Использование ультрафиолетовых лучей. Ультрафиолетовое излучение: применение, действие и защита от него

Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения.


Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения. Мы подготовили перечень наиболее часто встречающихся вопросов об ультрафиолете и ответы на них.

Что такое ультрафиолетовое излучение?

Спектр электромагнитного излучения достаточно широк, но глаз человека чувствителен только к определенной области, называемой видимым спектром, которая охватывает диапазон длин волн от 400 до 700 нм. Излучения, которые находятся за пределами видимого диапазона, являются потенциально опасными и включают в себя инфракрасную (с волн длиной более 700 нм) и ультрафиолетовую область (менее 400 нм). Излучения, имеющие более короткую длину волны, чем ультрафиолетовое, называются рентгеновским и γ-излучениями. Если длина волны больше, чем аналогичный показатель у инфракрасного излучения, то это радиоволны. Таким образом, ультрафиолетовое (УФ) излучение - это невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 100-380 нм.

Какие диапазоны имеет ультрафиолетовое излучение?

Как видимый свет можно разделить на составляющие разных цветов, которые мы наблюдаем при возникновении радуги, так и УФ-диапазон, в свою очередь, имеет три составляющие: УФ-A, УФ-B и УФ-C, причем последняя является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200-280 нм, однако оно в основном поглощается верхними слоями атмосферы. УФ-B-излучение имеет длину волн от 280 до 315 нм и считается излучением средней энергии, представляющим опасность для органа зрения человека. УФ-A-излучение - это наиболее длинноволновая составляющая ультрафиолета с диапазоном длин волн 315-380 нм, которая имеет максимальную интенсивность к моменту достижении поверхности Земли. УФ-A-излучение глубже всего проникает в биологические ткани, хотя его повреждающее действие меньше, чем у УФ-B-лучей.

Что означает само название «ультрафиолет»?

Это слово означает «сверх (выше) фиолета» и происходит от латинского слова ultra («сверх») и названия самого короткого излучения видимого диапазона - фиолетового. Хотя УФ-излучение никак не ощущается человеческим глазом, некоторые животные - птицы, рептилии, а также насекомые, например пчелы, - могут видеть в таком свете. Многие птицы имеют раскраску оперенья, которая невидима в условиях видимого освещения, но хорошо различима в ультрафиолетовом. Некоторых животных также легче заметить в лучах ультрафиолетового диапазона. Многие фрукты, цветы и семена воспринимаются глазом более отчетливо при таком освещении.

Откуда возникает ультрафиолетовое излучение?

На открытом воздухе главным источником УФ-излучения является солнце. Как уже было сказано, частично оно поглощается верхними слоями атмосферы. Поскольку человек редко смотрит прямо на солнце, то основной вред для органа зрения возникает в результате воздействия рассеянного и отраженного ультрафиолета. В помещении УФ-излучение возникает при использовании стерилизаторов для медицинских и косметических инструментов, в соляриях для формирования загара, в процессе применения различных медицинских диагностических и терапевтических приборов, а также при отверждении композиций пломб в стоматологии.


В соляриях УФ-излучение возникает для формирования загара

В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи, поэтому применение защитных средств предписано как обязательное для сварщиков. Флюоресцентные лампы, широко используемые для освещения на работе и дома, также являются источниками УФ-излучения, но уровень последнего очень незначителен и не представляет серьезной опасности. Галогеновые лампы, которые также применяются для освещения, дают свет с УФ-составляющей. Если человек находится близко от галогеновой лампы без защитного колпака или экрана, то уровень УФ-излучения может вызвать у него серьезные проблемы с глазами.


В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи

От чего зависит интенсивность воздействия ультрафиолета?

Его интенсивность зависит от многих факторов. Во-первых, высота солнца над горизонтом меняется в зависимости от времени года и суток. Летом в дневные часы интенсивность УФ-B-излучения максимальна. Существует простое правило: когда ваша тень короче, чем ваш рост, то вы рискуете получить на 50 % больше такого излучения.

Во-вторых, интенсивность зависит от географической широты: в экваториальных районах (широта близка к 0°) интенсивность УФ-излучения наиболее высокая - в 2-3 раза выше, чем на севере Европы.
В-третьих, интенсивность возрастает с увеличением высоты над уровнем моря, так как соответствующим образом уменьшается слой атмосферы, способный поглощать ультрафиолет, поэтому большее количество наиболее высокоэнергетического коротковолнового УФ-излучения достигает поверхности Земли.
В-четвертых, на интенсивность излучения влияет рассеивающая способность атмосферы: небо представляется нам синим из-за рассеивания коротковолнового голубого излучения видимого диапазона, а еще более коротковолновый ультрафиолет рассеивается гораздо сильнее.
В-пятых, интенсивность излучения зависит от наличия облаков и тумана. Когда небо безоблачно, УФ-излучение достигает максимума; плотные облака снижают его уровень. Однако прозрачные и редкие облака мало влияют на уровень УФ-излучения, водяной пар тумана может привести к увеличению рассеяния ультрафиолета. Малооблачную и туманную погоду человек может ощущать как более холодную, однако интенсивность УФ-излучения остается практически такой же, как и в ясный день.


Когда небо безоблачно, УФ-излучение достигает максимума

В-шестых, количество отраженного ультрафиолета варьирует в зависимости от вида отражающей поверхности. Так, для снега отражение составляет 90 % падающего УФ-излучения, для воды, почвы и травы - примерно 10 %, а для песка - от 10 до 25 %. Об этом необходимо помнить, находясь на пляже.

Каково воздействие ультрафиолета на организм человека?

Длительное и интенсивное воздействие УФ-излучения может быть вредным для живых организмов - животных, растений и человека. Заметим, что некоторые насекомые видят в УФ-A-диапазоне, а они являются неотъемлемой частью экологической системы и каким-либо образом приносят пользу человеку. Наиболее известный результат воздействия ультрафиолета на организм человека - это загар, который до сих пор является символом красоты и здорового образа жизни. Однако длительное и интенсивное воздействие УФ-излучения может привести к развитию раковых заболеваний кожи. Необходимо помнить, что облака не блокируют ультрафиолет, поэтому отсутствие яркого солнечного света не означает, что защита от УФ-излучения не нужна. Наиболее вредная составляющая данного излучения поглощается озоновым слоем атмосферы. Факт уменьшения толщины последнего означает, что в будущем защита от ультрафиолета станет еще более актуальной. По оценкам ученых, снижение количества озона в атмосфере Земли всего на 1 % приведет к росту раковых заболеваний кожи на 2-3%.

Какую опасность ультрафиолет представляет для органа зрения?

Существуют серьезные лабораторные и эпидемиологические данные, связывающие длительность воздействия ультрафиолета с заболеваниями глаз: , птеригиумом и др. По сравнению с хрусталиком взрослого хрусталик ребенка существенно более проницаем для солнечной радиации, и 80 % кумулятивных последствий воздействия ультрафиолетовых волн накапливаются в организме человека до достижения им 18-летнего возраста. Максимально подверженным проникновению излучения хрусталик является непосредственно после рождения младенца: он пропускает до 95 % падающего УФ-излучения. С возрастом хрусталик начинает приобретать желтый оттенок и становится не столь прозрачным. К 25 годам менее 25 % падающих ультрафиолетовых лучей достигают сетчатки. При афакии глаз лишен естественной защиты хрусталика, поэтому в такой ситуации важно пользоваться УФ-поглощающими линзами или фильтрами.
Следует учитывать, что целый ряд медицинских препаратов обладают фотосенсибилизирующими свойствами, то есть увеличивают последствия от воздействия ультрафиолета. Оптики и оптометристы должны иметь представление об общем состоянии человека и применяемых им препаратах для того, чтобы дать рекомендации по поводу применения средств защиты.

Какие существуют средства защиты глаз?

Наиболее эффективный способ защиты от ультрафиолета - прикрытие глаз специальными защитными очками, масками, щитками, которые полностью поглощают УФ-излучение. На производстве, где применяются источники УФ-излучения, использование таких средств является обязательным. Во время пребывания на открытом воздухе в яркий солнечный день рекомендуется носить солнцезащитные очки со специальными линзами, которые надежно защищают от УФ-излучения. Такие очки должны иметь широкие заушники или прилегающую форму для предупреждения проникновения излучения сбоку. Бесцветные очковые линзы также могут выполнять эту функцию, если в их состав введены добавки-абсорберы или проведена специальная обработка поверхности. Хорошо прилегающие солнцезащитные очки защищают как от прямого падающего излучения, так и от рассеянного и отраженного от различных поверхностей. Эффективность использования солнцезащитных очков и рекомендации по их применению определены путем указания категории фильтра, светопропусканию которого соответствуют очковые линзы.


Наиболее эффективный способ защиты от ультрафиолета - прикрытие глаз специальными защитными очками, масками, которые полностью поглощают УФ-излучение

Какие стандарты регламентируют светопропускание линз солнцезащитных очков?

В настоящее время в нашей стране и за рубежом разработаны нормативные документы, регламентирующие светопропускание солнцезащитных линз согласно категориям фильтров и правила их применения. В России это ГОСТ Р 51831-2001 «Очки солнцезащитные. Общие технические требования», а в Европе - EN 1836: 2005 «Personal eye protection - Sunglasses for general use and filters for direct observation of the sun».

