолипида.

Фосфолипид состоит из полярной гидрофильной головкой и неполярными гидрофобными хвостами, представленные цепями жирных кислот. В цитоплазматической мембране гидрофильные головки обращены к наружной и внутренней сторонам мембраны, а гидрофобные хвосты - внутрь мембраны

С липидным бислоем связаны молекулы белков.

Типы белков клеточной мембраны.

которые могут пронизывать его насквозь их называют интегральные, или трансмембранные, белки, погружаться в него частично - это полуинтегральные белки или примыкать с наружной или внутренней стороны - периферические белки.

Углеводный компонент

В состав мембран может входить углеводный компонент (10%), представленный олигосахаридными или полисахаридными цепочками, связанными с молекулами белков (гликопротеиды) или липидов (гликолипиды). Углеводы располагаются обычно на наружной поверхности мембраны и выполняют рецепторные функции.

Появление мембраны в эволюции - крупнейший ароморфоз. Благодаря этому содержимое клетки стало отграничено от внешней среды.

ПОМНИМ! У животной клетки под оболочкой понимается мембрана + гликокаликс.

У растительных клеток помимо мембраны снаружи имеется еще толстая целлюлозная оболочка - клеточная стенка - выполняет опорную функцию за счет жесткого наружного слоя, придающего клеткам четкую форму.

Называют ассоциации на заданную тему

Учащиеся записывают тему урока

Учащиеся делают необходимые записи в тетради (отмечают современную модель Николсона и Сингера)

Учащиеся высказывают свои предположения

Учащиеся анализируют два типа модели и делают выводы

Записывают определение

Учащиеся анализируют рисунок, называют основные компоненты

Зарисовывают схематично клеточную мембрану.

Учащиеся высказывают свое предположение

Учащиеся зарисовывают строение фосфолипида

Отмечают типы белков

Отмечают углеводные хвостики

Личностные: самоорганизация

Регулятивные: способность регулировать свои действия;

Познавательные : структурирование знаний, самостоятельное создание алгоритмов деятельности при решении поставленной проблем

Коммуникативные : планирование учебного сотрудничества с учителем и одноклассниками;

3. Изучение нового материла

20-25 мин.

Организовать осмысленное восприятие знаний о селекции как науки. Создать условия для развития умения устанавливать причинно-следственные связи между знания уже изученного и нового материала

Свойства мембран .

а) Подвижность .

Липидный бислой по существу – жидкое образование, в пределах плоскости которого молекулы могут свободно передвигаться – “течь” без потери контактов в силу взаимного притяжения (демонстрация перетекание жидкости в стенке мыльного пузыря, висящего на пластмассовой трубочке ). Гидрофобные хвосты могут свободно скользить друг относительно друга.

б) Способность самозамыкаться .

(демонстрация, как при протыкании мыльного пузыря и последующего извлечения иглы целостность его стенки сразу же восстанавливается) . Благодаря этой способности клетки могут сливаться путем слияния их плазматических мембран (например, при развитии мышечной ткани).

в) Избирательная проницаемость . Для того чтобы клетка нормально функционировала должен быть налажен транспорт и пограничный контроль. Плазматическая мембрана охраняют свою клетку как спец.объект. Так например, через двойной слой липидов свободно проходят, а сеть вещества которые проходят через специальные мембранные каналы или белки переносчики

Выделяют ряд важнейших функций, которые выполняют клеточные мембраны:

структурная (входят в состав большинства органоидов);

барьерная (Мембрана отделяет клеточное содержимое от внешней среды, предохраняет клетку от попадания в нее чужеродных веществ и обеспечивает поддержание постоянства внутриклеточной среды) ,

регуляция обменных процессов ;

рецепторная ( На наружной поверхности мембраны расположены рецепторные участки, где происходит связывание гормонов и других регуляторных молекул),

и транспортная.

Представьте, что веществам надо проникнуть в клетку. Для этого необходимо преодолеть плазматическую мембрану. Какие известные способы проникновения веществ вы можете вспомнить?

???????

Различают два основных виды переноса, пассивный и активный. Пассивный еще называют диффузия.

Как вы понимаете, что такое диффузия?