Каждый вид солнцезащитных линз разработан для определенных условий освещенности и может быть отнесен к одной из категорий фильтров. Всего их пять, и они нумеруются от 0 до 4. Согласно ГОСТ Р 51831-2001, светопропускание T,  %, солнцезащитных линз в видимой области спектра может составлять от 80 до 3-8 % в зависимости от категории фильтра. Для УФ-B- диапазона (280-315 нм) этот показатель не должен быть больше 0,1T (в зависимости от категории фильтра он может быть от 8,0 до 0,3-0,8 %), а для УФ-A-излучения (315-380 нм) - не больше 0,5T (в зависимости от категории фильтра - от 40,0 до 1,5-4,0 %). В то же время производители качественных линз и очков устанавливают более жесткие требования и гарантируют потребителю полное отрезание ультрафиолета до длины волны 380 нм или даже до 400 нм, о чем свидетельствует специальная маркировка на линзах очков, их упаковке или сопроводительной документации. Следует отметить, что для линз солнцезащитных очков эффективность защиты от ультрафиолета не может однозначно определяться степенью их затемнения или стоимостью очков.

Правда ли, что ультрафиолет более опасен, если человек носит некачественные солнцезащитные очки?

Это действительно так. В естественных условиях, когда человек не носит очки, его глаза автоматически реагируют на избыточную яркость солнечного света изменением размера зрачка. Чем ярче свет, тем меньше зрачок, и при пропорциональном соотношении видимого и ультрафиолетового излучения этот защитный механизм работает весьма эффективно. Если же применяется затемненная линза, то освещение кажется менее ярким и зрачки увеличиваются, позволяя большему количеству света достигать глаз. В том случае, когда линза не обеспечивает надлежащую защиту от ультрафиолета (количество видимого излучения уменьшается больше, чем ультрафиолетового), суммарное количество попадающего в глаза ультрафиолета оказывается более значительным, чем при отсутствии солнцезащитных очков. Именно поэтому окрашенные и светопоглощающие линзы должны содержать УФ-абсорберы, которые снижали бы количество УФ-излучения пропорционально уменьшению излучения видимого спектра. По международным и отечественным стандартам светопропускание солнцезащитных линз в УФ-области регламентируется как пропорционально зависимое от светопропускания в видимой части спектра.

Какой оптический материал для очковых линз обеспечивает защиту от ультрафиолета?

Некоторые материалы для очковых линз обеспечивают поглощение УФ-излучения благодаря своей химической структуре. Оно активизирует фотохромные линзы, которые в соответствующих условиях блокируют его доступ к глазу. Поликарбонат содержит группы, поглощающие излучение в ультрафиолетовой области, поэтому он оберегает глаза от ультрафиолета. CR-39 и другие органические материалы для очковых линз в чистом виде (без добавок) пропускают некоторое количество УФ-излучения, и для надежной защиты глаз в их состав вводят специальные абсорберы. Эти компоненты не только защищают глаза пользователей, обеспечивая отрезание ультрафиолета до 380 нм, но и предупреждают фотоокислительную деструкцию органических линз и их пожелтение. Минеральные очковые линзы из обычного кронового стекла непригодны для надежной защиты от УФ-излучения, если в состав шихты для его производства не введены специальные добавки. Такие линзы можно использовать в качестве солнцезащитных фильтров только после нанесения качественных вакуумных покрытий.

Правда ли, что эффективность защиты от ультрафиолета для фотохромных линз определяется их светопоглощением в активированной стадии?

Некоторые пользователи очков с задают подобный вопрос, так как беспокоятся о том, будут ли они надежно защищены от ультрафиолета в пасмурный день, когда нет яркого солнечного излучения. Следует отметить, что современные фотохромные линзы поглощают от 98 до 100 % УФ-излучения при любых уровнях освещенности, то есть вне зависимости от того, являются ли они в данный момент бесцветными, средне- или темно-окрашенными. Благодаря этой особенности фотохромные линзы подходят для пользователей очков, находящихся на открытом воздухе в различных погодных условиях. В настоящее время растет число людей, которые начинают понимать, какую опасность представляет длительное воздействие УФ-излучения для здоровья глаз, и многие выбирают фотохромные линзы. Последние отличаются высокими защитными свойствами в сочетании с особым преимуществом - автоматическим изменением светопропускания в зависимости от уровня освещенности.

Является ли темная окраска линз гарантией защиты от ультрафиолетового излучения?

Сама по себе интенсивная окраска солнцезащитных линз не дает гарантии защиты от ультрафиолета. Следует отметить, что дешевые органические солнцезащитные линзы, выпущенные в условиях крупносерийного производства, могут иметь достаточно высокий уровень защиты. Как правило, сначала смешивают специальный УФ-абсорбер с сырьем для производства линз и делают бесцветные линзы, а затем осуществляют окрашивание. Добиться обеспечения УФ-защиты для солнцезащитных минеральных линз сложнее, так как их стекло пропускает больше излучения, чем многие виды полимерных материалов. Для гарантированной защиты необходимо введение ряда добавок в состав шихты для выпуска заготовок линз и применение дополнительных оптических покрытий.
Окрашенные рецептурные линзы делают из соответствующих бесцветных линз, которые могут иметь или нет достаточное количество УФ-абсорбера для надежного отрезания соответствующего диапазона излучения. Если нужны линзы со 100 %-й защитой от ультрафиолета, задача контроля и обеспечения такого показателя (до 380-400 нм) возлагается на оптика-консультанта и мастера - сборщика очков. В этом случае введение УФ-абсорберов в поверхностные слои органических очковых линз производится по технологии, аналогичной окрашиванию линз в растворах красителей. Единственное исключение состоит в том, что УФ-защиту не увидеть глазом и для ее проверки нужны специальные приборы - УФ-тестеры. Производители и поставщики оборудования и красителей для окраски органических линз включают в свой ассортимент различные составы для поверхностной обработки, обеспечивающие разные уровни защиты от ультрафиолета и коротковолнового видимого излучения. Провести контроль светопропускания ультрафиолетовой составляющей в условиях стандартной оптической мастерской не представляется возможным.

Следует ли вводить абсорбер ультрафиолетового излучения в бесцветные линзы?

Многие специалисты считают, что введение УФ-абсорбера в бесцветные линзы принесет только пользу, так как защитит глаза пользователей и предупредит ухудшение свойств линз под воздействием УФ-излучения и кислорода воздуха. В некоторых странах, где существует высокий уровень солнечной радиации, например в Австралии, это является обязательным. Как правило, стараются обеспечить отрезание излучения до 400 нм. Таким образом, исключены наиболее опасные и высокоэнергетические составляющие, а оставшегося излучения достаточно для правильного восприятия цвета предметов окружающей действительности. Если границу отрезания сдвинуть в видимую область (до 450 нм), то у линз появится желтый цвет, при увеличении до 500 нм - оранжевый.

Как можно убедиться, что линзы обеспечивают защиту от ультрафиолетового излучения?

На оптическом рынке представлено много различных УФ-тестеров, которые позволяют проверить светопропускание очковых линз в ультрафиолетовом диапазоне. Они показывают, какой уровень пропускания у данной линзы в УФ-диапазоне. Однако следует учитывать и то, что оптическая сила корригирующей линзы может оказать влияние на данные измерения. Более точные данные удается получить при помощи сложных приборов - спектрофотометров, которые не только показывают светопропускание при определенной длине волны, но и учитывают при измерении оптическую силу корригирующей линзы.

Защита от ультрафиолетового излучения является важным аспектом, который нужно учитывать при подборе новых очковых линз. Надеемся, что приведенные в данной статье ответы на вопросы об ультрафиолетовом излучении и способах защиты от него помогут вам подобрать очковые линзы, которые дадут возможность сохранить здоровье ваших глаз на долгие годы.

Общая характеристика

Наибольшей биологической активностью обладают ультрафиолетовые лучи. В естественных условиях мощным источником ультрафиолетовых лучей является солнце. Однако лишь длинноволновая его часть достигает земной поверхности. Более коротковолновая радиация поглощается атмосферой уже на высоте 30-50 км от поверхности земли.

Наибольшая интенсивность потока ультрафиолетовой радиации наблюдается незадолго до полудня с максимумом в весенние месяцы.

Как уже указывалось, ультрафиолетовые лучи обладают значительной фотохимической активностью, что широко используется в практике. Ультрафиолетовое облучение применяется при синтезе ряда веществ, отбеливании тканей, изготовлении лакированной кожи, светокопировании чертежей, получении витамина D и других производственных процессах.

Важным свойством ультрафиолетовых лучей является их способность вызывать люминесценцию.

При некоторых процессах имеет место воздействие на работающих ультрафиолетовых лучей, например электросварка вольтовой дугой, автогенная резка и сварка, производство радиоламп и ртутных выпрямителей, литье и плавка металлов и некоторых минералов, светокопировка, стерилизация воды и т. д. Этому же воздействию подвергаются медицинский и технический персонал, обслуживающий ртутно-кварцевые лампы.

Ультрафиолетовые лучи обладают способностью изменять химическую структуру тканей и клеток.

Длина волны ультрафиолетового излучения

Биологическая активность ультрафиолетовых лучей различной длины волны неодинакова. Ультрафиолетовые лучи с длиной волны от 400 до 315 mμ. оказывают относительно слабое биологическое действие. Лучи с меньшей длиной волны отличаются большей биологической активностью. Ультрафиолетовые лучи длиной 315-280 mμ оказывают сильное кожное и антирахитическое действие. Особенно большой активностью обладает излучение с длиной волн 280-200 mμ. (бактерицидное действие, способность активно воздействовать на тканевые белки и липоиды, а также вызывать гемолиз).

В производственных условиях имеет место воздействие ультрафиолетовых лучей с длиной волны от 36 до 220 mμ. т. е. обладающих значительной биологической активностью.

В отличие от тепловых лучей, основным свойством которых является развитие гиперемии в участках, подвергшихся облучению, действие на организм ультрафиолетовых лучей представляется значительно более сложным.

Ультрафиолетовые лучи относительно мало проникают через кожу и их биологическое действие связано с развитием многих нейрогуморальных процессов, обусловливающих сложный характер влияния их на организм.

Ультрафиолетовая эритема

В зависимости от интенсивности источника света и содержания в его спектре инфракрасных или ультрафиолетовых лучей изменения со стороны кожи будут неодинаковыми.

Воздействие ультрафиолетовых лучей на кожу вызывает характерную реакцию со стороны сосудов кожи - ультрафиолетовую эритему. Ультрафиолетовая эритема существенно отличается от тепловой эритемы, вызванной инфракрасным облучением.

Обычно при применении инфракрасных лучей выраженных изменений со стороны кожи не наблюдается, так как возникающее чувство жжения и боль препятствуют длительному воздействию этих лучей. Эритема, развивающаяся в результате действия инфракрасных лучей, возникает непосредственно после облучения, является нестойкой, держится недолго (30-60 минут) и носит главным образом гнездный характер. После длительного воздействия инфракрасных лучей появляется бурая пигментация пятнистого вида.

Ультрафиолетовая эритема появляется после облучения вслед за некоторым латентным периодом. Этот период колеблется у разных людей от 2 до 10 часов. Продолжительность латентного периода ультрафиолетовой эритемы находится в известной зависимости от длины волны: эритема от длинноволновых ультрафиолетовых лучей появляется позднее и держится дольше, чем от коротковолновых.

Эритема, вызванная ультрафиолетовыми лучами, имеет ярко-красную окраску с резкими границами, точно соответствующими участку облучения. Кожа становится несколько отечной и болезненной. Наибольшего развития эритема достигает через 6-12 часов после появления, держится в течение 3-5 дней и постепенно бледнеет, приобретая коричневый оттенок, причем происходит равномерное и интенсивное потемнение кожи вследствие образования в ней пигмента. В некоторых случаях в период исчезновения эритемы наблюдается небольшое шелушение.

Степень развития эритемы зависит от величины дозы ультрафиолетовых лучей и индивидуальной чувствительности. При прочих равных условиях, чем больше доза ультрафиолетовых лучей, тем интенсивнее воспалительная реакция кожи. Наиболее выраженная эритема вызывается лучами с длинами волн около 290 mμ. При передозировке ультрафиолетового облучения эритема приобретает синюшный оттенок, края эритемы становятся расплывчатыми, облученный участок отечен и болезнен. Интенсивное облучение может вызвать ожог с развитием пузыря.

Чувствительность различных участков кожи к ультрафиолету

Кожные покровы живота, поясницы, боковых поверхностей грудной клетки обладают наибольшей чувствительностью к ультрафиолетовым лучам. Наименее чувствительна кожа кистей рук и лица.

Лица с нежной, слабопигментированной кожей, дети, а также страдающие базедовой болезнью и вегетативной дистонией обладают большей чувствительностью. Повышенная чувствительность кожи к ультрафиолетовым лучам наблюдается весной.

Установлено, что чувствительность кожи к ультрафиолетовым лучам может изменяться в зависимости от физиологического состояния организма. Развитие эритемной реакции зависит в первую очередь от функционального состояния нервной системы.

В ответ на ультрафиолетовое облучение в коже образуется и откладывается пигмент, являющийся продуктом белкового обмена кожи (органическое красящее вещество - меланин).

Длинноволновые ультрафиолетовые лучи вызывают более интенсивный загар, чем коротковолновые. При повторном ультрафиолетовом облучении кожа становится менее восприимчивой к этим лучам. Пигментация кожи развивается нередко и без предварительно видимой эритемы. В пигментированной коже ультрафиолетовые лучи не вызывают фотоэритемы.

Положительное влияние ультрафиолета

Ультрафиолетовые лучи понижают возбудимость чувствительных нервов (болеутоляющее действие) и оказывают также антиспастическое и антирахитическое действие. Под влиянием ультрафиолетовых лучей происходит образование очень важного для фосфорно-кальциевого обмена витамина D (находящийся в коже эргостерин превращается в витамин D). Под воздействием ультрафиолетовых лучей усиливаются окислительные процессы в организме, увеличивается поглощение тканями кислорода и выделение углекислоты, активируются ферменты, улучшается белковый и углеводный обмен. Повышается содержание кальция и фосфатов в крови. Улучшаются кроветворение, регенеративные процессы, кровоснабжение и трофика тканей. Расширяются сосуды кожи, снижается кровяное давление, повышается общий биотонус организма.

Благоприятное действие ультрафиолетовых лучей выражается в изменении иммунобиологической реактивности организма. Облучение стимулирует выработку антител, повышает фагоцитоз, тонизирует ретикулоэндотелиальную систему. Благодаря этому повышается сопротивляемость организма к инфекциям. Важное значение в этом отношении имеет дозировка облучения.

Ряд веществ животного и растительного происхождения (гематопорфирин, хлорофилл и т. д.), некоторые химические препараты (хинин, стрептоцид, сульфидин и т. д.), особенно флуоресцирующие краски (эозин, метиленовая синька и т. д.), обладают свойством повышать чувствительность организма к свету. В промышленности у лиц, работающих с каменноугольной смолой, отмечаются заболевания кожи открытых частей тела (зуд, жжение, краснота), причем эти явления исчезают по ночам. Это связано с фотосенсибилизирующими свойствами содержащегося в каменноугольной смоле акридина. Сенсибилизация имеет место преимущественно в отношении видимых лучей и в меньшей степени в отношении ультрафиолетовых лучей.

Большое практическое значение имеет способность ультрафиолетовых лучей убивать различные бактерии (так называемое бактерицидное действие). Это действие особенно интенсивно выражено у ультрафиолетовых лучей с длинами волн менее (265 - 200 mμ). Бактерицидное действие света связано с влиянием на протоплазму бактерий. Доказано, что после ультрафиолетового облучения митогенетическое излучение в клетках и крови повышается.

По современным представлениям, в основе действия света на организм лежит главным образом рефлекторный механизм, хотя большое значение придается и гуморальным факторам. Особенно это относится к действию ультрафиолетовых лучей. Нужно также иметь в виду возможность действия видимых лучей через органы зрения на кору и вегетативные центры.

В развитии эритемы, вызванной светом, существенное значение придается влиянию лучей на рецепторный аппарат кожи. При воздействии ультрафиолетовых лучей в результате распада белков в коже образуются гистамин и гистаминоподобные продукты, которые расширяют кожные сосуды и повышают их проницаемость, что ведет к гиперемии и отечности. Образующиеся в коже при воздействии ультрафиолетовых лучей продукты (гистамин, витамин D и др.) поступают в кровь и вызывают те общие сдвиги в организме, которые имеют место при облучении.

Таким образом, развивающиеся в облученном участке процессы ведут нейрогуморальным путем к развитию общей реакции организма. Эта реакция определяется главным образом состоянием высших регулирующих отделов центральной нервной системы, которое, как известно, может меняться под влиянием различных факторов.

Нельзя говорить о биологическом действие ультрафиолетового облучения вообще, вне зависимости от длины волны. Коротковолновое ультрафиолетовое излучение вызывает денатурацию белковых веществ, длинноволновое - фотолитический распад. Специфическое действие разных участков спектра ультрафиолетового излучения выявляется главным образом в начальной стадии.

Применение ультрафиолетового излучения

Широкое биологическое действие ультрафиолетовых лучей дает возможность в определенных дозах использовать их для профилактических и лечебных целей.

Для ультрафиолетового облучения пользуются солнечным светом, а также искусственными источниками облучения: ртутно-кварцевыми и аргонортутно-кварцевыми лампами. Спектр излучения ртутно-кварцевых ламп характеризуется наличием более коротких ультрафиолетовых лучей, чем в солнечном спектре.

Ультрафиолетовое облучение может быть общим или местным. Дозировка процедур производится по принципу биодоз.

В настоящее время ультрафиолетовое облучение широко используют, прежде всего, для профилактики различных заболеваний. С этой целью ультрафиолетовое облучение применяют для оздоровления окружающей человека внешней среды и изменения его реактивности (в первую очередь - повышения его иммунобиологических свойств).