И так, если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации (т.е. по градиенту концентрации этого вещества) и осуществляется без затрат энергии такой транспорт называют пассивным или диффузным. Он в свою очередь делится на простую и облегченную диффузию, осмос.

При простой диффузии наблюдается самопроизвольное перемещение веществ через мембрану из области, где концентрация этих веществ выше, в область, где их концентрация ниже. Путем простой диффузии через плазмалемму могут проходить небольшие молекулы (например, Н 2 0, 0 2 , С0 2 , мочевина) и ионы. Как правило, это неполярные вещества. Простая диффузия происходит относительно медленно

Для ускорения диффузного транспорта существуют мембранные белки-переносчики.Они избирательно связываются с тем или иным ионом или молекулой (полярные молекулы и ионы) и переносят их через мембрану. Такой тип транспорта называется облегченной диффузией . Скорость переноса веществ при облегченной диффузии во много раз выше, чем при простой.

Вода поглощается клеткой преимущественно путем осмоса. Осмос - это диффузия воды через полупроницаемую мембрану, вызванная разностью концентраций. Осмос как одну из форм диффузии, при которой перемещаются только молекулы воды.

Транспорт, который осуществляется в случае , когда перенос против градиента концентрации -называется пассивным транспортом. Такой перенос требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Для активного транспорта имеются специальные насосы, работающие с использованием энергии. Источником энергии часто является АТФ. Активный транспорт имеет решающее значение, поскольку обеспечивает избирательное концентрирование необходимых для жизнедеятельности клетки веществ.

Осуществляют транспорт веществ, специальные механизмы, это ионные насосы или АТФ-азы.

Существует три ионных насоса:

    Натрий-калиевые (Na / K – АТФаза)

    Кальциевые насосы (Са – АТФаза)

    Протонные насосы (H – АТФаза)

Все АТФ-насосы являются трансмембарнными белками - пермеаз. Эти белки могут проводить в одном направлении одно вещество (унипорт - натрий) или несколько веществ одновременно в одном направлении (симпорт – хлор, аминокислоты, сахароза), или же два вещества в противоположном направлении (антипорт – магний, натрий, марганец). Так, глюкоза может входить в клетки симпортно вместе с ионом Na +.

В зависимости от источника используемой энергии активный транспорт подразделяется на два типа: первично активный и вторично активный. Для первично активного транспорта энергия извлекается непосредственно при расщеплении АТФ или некоторых других высокоэнергетических фосфатных соединений. Одним из наиболее распространенных первично-активным транспорт является натрий-калиевый насос (видео).

Вторично активный транспорт обеспечивается вторичной энергией, накопленной в форме разности концентраций побочных веществ, молекул или ионов, по обе стороны клеточной мембраны, созданной первоначально первично активным транспортом . Например, мембрана клеток слизистой оболочки тонкого кишечника содержит белок, осуществляющий перенос (симпорт) глюкозы и Na+ в самые высокие клетки эпителия слизистой оболочки дыхательных путей .

Своеобразной и относительно хорошо изученной разновидностью мембранного транспорта является везикулярный транспорт.

Может кто-то занет как осушествляется такой тип переноса веществ? Что такое везикула? Как вы понимаете?

Везикула – дословно переводится как упакованный мешочек. В зависимости от того, в каком направлении переносятся вещества (в клетку или из нее), различают два вида этого транспорта - эндоцитоз и экзоцитоз.

Эндоцитоз - поглощение клеткой внешних частиц путем образования мембранных пузырьков. Выделяют такие разновидности эндоцитоза как: фагоцитоз и пиноцитоз.

Скажите, что это за процесс фагоцитоз? Где вы с ним встречались раньше?

Фагоцитоз – клеточный процесс, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают твердые частички питательных веществ. В человеческом организме фагоцитоз осуществляется мембранами двух типов клеток: гранулоцитов (зернистых лейкоцитов) и макрофагов (иммунных клеток-убийц);

Пиноцитоз процесс захвата поверхностью клеточной мембраны соприкасающихся с нею молекул жидкости.

Экзоцитоз - процесс, обратный

эндоцитозу; из клеток выводятся

непереварившиеся остатки твёрдых

частиц и жидкий секрет.