С помощью специальных бактерицидных ламп может производиться стерилизация воздуха в лечебных учреждениях и жилых помещениях, стерилизация молока, воды и т. д. широко используется ультрафиолетовое облучение для предупреждения рахита, гриппа, в целях общего укрепления организма в лечебных и детских учреждениях, школах, физкультурных залах, фотариях при угольных шахтах, при тренировке спортсменов, для акклиматизации к условиям севера, при работах в горячих цехах (ультрафиолетовое облучение дает больший эффект в сочетании с воздействием инфракрасной радиации).

Ультрафиолетовые лучи особенно широко используются для облучения детей. В первую очередь такое облучение показано, ослабленным, часто болеющим детям, проживающим в северных и средних широтах. При этом улучшается общее состояние детей, сон, нарастает вес, снижается заболеваемость, уменьшается частота катаральных явлений и, длительность заболеваний. Улучшается общее физическое развитие, нормализуется кровь, проницаемость сосудов.

Значительное распространение получило также ультрафиолетовое облучение горнорабочих в фотариях, которые в большом количестве организованы на предприятиях горнорудной промышленности. При систематическом массовом облучении шахтеров, занятых на подземных работах, отмечается улучшение самочувствия, повышение трудоспособности, уменьшение утомляемости, снижение заболеваемости с временной утратой трудоспособности. После облучения шахтеров повышается процентное содержание гемоглобина, появляется моноцитоз, уменьшается число случаев гриппа, снижается заболеваемость опорно-двигательного аппарата, периферической нервной системы, реже наблюдаются гнойничковые заболевания кожи, катары верхних дыхательных путей и ангины, улучшаются показания жизненной емкости, легких.

Применение ультрафиолетового излучения в медицине

Применение ультрафиолетовых лучей с терапевтической целью базируется в основном на противовоспалительном, антиневралгическом и десенсибилизирующем действии этого вида лучистой энергии.

В комплексе с другими лечебными мероприятиями ультрафиолетовое облучение проводится:

1) при лечении рахита;

2) после перенесенных инфекционных заболеваний;

3) при туберкулезных заболеваниях костей, суставов, лимфатических узлов;

4) при фиброзном туберкулезе легких без явлений, указывающих на активацию процесса;

5) при заболеваниях периферической нервной системы, мышц и суставов;

6) при заболеваниях кожи;

7) при ожогах и отморожениях;

8) при гнойных осложнениях ран;

9) при рассасывании инфильтратов;

10) в целях ускорения регенеративных процессов при травмах костей и мягких тканей.

Противопоказаниями к облучению являются:

1) злокачественные новообразования (так как облучение ускоряет их рост);

2) резкое истощение;

3) повышенная функция щитовидной железы;

4) выраженные сердечно-сосудистые заболевания;

5) активный туберкулез легких;

6) заболевания почек;

7) выраженные изменения центральной нервной системы.

Следует помнить, что получение пигментации, особенно в короткий срок, не должно быть целью лечения. В ряде случаев хороший терапевтический эффект наблюдается и при слабой пигментации.

Негативное действие ультрафиолета

Длительное и интенсивное ультрафиолетовое облучение может оказать неблагоприятное влияние на организм и вызвать патологические изменения. При значительном облучении отмечаются быстрая утомляемость, головные боли, сонливость, ухудшение памяти, раздражительность, сердцебиение, понижение аппетита. Чрезмерное облучение может вызвать гиперкальциемию, гемолиз, задержку роста и понижение сопротивляемости инфекциям. При сильном облучении развиваются ожоги и дерматиты (жжение и зуд кожи, диффузная эритема, отечность). При этом отмечается повышение температуры тела, головная боль, разбитость. Ожоги и дерматиты, возникающие под воздействием солнечной радиации, связаны преимущественно с влиянием ультрафиолетовых лучей. У работающих на открытом воздухе под влиянием солнечной радиации могут возникнуть длительно и тяжело протекающие дерматиты. Необходимо помнить о возможности перехода описываемых дерматитов в рак.

В зависимости от глубины проникновения лучей различных участков солнечного спектра могут развиться изменения глаз. Под влиянием инфракрасных и видимых лучей возникает острый ретинит. Хорошо известна так называемая катаракта стеклодувов, развивающаяся в результате длительного поглощения инфракрасных лучей хрусталиком. Помутнение хрусталика происходит медленно, главным образом у рабочих горячих цехов со стажем работы 20-25 лет и больше. В настоящее время профессиональные катаракты в горячих цехах встречаются редко вследствие значительного улучшения условий труда. Роговица и конъюнктива реагируют главным образом на ультрафиолетовые лучи. Эти лучи (особенно с длиной волны менее 320 mμ .) вызывают в ряде случаев заболевание глаз, известное под названием фотоофтальмии или электроофтальмии. Это заболевание наиболее часто встречается у электросварщиков. В таких случаях часто наблюдается острый кератоконъюнктивит, который обычно возникает через 6-8 часов после работы, нередко ночью.

При электроофтальмии отмечается гиперемия и припухание слизистой, блефароспазм, светобоязнь, слезотечение. Часто обнаруживается поражение роговицы. Продолжительность острого периода болезни 1-2 дня. У работающих на открытом воздухе при ярком солнечном освещении широких покрытых снегом пространств фотоофтальмия протекает иногда в виде так называемой снежной слепоты. Лечение фотоофтальмии заключается в пребывании в темноте, применении новокаина и холодных примочек.

Средства защиты от ультрафиолетового излучения

Для защиты глаз от неблагоприятного действия ультрафиолетовых лучей на производствах пользуются щитками или шлемами со специальными темными стеклами, защитными очками, а для защиты остальных частей тела и окружающих лиц - изолирующими ширмами, переносными экранами, спецодеждой.

Ультрафиолет был открыт более 200 лет назад, но лишь с изобретением искусственных источников ультрафиолетового излучения человек смог использовать удивительные свойства этого невидимого света. Сегодня ультрафиолетовая лампа помогает бороться со многими заболеваниями и дезинфицирует, позволяет создавать новые материалы и используется криминалистами. Но для того чтобы приборы УФ спектра приносили пользу, а не вред, необходимо четко представлять, какими они бывают и для чего служат.

Что такое ультрафиолетовое излучение и каким оно бывает

Ты наверняка знаешь, что свет – это электромагнитное излучение. В зависимости от частоты цвет такого излучения изменяется. Низкочастотный спектр кажется нам красным, высокочастотный – синим. Если поднять частоту еще выше, то свет станет фиолетовым, а после совсем исчезнет. Точнее, исчезнет для твоего глаза. На самом деле излучение перейдет в область ультрафиолетового спектра, который мы не способны видеть из-за особенностей глаза.

Но если мы не видим ультрафиолетовый свет, то это не значит, что он на нас никак не воздействует. Ты же не будешь отрицать, что радиация безопасна, поскольку мы ее не можем увидеть. А радиация – не что иное, как такое же электромагнитное излучение, как свет и ультрафиолет, только более высокой частоты.

Но вернемся к ультрафиолетовому спектру. Он располагается, как мы выяснили, между видимым светом и радиационным излучением:

Зависимость типа электромагнитного излучения от его частоты

Отбросим свет с радиацией и рассмотрим ультрафиолетовое излучение поближе:


Разделение ультрафиолетового диапазона на поддиапазоны

На рисунке хорошо видно, что весь УФ диапазон условно делится на два поддиапазона: ближний и дальний. Но на этом же рисунке сверху мы видим деление на УФА, УФВ и УФС. В дальнейшем мы будем пользоваться именно таким разделением – ультрафиолет А, В и С, поскольку оно четко разграничивает степень воздействия излучения на биологические объекты.

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

Конечный участок дальнего диапазона никак не обозначен, поскольку не имеет особого практического значения. Воздух для ультрафиолетового излучения с длиной волны короче 100 нм (его еще называют жестким ультрафиолетовым) практически непрозрачен, поэтому его источники можно использовать только в вакууме.

Свойства ультрафиолета и воздействие его на живые организмы

Итак, в нашем распоряжении три ультрафиолетовых диапазона: А, В и С. Рассмотрим свойства каждого из них.

Ультрафиолет А

Излучение лежит в диапазоне 400 – 320 нм и называется мягким или длинноволновым ультрафиолетовым. Проникновение его в глубинные слои живых тканей минимально. При умеренном применении УФА не только не наносит вреда организму, но и полезен. Он укрепляет иммунитет, способствует выработке витамина D, улучшает состояние кожи. Именно под таким ультрафиолетом мы загораем на пляже.

Но при передозировке даже мягкий ультрафиолетовый диапазон может представлять определенную опасность для человека. Наглядный пример: добрался до пляжа, прилег на пару часиков и «сгорел». Знакомо? Безусловно. Но могло быть и еще хуже, если бы ты лежал часиков пять или с открытыми глазами и без качественных солнцезащитных очков. При длительном воздействии на глаза УФА способен вызвать ожог роговицы, а кожу сжечь буквально до волдырей.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Все вышесказанное справедливо и для других биологических объектов: растений, животных, бактерий. Именно умеренный УФА в значительной степени провоцирует «цветение» воды в водоемах и порчу продуктов, подстегивая рост водорослей и бактерий. Передозировка его чрезвычайно вредна.

Ультрафиолет В

Средневолновый ультрафиолет, занимающий диапазон 320 – 280 нм. Ультрафиолетовое излучение с такой длиной волны способно проникать в верхние слои живых тканей и вызывать серьезные изменения их структуры вплоть до частичного разрушения ДНК. Даже минимальная доза УФВ способна вызвать серьезный и довольно глубокий радиационный ожог кожи, роговицы и хрусталика. Серьезную опасность такое излучение также представляет для растений, а для многих видов вирусов и бактерий ввиду их небольших размеров УФВ вообще смертелен.

Ультрафиолет С

Самый коротковолновый и самый опасный для всего живого диапазон, в который входит ультрафиолетовое излучение с длиной волны от 280 до 100 нм. УФС даже в небольших дозах способно разрушать цепи ДНК, вызывая мутации. У человека, как правило, его воздействие вызывает рак кожи и меланому. Из-за способности достаточно глубоко проникать в ткани УФС может вызвать необратимый радиационный ожог сетчатки и глубокие повреждения кожного покрова.

Дополнительную опасность представляет способность ультрафиолетового излучения категории С ионизировать молекулы кислорода, находящиеся в атмосфере. В результате такого воздействия в воздухе образуется озон — трехатомный кислород, который является сильнейшим окислителем, а по степени опасности для биологических объектов относится к первой, самой опасной категории ядов.

Устройство ультрафиолетовой лампы

Человек научился создавать искусственные источники ультрафиолетового излучения, причем излучать они могут в любом заданном диапазоне. Конструктивно ультрафиолетовые лампы выполняются в виде колбы, заполненной инертным газом с примесью металлической ртути. По бокам колбы впаиваются тугоплавкие электроды, на которые подается напряжение питания прибора. Под действием этого напряжения в колбе начинается тлеющий разряд, который заставляет молекулы ртути испускать ультрафиолет во всех спектрах УФ диапазона.


Конструкция ультрафиолетовой лампы

Изготавливая колбу из того или иного материала, конструкторы могут отсекать излучение определенной длины волны. Так, лампа из эритемного стекла пропускает только ультрафиолетовое излучение типа А, увиолевая колба уже прозрачна для УФВ, но не пропускает жесткое излучение УФС. Если же колбу сделать из кварцевого стекла, то прибор будет излучать все три вида ультрафиолетового спектра – А, В, С.

Все лампы ультрафиолетового света являются газоразрядными и должны включаться в сеть через специальное пускорегулирующее устройство (ЭПРА). В противном случае тлеющий разряд в колбе мгновенно перейдет в неуправляемый дуговой.


Электромагнитное (слева) и электронное пускорегулирующие устройства для газоразрядных ламп ультрафиолетового света

Важно! Лампы накаливания с синим баллоном, которые мы часто используем для прогревания при ЛОР заболеваниях, не являются ультрафиолетовыми. Это обычные лампочки накаливания, а синяя колба служит лишь для того, чтобы ты не получил тепловой ожог и не повредил глаза ярким светом, держа довольно мощную лампу у самого лица.


Рефлектор Минина не имеет никакого отношения к ультрафиолетовому излучению и комплектуется обычной лампой накаливания из синего стекла

Применение УФ ламп

Итак, ультрафиолетовые лампы существуют, и мы даже знаем, что у них внутри. Но для чего они нужны? Сегодня приборы ультрафиолетового света широко используются как в быту, так и на производстве. Вот основные области применения УФ ламп:

1. Изменение физических свойств материалов . Под действием ультрафиолетового излучения некоторые синтетические материалы (краски, лаки, пластики и пр.) могут менять свои свойства: твердеть, размягчаться, менять цвет и другие физические характеристики. Живой пример – стоматология. Специальная фотополимерная пломба пластична до тех пор, пока врач после ее установки не осветит полость рта мягким ультрафиолетовым светом. После такой обработки полимер становится прочнее камня. В косметических салонах тоже используют специальный гель, твердеющий под УФ лампой. С его помощью, к примеру, косметологи наращивают ногти.

После обработки ультрафиолетовой лампой мягкая, как пластилин, пломба приобретает исключительную прочность

2. Криминалистика и уголовное право . Полимеры, способные светиться в ультрафиолете, широко используются для защиты от подделки. Для интереса попробуй осветить купюру ультрафиолетовой лампой. Таким же образом можно проверить купюры почти всех стран, подлинность особо важных документов или печатей на них (так называемая защита «Цербер»). Криминалисты пользуются ультрафиолетовыми лампами для обнаружения следов крови. Она, конечно, не светится, зато полностью поглощает ультрафиолетовое излучение и на общем фоне будет казаться абсолютно черной.


Элементы защиты купюр, печатей и паспорта (Беларусь), видимые только в ультрафиолетовом излучении

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Если ты смотрел фильмы про криминалистов, то наверняка заметил, что в них кровь под УФ лампой вопреки вышесказанному мной светится сине-белым. Чтобы достичь такого эффекта, специалисты обрабатывают предполагаемые пятна крови специальным составом, который взаимодействует с гемоглобином, после чего начинает флюоресцировать (светиться в ультрафиолетовом излучении). Такой метод не только более нагляден для зрителя, но и более эффективен.

3. При дефиците естественного ультрафиолета . Польза ультрафиолетовой лампы спектра А для биологических объектов была открыта почти одновременно с ее изобретением. При недостатке естественного ультрафиолетового излучения страдает иммунитет человека, кожа приобретает нездоровый бледный оттенок. Если растения и комнатные цветы выращивать за оконным стеклом или под обычными лампами накаливания, то и они чувствуют себя не лучшим образом – плохо растут и часто болеют. Все дело в отсутствии ультрафиолетового излучения спектра А, недостаток которого особенно вреден для детей. Сегодня УФА лампы используют для укрепления иммунитета и улучшения состояния кожи повсеместно, где не хватает естественного света.


Использование ультрафиолетовых ламп спектра А для восполнения дефицита естественного ультрафиолета

На самом деле приборы, служащие для восполнения дефицита естественного ультрафиолетового света, излучают не только ультрафиолет А, но и В, хотя доля последнего в общем излучении чрезвычайно мала — от 0,1 до 2-3 %.

4. Для дезинфекции . Все вирусы и бактерии – тоже живые организмы, к тому же они настолько малы, что «перегрузить» их ультрафиолетовым светом совсем несложно. Жесткий ультрафиолет (С) в состоянии проходить некоторые микроорганизмы буквально насквозь, разрушая их структуру. Таким образом, лампы спектра В и С, получившие название антибактериальных или бактерицидных, можно использовать для обеззараживания квартиры, общественных заведений, воздуха, воды, предметов и даже для лечения вирусных инфекций. При использовании ламп УФС дополнительным дезинфицирующим фактором выступает озон, о котором я писал выше.


Использование ультрафиолетовых ламп для дезинфекции и антибактериальной обработки

Ты наверняка слышал такой медицинский термин, как кварцевание. Эта процедура – не что иное, как обработка предметов или тела человека строго дозированным жестким ультрафиолетовым излучением.

Основные характеристики источников ультрафиолетового излучения

Какими характеристиками УФ лампы нужно руководствоваться, чтобы при ее использовании получить максимальный эффект и не нанести вреда здоровью своему и окружающих? Вот основные из них:

  1. Диапазон излучения.
  2. Мощность.
  3. Назначение.
  4. Срок службы.

Излучаемый диапазон

Это основной параметр. В зависимости от длины волны ультрафиолет действует по-разному. Если УФА опасен лишь для глаз, и при правильном использовании не представляет серьезной угрозы для организма, то УФВ в состоянии не только испортить глаза, но и спровоцировать глубокие, порой необратимые ожоги на коже. УФС отлично дезинфицирует, но может представлять смертельную опасность для человека, поскольку излучение такой длины волны разрушает ДНК и образует ядовитый газ озон.

С другой стороны, спектр УФА абсолютно бесполезен в качестве антибактериального средства. Пользы от такой лампы, к примеру, при очистке воздуха от микробов, практически не будет. Более того, некоторые виды бактерий и микрофлоры станут еще активнее. Таким образом, выбирая УФ лампу, необходимо четко представлять для чего она будет использоваться и какой спектр излучения она должна иметь.

Мощность

Имеется в виду сила создаваемого лампой УФ потока. Она пропорциональна потребляемой мощности, поэтому при выборе прибора ориентируются обычно на данный показатель. Бытовые ультрафиолетовые лампы обычно не превышают мощности 40-60, профессиональные устройства могут иметь мощность до 200-500 Вт и более. Первые обычно имеют низкое давление в колбе, вторые – высокое. Выбирая излучатель для тех или иных целей, нужно четко представлять, что в плане мощности больше — не всегда значит лучше. Для получения максимального эффекта излучение прибора должно быть строго дозированным. Поэтому при покупке лампы обращайте внимание не только на ее назначение, но и на рекомендуемую площадь помещения или производительность прибора, если он служит для очистки воздуха или воды.

Назначение и конструкция

По своему назначению ультрафиолетовые лампы делятся на бытовые и профессиональные. Вторые обычно имеют большую мощность, более широкий и жесткий спектр излучения и сложны по конструкции. Именно поэтому они требуют для своего обслуживания квалифицированного специалиста и соответствующих знаний. Если ты собираешься покупать ультрафиолетовую лампу для домашнего использования, то от профессиональных устройств лучше отказаться. В таком случае велика вероятность, что лампа, скорее, навредит, чем принесет пользу. Особенно это касается приборов, работающих в диапазоне УФС, излучение которых является ионизирующим.