Учащиеся записывают свойства клеточной мембраны

Записывают функции мембраны

Выдвигают свои мысли о возможности проникновения вещества в клетку

Учащиеся отмечают в тетради виды переноса веществ

Схематично зарисовывают простую диффузию и делают комментарии к рисунку

Схематично зарисовывают облегченную диффузию и делают комментарии к рисунку

Схематично зарисовывают осмос и делают комментарии к рисунку

Делают записи в тетради

Зарисовывают механизм работы натрий-калиевого насоса

Учащиеся высказывают свое предположение

Учащиеся записывают определения и схематично зарисовывают

Личностные: осмысление мотивов своих действий при выполнении заданий; формировать положительное отношение к учению, к познавательной деятельности, желание приобрести новые знания, умения осознавать свои ошибки и стремиться их преодолевать;

Познавательные: умения результативно мыслить и работать с информацией; умение работать с учебником и составлять таблицу; поиск и выделение необходимой информации; умение выявлять сущность, особенности объектов; умение на основе анализа объектов делать выводы;

4.Закрепление полученных знаний

5 мин.

Соотнесение поставленных задач с достигнутым результатом, фиксация нового знания, постановка дальнейших целей

Задание. Проанализируйте предлагаемые ситуации, проведите соответствующие аналогии и ответьте, о каких видах транспорта через мембрану идет речь.

А) Ты стоишь в толпе на автобусной остановке. Подходит пустой автобус. Люди начинают заполнять автобус. Это происходит достаточно легко. На остановке становится более свободно, а автобус равномерно заполнен. (пассивный)

Б) Ты стоишь на остановке один. Подходит переполненный автобус, а тебе нужно непременно уехать. Необходимо поработать локтями, чтобы зайти в автобус. Правда, тебе может помочь кто-то из сердобольных пассажиров .(активный)

Учащиеся анализируют предложенные ситуации делают вывод.

Личностные: самоорганизация

Регулятивные: умения организовывать свою деятельность; планирование своей работы при выполнении задания; контроль за выполнением работы; умение определять успешность своего задания;

Коммуникативные : умение строить речевое высказывание в соответствии с поставленными задачами; умение оформлять свои мысли в устной форме.

5.Домашнее задание

2 мин.

Инструкция по выполнению домашнего задания

    Оформить свои записи(определения, схематичные рисунки)

Учащиеся записывают задание в дневник. Задают вопросы по его выполнению.

Личностные: умение оценивать усваиваемое содержание;

Коммуникативные: умения общаться, взаимодействовать со сверстниками и педагогом; умение строить речевое высказывание в соответствии с поставленными задачами; умение оформлять свои мысли в устной форме.

6.Рефлексия

3 мин.

Осмысление процесса и результата деятельности

Учащиеся свое мнение.

Называют основные позиции нового материала и как они их усвоили (что получилось, что не получилось и почему)

Личностные: умение осуществлять анализ собственной деятельности; планирование дальнейших шагов для достижения цели.

Регулятивные: выделение и осознание учащимся того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения; умения организовывать свою деятельность; планирование своей работы при выполнении задания

Коммуникативные: способность к критическому мышлению; умение представить себя; выслушивать и принимать во внимание взгляды других людей.

В мембране существуют 2 типа специализированных интегральных белковых систем, которые обеспечивают транспорт ионов через клеточную мембрану: ионные насосы и ионные каналы . То есть, существует 2 принципиальных типа транспорта ионов через мембрану: пассивный и активный.

Ионные насосы и трансмембранные ионные градиенты

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:

  • концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);
  • концентрация K+ внутри клетки выше, чем снаружи.

Механизм работы натрий-калиевого насоса. НКН за один цикл переносит 3 иона Na+ из клетки и 2 иона K+ в клетку. Это происходит из-за того, что молекула интегрального белка может находиться в 2 положениях. Молекула белка, образующая канал, имеет активный участок, который связывает либо Na+, либо K+. В положении (конформации) 1 она обращена внутрь клетки и может присоединять Na+. Активируется фермент АТФаза, расщипляющая АТФ до АДФ. Вследствие этого молекула превращается в конформацию 2. В положении 2 она обращена вне клетки и может присоединять K+. Затем конформация вновь меняет и цикл повторяется.