По типу конструкции ультрафиолетовые лампы делятся на:

1. Открытые . Эти приборы излучают ультрафиолет непосредственно в окружающую среду. При неправильном применении представляют наибольшую опасность для организма человека, но позволяют провести качественное обеззараживание помещения, включая воздух и все находящиеся в нем предметы. Лампы открытой или полуоткрытой (узконаправленного излучения) конструкции используются также для медицинских целей: лечения инфекционных заболеваний и восполнения дефицита ультрафиолета (фитолампы, солярии).


Использование бактерицидных ламп для антибактериальной обработки помещений

2. Рециркуляторы или приборы закрытого типа. Лампа в них находится за полностью непрозрачным кожухом, а УФ изучение воздействует только на рабочую среду – газ или жидкость, прогоняемую специальным насосом сквозь облучаемую камеру. В быту рециркуляторы обычно используются для бактерицидной обработки воды или воздуха. Поскольку устройства не излучают ультрафиолет, при правильном использовании они полностью безопасны для человека и могут использоваться в его присутствии. Рециркуляторы могут быть как бытового, так и промышленного назначения.


Рециркулятор – стерилизатор для воды (слева) и для воздуха

3. Универсальные. Приборы этого типа могут работать как в режиме рециркуляции воздуха, так и прямого излучения. Конструктивно выполнены как рециркулятор с раскладным кожухом. В собранном виде это обычный рециркулятор, с открытыми шторками – бактерицидная лампа открытого типа.


Универсальная бактерицидная лампа в режиме рециркулятора (слева)

Срок службы

Поскольку принцип работы и конструкция ультрафиолетовой лампы сходны с принципом и устройством люминесцентного осветительного прибора, логично предположить, что сроки службы у них одинаковы и могут достигать 8 000–10 000 ч. На практике это не совсем так. В процессе работы лампа «стареет»: ее световой поток уменьшается. Но если в обычной осветительной лампе этот эффект заметен визуально, то УФ лампу «на глаз» проверить невозможно. Поэтому производитель ограничивается гораздо меньшим сроком работы: от 1 000 до 9 000 часов в зависимости от мощности лампы, ее назначения и, конечно, качества материалов, комплектующих и бренда.

Если в паспорте на устройство не указана периодичность замены ламп или заявлен максимальный срок 20 тысяч часов и более, то от покупки такого устройства стоит отказаться. Также должна насторожить и слишком низкая стоимость прибора. Скорее всего, это низкокачественный товар либо вовсе подделка.

Ультрафиолетовое излучение (УФИ) - электромагнитное излучение оптического диапазона, которое условно подразделяется на коротковолновое (УФИ С - с длиной волны 200-280 нм), средневолновое (УФИ В - с длиной волны 280-320 нм) и длинноволновое (УФИ А - с длиной волны 320-400 нм).

УФИ генерируют как естественные, так и искусственные источники. Основной естественный источник УФИ - Солнце. До поверхности Земли доходит УФИ в диапазоне 280-400 нм, так как более короткие волны поглощаются в верхних слоях стратосферы.

Искусственные источники УФИ широко применяются в промышленности, медицине и др.

Фактически любой материал, нагретый до температуры, превышающей 2500 еК, генерирует УФИ. Источниками УФИ является сварка кислородно-ацетиленовыми, кислородно-водородными, плазменными горелками.

Источники биологически эффективного УФИ можно подразделить на газоразрядные и флюоресцентные. К газоразрядным относятся ртутные лампы низкого давления с максимумом излучения на длине волны 253,7 нм, т.е. соответствующие максимуму бактерицидной эффективности, и высокого давления с длинами волн 254, 297, 303, 313 нм. Последние широко используются в фотохимических реакторах, в печатном деле, для фототерапии кожных заболеваний. Ксеноновые лампы применяются для тех же целей, что и ртутные. Оптические спектры импульсных ламп зависят от используемого в них газа - ксенон, криптон, аргон, неон и др.

В люминесцентных лампах спектр зависит от использованного ртутного люминофора.

Избыточному воздействию УФИ могут подвергаться работники промышленных предприятий и медицинских учреждений, где используются выше перечисленные источники, а также люди, работающие на открытом воздухе за счет солнечной радиации (сельскохозяйственные, строительные, железнодорожные рабочие, рыбаки и др.).

Установлено, что как недостаток, так и избыток УФИ отрицательно сказываются на состоянии здоровья человека. При недостаточности УФИ у детей развивается рахит вследствие нехватки витамина Д и нарушения фосфорно-кальциевого обмена, снижается активность защитных систем организма, в первую очередь - иммунной, что делает его более уязвимым к воздействию неблагоприятных факторов.

Критическими органами к восприятию УФИ являются кожа и глаза. Острые поражения глаз, так называемые электроофтальмии (фотоофтальмии), представляют собой острые конъюнктивиты. Заболеванию предшествует латентный период, продолжительность которого около 12 часов. С хроническими поражениями глаз связывают хронический конъюнктивит, блефарит, катаракту хрусталика.

Поражения кожи протекают в форме острых дерматитов с эритемой, иногда отеком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления. В дальнейшем наблюдаются гиперпигментация и шелушение. Хронические изменения кожных покровов, вызванных УФИ, выражаются в старении кожи, развитии кератоза, атрофии эпидермиса, возможны злокачественные новообразования.

В последнее время интерес к укреплению здоровья населения путем профилактического ультрафиолетового облучения значительно возрос. Действительно, ультрафиолетовое голодание, наблюдаемое обычно в зимнее время года и особенно у жителей Севера России, ведет к значительному снижению защитных сил организма и повышению уровня заболеваемости. В первую очередь страдают дети.

Наша страна является родоначальницей движения за компенсацию ультрафиолетовой недостаточности у населения с исполь- зованием искусственных источников ультрафиолетовой радиации, спектр которых приближается к естественному. Опыт использования искусственных источников ультрафиолетовой радиации требует соответствующей коррекции в отношении дозы и методов использования.

Территория России с юга на север простирается от 40 до 80? с.ш. и условно делится на пять климатических районов страны. Оценим естественный ультрафиолетовый климат двух крайних и одного среднего географических районов. Это районы Севера (70? с.ш. - Мурманск, Норильск, Дудинка и др.), Средней полосы (55? с.ш. - Москва и др.) и Юга (40? с.ш. - Сочи и др.) нашей страны.

Напомним, что по биологическому действию спектр ультрафиолетового излучения Солнца делится на две области: «А» - излучение с длиной волны 400-315 нм, и «В» - излучение с длиной волны менее 315 нм (до 280 нм). Однако практически земной поверхности лучи короче 290 нм не достигают. Ультрафиолетовое излучение с длиной волны менее 280 нм, которое имеется только в спектре искусственных источников, относится к области «C» ультрафиолетовой радиации. У человека отсутствуют рецепторы, которые срочно (с малым латентным периодом) реагируют на ультрафиолетовую радиацию. Особенностью естественного УФ-излучения является его способность вызывать (с относительно длинным латентным периодом) эритему, являющуюся специфической реакцией организма на действие УФ-радиации солнечного спектра. В наибольшей степени образовывать эритему способна УФ-радиация с длиной волны максимум 296,7 нм (табл. 10.1).

Таблица 10.1. Эритемная эффективность монохроматического УФ-излучения

Как видно из табл. 10.1, излучение с длиной волны 285 нм в 10 раз, а лучи с длиной волны 290 нм и 310 нм в 3 раза менее активно образуют эритему, чем излучение с длиной волны 297 нм.

Приход суточной УФ-радиации солнца для указанных выше районов страны в летний период (табл. 10.2) относительно высок 35- 52 эр-ч/м -2 (1 эр-ч/м -2 = 6000 мкВт-мин/см 2). Однако в другие периоды года имеется существенное различие, и зимой, особенно на Севере, естественная радиация солнца отсутствует.

Таблица 10.2. Среднее распределение эритемной радиации области (эр-ч/м -2)

Северная широта

Месяц

III

VI

IX

XII

18,2

26,7

46,5

Величина суммарной радиации в различных широтах отражает суточный приход излучения. Однако при учете количества излуче- ния, поступающего в среднем не за 24, а лишь за 1 час, выявляется следующая картина. Так, в июне на широте 70? с.ш. за сутки поступает 35 эр-ч/м -2 . Солнце при этом все 24 часа не уходит с небосвода, следовательно, в час эритемная радиация будет составлять 1,5 эр-ч/м -2 . В этот же период года на широте 40? Солнце излучает 77 эр-ч/м -2 и сияет 15 часов, следовательно, часовая эритемная облученность составит 5,13 эр-ч/м -2 , т.е. величину в 3 раза большую, чем на широте 70?. Для определения режима облучения целесообразно проводить оценку прихода суммарной УФ солнечной радиации не за 24, а за 15 часов, т.е. за период бодрствования человека, так как в конечном итоге нас интересует количество естественной радиации, влияющей на человека, а не количество энергии Солнца, падающей на поверхность Земли вообще.

Важной особенностью действия на человека естественной УФрадиации является способность предупреждать так называемую D-витаминную недостаточность. В отличие от обычных витаминов, витамин D фактически не содержится в естественных продуктах питания (исключение составляют печень некоторых рыб, особенно трески и палтуса, а также яичный желток и молоко). Этот витамин синтезируется в коже под воздействием УФ радиации.