Ионные каналы

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы обладают следующими свойствами :

  • пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
  • всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами :

  • пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
  • могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром, который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма , который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня потенциала покоя, канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:

  • хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда;
  • потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение потенциала покоя (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).

Мембранный транспорт веществ может включать однонаправ­ленный перенос молекулы какого-то вещества или совместный транс­порт двух различных молекул в одном или противоположных направ­лениях.

Пассивный транспорт. Включает простую и облегченную диф­фузию - процессы, которые не требуют затраты энергии. Механизмом Простой диффузии Осуществляется перенос мелких молекул (например, О2, Н2О, СО2); этот процесс малоспецифичен и протекает со ско­ростью, пропорциональной градиенту концентрации транспортируемых молекул по обеим сторонам мембраны. Облегченная диффузия Осущест­вляется через каналы и (или) белки-переносчики, которые обладают специфичностью в отношении транспортируемых молекул. В качестве ионных каналов выступают трансмембранные белки, образующие мел­кие водные поры, через которые по электрохимическому градиенту транспортируются мелкие водорастворимые молекулы и ионы. Белки-переносчики также являются трансмембранными белками, которые пре­терпевают обратимые изменения конформации, обеспечивающие транс­порт специфических молекул через плазмолемму. Они функционирую в механизмах как пассивного, так и активного транспорта.

Активный транспорт. Является энергоемким процессом, благода­ря которому перенос молекул осуществляется с помощью Белков-пере­носчиков Против электрохимического градиента. Примером механизма, обеспечивающего противоположно направленный активный транспорт ионов, служит натриево-калиевый насос (представленный белком-пере­носчиком На+-К+~АТФазой), благодаря которому ионы Na+ выводятся из цитоплазмы, а ионы К+ одновременно переносятся в нее. Этот ме­ханизм обеспечивает поддержание Постоянства объема клетки (путем регуляции осмотического давления), а также Мембранного потенциала, Активный транспорт глюкозы в клетку осуществляется белком-перенос­чиком и сочетается с однонаправленным переносом иона Na+.

Облегченный транспорт ионов. Опосредуется особыми трансмем­бранными белками - Ионными каналами, обеспечивающими избиратель­ный перенос определенных ионов. Эти каналы состоят из Собственно транспортной системы и воротного механизма, Который открывает канал на некоторое время в ответ на (а) изменение мембранного потен­циала, (б) механическое воздействие (например, в волосковых клетках внутреннего уха), (в) связывание Лиганда (сигнальной молекулы или иона).

Эндоцитоз. Транспорт макромолекул в клетку осуществляется с помощью механизма Эндоцитоза (от греч. endo - внутрь и cytos -клетка). Материал, находящийся во внеклеточном пространстве, захва­тывается в области впячивания (инвагинации) плазмолеммы, края кото­рого смыкаются с формированием Эндоцитозного пузырька Или Эндо-сомы - Мелкого сферического образования, герметически окруженного мембраной (рис. 3-3 и 3-5). Далее содержимое эндосомы подвергается внутриклеточной переработке (процессингу). В частности, в эндосоме в условиях закисления среды происходит отделение лиганда от рецеп­тора (последний в дальнейшем используется повторно) - см. ниже. Раз­новидностями эндоцитоза служат Пиноцитоз и фагоцитоз.

Пиноцитоз (от греч. pinein - пить и cytos - клетка) - захват и по­глощение клеткой жидкости и (или) растворимых вешеств; подразделя­ется на Макропиноцитоз (диаметр эндосом 0.2-0.3 мкм) и Микропиноцитоз (диаметр эндосом - 70-100 нм).

Фагоцитоз (от греч, phagein - Поедать и cytos - клетка) - захват и поглощение клеткой плотных, обычно крупных (размером более 1 мкм) частиц; обычно сопровождается образованием выпячиваний ци­топлазмы - Псевдоподий, Охватывающих объект фагоцитоза и смыкаю­щихся над ним (см. рис. 3-3).