Недостаточное воздействие УФ-излучения без одновременного действия видимой радиации на организм человека приводит к разно- образным проявлениям D-авитаминоза.

В процессе D-витаминной недостаточности в первую очередь нарушаются трофика центральной нервной системе и клеточное дыхание, как субстрат нервной трофики. Это нарушение, ведущее к ослаблению окислительно-восстановительных процессов, следует, очевидно, считать основным, в то время как все остальные многообразные проявления будут вторичными. Наиболее чувствительны к отсутствию УФ-радиации маленькие дети, у которых в результате D-авитаминоза может развиться рахит и, как следствие рахита, - близорукость.

Способностью предупреждать и излечивать рахит в наибольшей степени обладает УФ-излучение области В.

Процесс синтеза витамина D под воздействием УФ-излучения довольно сложен.

В нашей стране витамин D был получен синтетическим путем в 1952 г. Исходным сырьем для синтеза послужил холестерин. В процессе превращения холестерина в провитамин образовывалась двойная связь в кольце В стерина путем последовательного бромирования. Полученный бензонат 7-дегидрохолестерина омыляется в Г-дегидрохолестерин, который уже под воздействием УФ-излучения превращается в витамин. Сложные процессы перехода провитамина в витамин зависят от спектрального состава УФ-радиации. Так, лучи с длиной волны максимум 310 нм способны превращать эргостерин в люмистерин, который переходит в техистерин, и, наконец, под действием лучей с длиной волны 280-313 нм техистерин превращается в витамин D.

Витамин D в организме осуществляет регуляцию содержания кальция и фосфора в крови. При недостаточности этого витамина нарушается фосфорно-кальциевый обмен, тесно связанный с процессами окостенения скелета, кислотно-щелочным равновесием, свертываемостью крови и т.д.

При рахите нарушается условно-рефлекторная деятельность, при этом образование условных рефлексов происходит медленнее, чем у здоровых людей, и они быстро исчезают, т.е. возбудимость коры головного мозга у детей, страдающих рахитом, значительно понижена. При этом клетки коры функционируют слабо и легко истощаются. Кроме того, наблюдается расстройство тормозной функции больших полушарий.

Торможение в течение длительного времени может широко распространяться по коре мозга.

Совершенно ясно, что необходимо проводить соответствующие профилактические мероприятия, т.е. использовать полноценный УФ-климат.

Тип источника

Мощность, Вт

Облученность в энергетических единицах на расстоянии 1 м

УФ-радиация область А

УФ-радиация область В

УФ-радиация область С

мкВт/см 2

%

мкВт/см 2

%

мкВт/см 2

%

ПРК-7 (ДРК-7)

1000

ЛЭР-40

28,6

22,6

Однако следует заметить, что спектральный состав искусственного радиационного климата, имеющий место в условиях фотария с лампой типа ПРК, значительно отличается от естественного наличием коротковолновой УФ-радиации.

С выпуском в нашей стране эритемных люминесцентных ламп небольшой мощности стало возможным использование искусст- венных источников УФ-радиации в условиях фотария и в системе общего освещения.

Доза профилактического УФ-облучения. Несколько слов из истории. Профилактическое облучение шахтеров было начато в 30-х годах ХХ столетия. В то время не было соответствующего опыта и необходимой теоретической базы в отношении выбора дозы именно

профилактического облучения. Было решено использовать опыт лечебный, применяемый в физиотерапевтической практике при лечении разного рода заболеваний. Заимствованы были не только источники УФ-радиации, но и схема облучения. Биологический эффект облучения лампами ПРК, в спектре которых имеется бактерицидное излучение, был весьма сомнителен. Так, нами установлено, что соотношение биологической активности областей «В» и «С», участвующих в образовании эритемы, составляет 1:8. Первые методические указания по эксплуатации фотариев были разработаны преимущественно физиотерапевтами. В дальнейшем вопросами профилактического облучения занимались гигиенисты, биологи. В 50-х годах прошлого столетия проблема профилактического облучения приобрела гигиеническую направленность. Были проведены многочисленные исследования в разных городах и климатических районах России, которые позволили по-новому подойти к дозе профилактического УФ-облучения.

Установление профилактической дозы УФ-радиации является весьма трудной задачей, ибо следует решать и учитывать ряд связанных между собой факторов, таких как:

Источник УФ-радиации;

Способ его использования;

Площадь облучаемой поверхности;

Сезон начала облучения;

Фоточувствительность кожи (биодоза);

Интенсивность облучения (облученность);

Время облучения.

В работе использовались эритемные лампы, в спектре которых отсутствует бактерицидное УФ-излучение. Эритемная биодоза

Таблица 10.4. Взаимосвязь физических и приведенных единиц для

выражения дозы УФ-радиации области В (280-350 нм)

мкВт/см 2

мЭр-ч/м 2

мкЭр-ч/см 2

мЭр-мин/м 2

мкВт/см 2

0,0314

мЭр-ч/м 2

мкЭр-ч/м 2

0,157

мЭр-мин/м 2

0,0157

выражена в физических (мкВт/см 2) или приведенных (мкЭр/см 2) величинах, соотношения которых представлены в табл. 10.4.

Следует особо подчеркнуть, что облученность эритемного потока УФ излучения оценивать в эффективных (или приведенных) еди- ницах - эрах (Эр - эритемный поток излучения с длиной волны 296,7 нм мощностью 1 Вт) можно лишь при излучении области «В».

Для выражения облученности участка «В» УФ-спектра в эрах следует его облученность, выраженную в физических единицах (Вт), умножить на коэффициент эритемной чувствительности кожи. Коэффициент эритемной чувствительности кожи для лучей с длиной волны 296,7 нм принят в 1935 г. Международной комиссией по освещению за единицу.

Используя лампы ЛЭР, мы приступили к нахождению оптимальной профилактической дозы УФ-радиации и оценке «метода облучения», под которым имеется в виду главным образом длительность ежедневного облучения, продолжающегося от минуты до нескольких часов.

В свою очередь длительность профилактического облучения зависит от способа использования искусственных излучателей (исполь- зования излучателей в системе общего освещения или в условиях фотария) и от фоточувствительности кожи (от значения эритемной биодозы).

Разумеется, что при разных способах применения искусственных излучателей облучению подвергаются разные по площади поверхности тела. Так, при использовании люминесцентных ламп в системе общего освещения облучаются лишь открытые части тела - лицо, руки, шея, волосистая часть головы, а в фотарии - практически все тело.

УФ-облученность в помещении при использовании эритемных ламп небольшая, отсюда длительность облучения составляет 6-8 ч, тогда как в фотарии, где облученность достигает значительной величины, действие радиации не превышает 5-6 мин.

При нахождении оптимальной дозы профилактического облучения следует руководствоваться тем, что начальная дозы профилактического облучения должна быть ниже биодозы, т.е. субэритемной. В противном случае возможен ожог кожи. Профилактическая доза УФ-составляющей должна выражаться в абсолютных величинах.

Постановка вопроса о выражении профилактической дозы в абсолютных физических (приведенных) величинах отнюдь не

означает отказа от необходимости определения индивидуальной чувствительности кожи к УФ-радиации. Определение биодозы перед началом облучения необходимо, но лишь для того, чтобы выяснить, не меньше ли она рекомендуемой профилактической дозы. Практически при определении биодозы (по Горбачеву) можно использовать биодизиметр, имеющий не 8 или 10 отверстий, как это имеет место в лечебной практике, а значительно меньше или даже одно, которое может быть облучено дозой, равной профилактической. Если облучаемый участок кожи покраснел, т.е. биодоза меньше профилактической, то начальная доза облучения должна быть уменьшена, а облучение проводится возрастающими дозами при начальной дозе равной биодозе.

Сравнительный анализ таких физиологических показателей, как эритемная биодоза, фагоцитарная активность лейкоцитов крови, ломкость капилляров, активность щелочной фосфотазы свидетельствовал о том, что дополнительное искусственное облучение УФ-радиацией эритемными лампами, проводимое зимой, вызывая весьма положительное действие, не способствует в полной мере поддержанию изучаемых физиологических реакций на том уровне, который наблюдается осенью после длительного воздействия природной УФ-радиации.

Анализ уровней физиологических показателей облучающихся дозой УФ-радиации при разном методе облучения, обусловленном способом использования искусственных излучателей, позволил сделать заключение, что биологический эффект воздействия УФ-радиации не зависит от примененных методов облучения.

Динамика чувствительности кожи к УФ-радиации известным образом отражает процессы, происходящие в организме в результате длительного отсутствия природной УФ-радиации.

При профилактическом УФ-облучении необходимо учитывать климатические особенности местности, где проживают облучаемые (для определения сроков облучения), среднее значение их эритемной биодозы (для выбора начальной дозы облучения) и то, что профилактическая доза облучения, нормируемая в абсолютных величинах, не должна быть ниже 2000 мкВт-мин/см 2 (60-62 мЭр-ч/м 2).