Рецепторно-опосредованный эндоцитоз. Эффективность эндоцитоза существенно увеличивается, если он опосредован мембранными Ре­цепторами, Которые связываются с молекулами поглощаемого вещества или молекулами, находящимися на поверхности фагоцитируемого объ­екта - Лигандами (от лат. ligare - связывать). В дальнейшем (после по­глощения вещества) комплекс рецеитор-лиганд расщепляется, и рецеп­торы могут вновь возвратиться в плазмолемму.

Примером рецепторно-опосредов энного взаимодействия может слу­жить фагоцитоз лейкоцитом бактерии (см. рис. 7-8). Поскольку на плаз-молемме лейкоцита имеются Рецепторы к иммуноглобулинам (антите­лам), скорость фагоцитоза резко возрастает, если поверхность бакте­рии покрыта антителами (опсонинами - От греч. opson - приправа).

Окаймленные пузырьки и ямки. Рецепторы макромолекул в плазмолемме, перемещаясь латерально по клеточной поверхности, могут, связывая свои лиганды, Накапливаться в Области формирующихся Эндо-цитозных ямок. Очень часто вокруг таких ямок и образующихся из них пузырьков со стороны цитоплазмы собирается сетевидная оболочка из белка Клатрина, Которая на срезах имеет вид щетинистой каемки (рис. 3-4), В покрытых клатриновой оболочкой (окаймленных) Ямках рецепторные белки мембраны вытесняют все остальные; таким образом ямки действуют как Приспособления для накопления и сортировки мо­лекул. Этим механизмом достигается и значительная экономия в ходе процесса эндоцитоза: для поглощения определенного количества моле­кул лиганда требуется значительно меньше пузырьков, чем было бы в случае диффузного распределения комплексов рецептор-лиганд.

Окаймленная ямка Достигает своего максимального размера (около 0.3 мкм) в течение 1 мин и превращается в Окаймленный пузырек. Его содержимое может подвергаться процессингу лишь после того, как че­рез несколько секунд он утратит клатриновую оболочку. Если она со­храняется, пузырек не способен сливаться с другими структурами (анаНарушение транспорта ЛНП Описанным механизмом при врож­денном наследственном заболевании - Семейной гиперхолестеринемии - Обусловлено отсутствием или наличием дефектных рецепторов ЛНП, неспособных связывать лиганд или накапливаться в окаймленных ям­ках. При этом поглощение клетками холестерина, поступающего с ЛНП, ослаблено, а его уровни в крови резко повышены, вызывая быс­трое развитие атеросклероза и смерть больных в молодом возрасте от ишемической болезни сердца.

Экзоцитоз (от греч. ехо - наружу и cytos - клетка) - процесс, об­ратный эндоцитозу, при котором мембранные Экзоцитозные пузырьки Приближаются к плазмолемме и сливаются с ней своей мембраной, ко­торая встраивается в плазмолемму. При этом содержимое пузырьков (продукты собственного синтеза клетки или транспортируемые ею мо­лекулы, непереваренные и вредные вещества и др.) выделяется во вне­клеточное пространство (см. рис. 3-5).

Судьба выделяемых экзоцитозом синтезированных клеткой молекул неодинакова: (1) прикрепляясь к клеточной поверхности, они могут ста­новиться Периферическими белками (например, антигенами); (2) они мо­гут войти в состав Межклеточного вещества (например, коллаген и гликозаминогликаны; (3) попадая во внеклеточную жидкость, они мо­гут выполнять роль Сигнальных молекул (гормоны, цитокины).

Трансцитоз (от лат. trans - сквозь, через и греч. cytos - клетка) процесс, характерный для некоторых типов клеток, Объединяющий при­знаки эндоцитоза и экзоцитоза. На одной поверхности клетки форми­руется Эндоцитозный пузырек, Который переносится к противополож­ной поверхности клетки и, становясь Экзоцитозным пузырьком, Выделя­ет свое содержимое во внеклеточное пространство. Процессы трансцитоза протекают очень активно в цитоплазме плоских клеток, выстилаю­щих сосуды (эндотелиоцитах), Особенно в капиллярах. В этих клетках пузырьки, сливаясь, могут образовывать временные Трансцеллюлярные каналы, Через которые транспортируются водорастворимые молекулы.

Ход образования эндоцитозных пузырьков опосредуется особыми (фузогенными - От лат. fusio - слияние) мембранными белками, которые концентрируются в участках инвагинации плазмолеммы. Эти же белки при экзоцитозе способствуют слиянию мембраны пузырька с плазмолем-мой (см. рис. 3-5). Важную роль в процессах эндоцитоза и экзоцитоза играют элементы цитоскелета, в частности, микрофиламенты и микро­трубочки (см. ниже).

Баланс процессов эндоцитоза и экзоцитоза. Эндоцитоз Вслед­ствие постоянной отпшуровки пузырьков с поверхности плазмолеммы должен приводить к уменьшению ее площади при одновременном увели­чении объема клетки. Так, например, в макрофагах за 1 ч за счет эндо­цитоза вносится до 25% объема цитоплазмы, а за 0.5 ч общая площадь поверхности эндоцитозных пузырьков составляет 100% площади плаз­молеммы. При Экзоцитозе, Напротив, постоянно происходит увеличение площади плазмолеммы вследствие встраивания в нее мембраны экзоци-тозных пузырьков. Так, в секреторной клетке ацинуса поджелудочной железы совокупная площадь мембраны секреторных гранул в 30 раз больше, чем поверхность плазмолеммы.

Вместе с тем, в действительности, активные процессы эндоцитоза и экзоцитоза не приводят к существенным изменениям площади поверх­ности плазмолеммы, так как они Уравновешиваются Формированием экзоцитозных и эндоцитозыых пузырьков, соответственно, компенсиру­ющим происходящую потерю мембраны или ее увеличение за счет про­тивоположно направленного процесса. Эти явления отражают постоян­но происходящий в клетке круговорот мембран, который получил наз­вание "мембранного конвейера".

Поляризация мембраны в состоянии покоя, т.е. возникновение МП, при наличии трансмембранного градиента концентраций ионов объясняется прежде всего выходом по каналам утечки внутриклеточного К+ в окружающую клетку среду. Так, в состоянии физиологического покоя мембрана, например, нервных волокон в 25 раз более проницаема для К+, чем для Na+. Выход положительно заряженных К+ приводит к формированию положительного заряда на наружной поверхности мембраны. Органические анионы - крупномолекулярные соединения, которые несут отрицательный заряд и для которых мембрана клетки непроницаема, придают в этих условиях внутренней поверхности мембраны отрицательный заряд. На степень поляризации мембраны в состоянии покоя оказывает влияние перемещение через нее и других ионов, но в условиях относительного покоя оно невелико.

В состоянии покоя потоки ионов через мембрану, движущиеся по их концентрационным градиентам, в конечном счете должны были бы привести к выравниванию концентрации ионов внутри клетки и в окружающей ее среде. Но в живых клетках этого не происходит, так как в клеточной мембране существует особый молекулярный механизм, который получил название ионного насоса. Так, например, натриево-кали- евый насос обеспечивает выведение из цитоплазмы клетки Na+ и введение в цитоплазму КЛ Ионный насос перемещает ионы против их концентрационного градиента и, следовательно, работает с затратой энергии на преодоление силы градиента. Вместе с тем работа К4-, Na+-Hacoca является еще одним значимым фактором в создании МП. Выкачивая за каждый цикл работы из клетки три Na+ и вводя в клетку лишь два К+, насос формирует внутриклеточный отрицательный заряд, имеющий электрогенное происхождение, суммирующийся с зарядом, связанным с диффузией К+.

Таким образом, возникновение и поддержание МП покоя обусловлено избирательной проницаемостью мембраны клетки для ионов и работой натриево-калиевого насоса.

Мембранный потенциал покоя создает электрическое поле, которое обеспечивает закрытое состояние активационных «ворот» и открытое состояние инактивационных «ворот» натриевых каналов, а также сохранение определенной пространственной организации мембраны.

Пассивный транспорт

________________________

Осмос - движение молекул воды (растворителя) через мембрану из области меньшей в область большей концентрации растворенного вещества. Осмотическим давлением называется то наименьшее давление, которое необходимо приложить к раствору для того, чтобы предотвратить перетекание растворителя через мембрану в раствор с большей концентрацией вещества.

Молекулы растворителя, как и молекулы любого другого вещества, приводятся в движение силой, возникающей вследствие разности химических потенциалов. Когда какое-либо вещество растворяется, химический потенциал растворителя уменьшается. Поэтому в области, где концентрация растворенного вещества выше, химический потенциал растворителя ниже. Таким образом, молекулы растворителя, перемещаясь из раствора с меньшей в раствор с большей концент­рацией, движутся в термодинамическом смысле «вниз», «по градиенту».

Объем клеток в значительной степени регулируется количеством содержащейся в них воды. Клетка никогда не находится в состоянии полного равновесия с окружающей средой. Непрерывное движение молекул и ионов через плазматическую мембрану изменяет концентрацию веществ в клетке и, соответственно, осмотическое

давление ее содержимого. Если клетка секретирует какое-либо вещество, то для поддержания неизменной величины осмотического давления она должна либо выделять соответствующее количество воды, либо поглощать эквивалентное количество иного вещества. Поскольку среда, окружающая большинство клеток гипотонична, для клеток важно предотвратить поступление в них больших количеств воды. Поддержание же постоянства объема даже в изотонической среде требует расхода энергии, поэтому в клетке концентрация веществ неспособных к диффузии (белков, нуклеиновых кислот и т.д.) выше, чем в околоклеточной среде. Кроме того, в клетке постоянно накапливаются метаболиты, что нарушает осмотическое равновесие. Необходимость расходования энергии для поддержания постоянства объема легко доказывается в экспериментах с охлаждением или ингибиторами метаболизма. В таких условиях клетки быстро набухают.

Для решения «осмотической проблемы» клетки используют два способа: они откачивают в интерстиций компоненты своего содержимого или поступающую в них воду. В большинстве случаев клетки используют первую возможность - откачку веществ, чаше ионов, используя для этого натриевый насос (см.ниже).

В целом объем клеток, не имеющих жестких стенок, определяется тремя факторами:

а) количеством содержащихся в них и неспособных к проникновению через мембрану веществ;

б) концентрацией в интерстиций соединений, способных проходить через мембрану;

в) соотношением скоростей проникновения и откачки веществ из клетки.

Большую роль в регуляции водного баланса между клеткой и окружающей средой играет эластичность плазматической мембраны, создающей гидростатическое давление, препятствующее поступлению воды в клетку. При наличии разности гидростатических давлений в двух областях среды вода может фильтроваться через поры барьера, разделяющего эти области.

Явления фильтрации лежат в основе многих физиологических процессов, таких, например, как образование первичной мочи в нефроне, обмен воды между кровью и тканевой жидкостью в капиллярах.

Существует несколько видов диффузии.

▲ Простая диффузия через липидный матрикс мембраны, с помощью которой проходят малые неполярные молекулы - 02, N2, этанол, эфир, малые полярные молекулы, не имеющие заряда - мочевина, аммиак, С02, а также жирорастворимые вещества - низкомолекулярные жирные кислоты, гормоны щитовидной железы, стероидные гормоны половых желез и коры надпочечников, витамины А и D3.

ж Простая диффузия через ионные каналы мембраны обеспечивает движение неорганических ионов по концентрационному или электрохимическому градиенту.

а. Облегченная диффузия с помощью переносчиков лежит в основе транспорта большинства полярных молекул соединений среднего размера, не имеющих заряда: глюкозы, аминокислот, нуклеотидов. Как правило, переносчик связывается с определенным веществом или родственной группой веществ. При наличии высоких концентраций вещества возможно ограничение объема и скорости транспорта из-за насыщения переносчиков.

Активный транспорт осуществляет перенос веществ против градиента концентраций и требует затрат энергии. На обеспечение активного транспорта клетки затрачивают от 30 до 70 % энергии, образующейся в процессе жизнедеятельности. Источником энергии для активного транспорта в клетке являются энергия трансмембранных ионных градиентов и энергия связей АТФ. В зависимости от вида используемой для транспорта энергии различают два вида активного транспорта.

ж Первично активный транспорт, создаваемый работой мембранных белков-насосов. Эти белки соединяют в себе свойства транспортной системы для переноса ионов и свойства фермента, расщепляющего АТФ. Получаемая энергия используется насосом для транспорта ионов. В мембранах клеток обнаружены следующие насосы:

К+~, На+-насос\ переносит три Na+ наружу в обмен на два К+ внутрь, т.е. против градиента концентраций; на один цикл работы насоса расходуется 1 мол. АТФ; за счет работы этого насоса создается концентрационный градиент для Na+ и К+, который используется для формирования МП клетки, а также вторичного активного транспорта;

Са2+-насос: встроен как в мембрану клетки, так и в мембраны клеточных органелл; в связи с высокой активностью Са2+ как регулятора многих процессов, протекающих в клетке, его внутриклеточная концентрация должна строго контролироваться; насос откачивает Са2+ во внешнюю среду клетки или во внутриклеточные депо;

Н+-насос, протонный насос, работающий как в наружной мембране, так и в мембранах клеточных органелл; переносит Н+ против градиента концентраций из клетки в окружающую среду, например из обкладочных клеток желудка в желудочный сок или из клеток эпителия почечных канальцев в канальцевую мочу.

Вторично активный транспорт использует для переноса веществ энергию градиента концентрации какого-либо иона, например Na+, созданную за счет работы насоса. Таким способом в клетках слизистой кишки или в канальцах почки транспортируются глюкоза и аминокислоты. Натрий, перемещаясь по электрохимическому градиенту молекулой-переносчиком, одновременно способствует переносу против градиента концентраций глюкозы или аминокислот, связанных с этим же переносчиком.

Разновидностью вторично активного транспорта является работа систем ионного обмена и систем совместного транспорта. Источником энергии для транспорта одного иона является энергия градиента концентраций другого. Транспорт может осуществляться как в клетку, так и из клетки. Описаны следующие разновидности ионообменников:

Na+-, Са2+-обмен обеспечивает выкачивание из клетки Са2+ за счет движения Na+ по электрохимическому градиенту внутрь клетки; механизм работает в нейронах, миоцитах, клетках эпителия и эндокринных;

Na+~, Н+-обмен обеспечивает выведение протонов из клетки в среду за счет энергии градиента натрия; механизм работает в нейронах, клетках печени, мышц, эпителия канальцев нефрона;

С/ -, нсо j - самый высокоскоростной ионообменник, участвующий в транспорте анионов; обеспечивает поглощение эритроцитами образовавшейся в тканях С02 и выход ее из них в виде НС03 в обмен на поступление С1~; механизм работает, помимо эритроцитов, в миоцитах, эпителиальных клетках почки и кишки;

Na+-, К"-, О -симпорт группы ионов в одном направлении; источником энергии может быть градиент концентрации любого из этих ионов; направление транспорта определяется состоянием гомеостаза клетки; механизм работает в эритроцитах человека и связан с необходимостью уменьшения концентрации в клетке этих ионов.

Транспорт макромолекул - белков, полисахаридов, нуклеиновых кислот - осуществляется путем эндоцитоза и экзоци- тоза.

Эндоцитоз заключается в образовании углубления с последующим отшнуровыванием участка мембраны, с которым контактирует макромолекулярный субстрат. Образовавшиеся эндоцитозные пузырьки транспортируются либо к лизосомам для последующего расщепления вещества лизосомальными ферментами, либо к противоположной стороне клетки и выделяют содержимое путем экзоцитоза. Существует три вида эндоцитоза:

Пиноцитоз - неспецифический захват внеклеточной жидкости с растворенными в ней макромолекулами для использования последних для нужд клетки или для переноса сквозь клетку;

Эндоцитоз, опосредуемый рецепторами, - захват веществ после их взаимодействия с рецепторами мембра-ны; после впячивания мембраны и ее отшнуровыва- ния образовавшиеся эндосомы транспортируются к ли- зосомам для ферментативного расщепления; таким образом инактивируются гормоны, иммуноглобулины, антигены;

Фагоцитоз - захват крупных клеточных частиц специализированными клетками - микро- и макрофагами с последующим перевариванием.

Экзоцитоз - выделение из клетки упакованных в гранулы (пузырьки) субстратов путем слияния мембран гранул с мембраной клетки; так выделяются гормоны, медиаторы, пищеварительные соки.