Профилактические мероприятия по предупреждению острого конъюнктивита при воздействии УФИ сводятся к применению светозащитных очков или щитков при электросварочных и других работах с источниками УФИ. Для защиты кожи от УФИ используются

защитная одежда, противосолнечные экраны (навесы), специальные кремы.

Основная роль в профилактике неблагоприятного воздействия УФИ на организм принадлежит гигиеническим нормативам. В настоящее время действуют «Санитарные нормы ультрафиолетового излучения в производственных помещениях» СН? 4557-88. Нормируемой величиной является облученность, Вт/м1. Указанные нормативы регламентируют допустимые величины УФИ для кожи с учетом длительности облучения в течение рабочей смены и площади облучаемой поверхности кожи.


Ультрафиолет поражает именно живые клетки, не оказывая воздействие на химический состав воды и воздуха, что исключительно выгодно отличает его от всех химических способов дезинфекции и обеззараживания воды.

Достижения последних лет в светотехнике и электротехнике позволяют обеспечить высокую степень надежности обеззараживания воды ультрафиолетовыми лучами.

Что это за излучение

Ультрафиолетовое излучение, ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 400-10 нм. Вся область УФ-излучения условно делится на ближнюю (400-200 нм) и далёкую, или вакуумную (200-10 нм); последнее название обусловлено тем, что УФ-излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

Естественные источники УФ-излучения - Солнце, звёзды, туманности и др. космические объекты. Однако лишь длинноволновая часть УФ-излучения - 290 нм достигает земной поверхности. Более коротковолновое УФ-излучение поглощается озоном, кислородом и др. компонентами атмосферы на высоте 30-200 км от поверхности Земли, что играет большую роль в атмосферных процессах.

Искусственные источники УФ-излучения. Для различных применений УФ-излучения промышленность выпускает ртутные, водородные, ксеноновые и др. газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для УФ-излучения материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и т.д.) является мощным источником УФ-излучения.

Несмотря на то, что ультрафиолет нам дан самой природой, он небезопасен

Ультрафиолет бывает трех типов: «А»; «B»; «С». Озоновый слой предотвращает попадание на поверхность земли Ультрафиолета «С». Свет в спектре ультрафиолета «А» имеет длину волн от 320 до 400 нм, свет в спектре ультрафиолет «В» имеет длину волн от 290 до 320 нм. УФ-излучение обладает энергией, достаточной для воздействия на химические связи, в том числе и в живых клетках.

Энергия ультрафиолетовой компоненты солнечного света вызывает повреждения микроорганизмов на клеточном и генетическом уровнях, тот же самый ущерб наносится людям, но он ограничен кожей и глазами. Солнечные ожоги вызываются воздействием ультрафиолета «В». Ультрафиолет «А» проникает гораздо глубже, чем ультрафиолет «В» и способствует преждевременному старению кожи. Кроме того, воздействие ультрафиолета «А» и «В» приводит к раку кожи.

Из истории ультрафиолетовых лучей

Бактерицидное действие ультрафиолетовых лучей было обнаружено около 100 лет назад. Первые лабораторные испытания УФИ в 1920х годах были настолько многообещающими, что полное уничтожение воздушно-капельных инфекций казалось возможным в самое ближайшее время. УФИ стало активно применяться с 1930х годов и в 1936 г. было впервые использовано для стерилизации воздуха в хирургической операционной комнате. В 1937 г. первое применение УФИ в вентиляционной системе одной из американских школ впечатляюще снизило уровень заболеваемости учащихся корью и другими инфекциями. Тогда казалось, что найдено замечательное средство для борьбы с воздушно-капельными инфекциями. Однако, дальнейшее изучение УФИ и опасных побочных действий серьезно сузило возможности его использования в присутствии людей.

Сила проникновения ультрафиолетовых лучей невелика и распространяются они только по прямой, т.е. в любом рабочем помещении образуется множество затенённых зон, которые не подвержены бактерицидной обработке. По мере удаления от источника ультрафиолетого излучения биоцидность его действия резко снижается. Действие лучей ограничивается поверхностью облучаемого предмета, и его чистота имеет большое значение.

Бактерицидное действие ультрафиолета

Обеззараживающий эффект УФ излучения, в основном, обусловлен фотохимическими реакциями, в результате которых происходят необратимые повреждения ДНК. Помимо ДНК ультрафиолет действует и на другие структуры клеток, в частности, на РНК и клеточные мембраны. Ультрафиолет как высокоточное оружие поражает именно живые клетки, не оказывая воздействие на химический состав среды, что имеет место для химических дезинфектантов. Последнее свойство исключительно выгодно отличает его от всех химических способов дезинфекции.

Применение ультрафиолета

Ультрафиолет используется в настоящее время в различных областях: медицинских учреждениях (больницы, поликлиники, госпитали); пищевой промышленности (продукты, напитки); фармацевтической промышленности; ветеринарии; для обеззараживания питьевой, оборотной и сточной воды.

Современные достижения свето- и электротехники обеспечили условия для создания крупных комплексов УФ-обеззараживания. Широкое внедрение УФ-технологии в муниципальные и промышленные системы водоснабжения позволяют обеспечить эффективное обеззараживание (дезинфекцию) как питьевой воды перед подачей в сети горводопровода, так и сточных вод перед их выпуском в водоемы. Это позволяет исключить применение токсичного хлора, существенно повысить надежность и безопасность систем водоснабжения и канализации в целом.

Обеззараживание воды ультрафиолетом

Одной из актуальных задач при обеззараживании питьевой воды, а также промышленных и бытовых стоков после их осветления (биоочистки) является применение технологии, не использующей химические реагенты, т. е. технологии, не приводящей к образованию в процессе обеззараживания токсичных соединений (как в случае применения соединений хлора и озонирования) при одновременном полном уничтожении патогенной микрофлоры.

Различают три участка спектра ультрафиолетового излучения, имеющего различное биологическое воздействие. Слабое биологическое воздействие имеет ультрафиолетовое излучение с длиной волны 390-315 нм. Противорахитичным действием обладают УФ-лучи в диапазоне 315-280 нм, а ультрафиолетовое излучение с длиной волны 280-200 нм обладает способностью убивать микроорганизмы.

Ультрафиолетовые лучи длиной волн 220-280 им действуют на бактерии губительно, причем максимум бактерицидного действия соответствует длине волн 264 нм. Данное обстоятельство используется в бактерицидных установках, предназначенных для обеззараживания в основном подземных вод. Источником ультрафиолетовых лучей является ртутно-аргонная или ртутно-кварцевая лампа, устанавливаемая в кварцевом чехле в центре металлического корпуса. Чехол защищает лампу от контакта с водой, но свободно пропускает ультрафиолетовые лучи. Обеззараживание происходит во время протекания воды в пространстве между корпусом и чехлом при непосредственном воздействии ультрафиолетовых лучей на микробы.

Оценка бактерицидного действия производится в единицах, называемых бактами (б). Для обеспечения бактерицидного эффекта ультрафиолетового облучения достаточно примерно 50 мкб мин/см2. УФ-облучение наиболее перспективный метод обеззараживания воды с высокой эффективностью по отношению к патогенным микроорганизмам, не приводящий к образованию вредных побочных продуктов, чем иногда грешит озонирование.

УФ-облучение идеально для обеззараживания артезианских вод

Точка зрения, что подземные воды считаются свободными от микробных загрязнений в результате фильтрации воды через почву, не совсем верна. Исследования показали, что подземные воды свободны от крупных микроорганизмов, таких как протоза или гельминты, но более мелкие микроорганизмы, например, вирусы, могут проникать сквозь почву в подземные источники воды. Даже если бактерии не обнаружены в воде, оборудование для обеззараживания должно служить барьером от сезонных или аварийных заражений.

УФ-облучение должно применяться для обеспечения обеззараживания воды до нормативного качества по микробиологическим показателям, при этом необходимые дозы выбираются на основании требуемого снижения концентрации патогенных и индикаторных микроорганизмов.

УФ-облучение не образует побочных продуктов реакции, его доза может быть увеличена до значений, обеспечивающих эпидемиологическую безопасность, как по бактериям, так и по вирусам. Известно, что УФ-излучение действует на вирусы намного эффективнее, чем хлор, поэтому применение ультрафиолета при подготовке питьевой воды позволяет, в частности, во многом решить проблему удаления вирусов гепатита А, которая не всегда решается при традиционной технологии хлорирования.

Использование УФ-облучения в качестве обеззараживания рекомендуется для воды, уже прошедшей очистку по цветности, мутности и содержанию железа. Эффект обеззараживания воды контролируют, определяя общее число бактерий в 1 см3 воды и количество индикаторных бактерий группы кишечной палочки в 1 л воды после ее обеззараживания.

На сегодняшний день широкое распространение получили УФ-лампы проточного типа. Основным элементом данной установки является блок облучателей состоящий из ламп УФ-спектра в количестве, определяемом необходимой производительностью по обработанной воде. Внутри лампа имеет полость для протока. Контакт с УФ-лучами происходит через специальные окошечки внутри лампы. Корпус установки выполнен из металла, защищающего от проникновения лучей в окружающую среду.

Вода, подающаяся на установку должна соответствовать следующим требованиям:


  • общее содержание железа – не более 0,3 мг/л, марганца – 0,1 мг/л;

  • содержание сероводорода – не более 0,05 мг/л;

  • мутность – не более 2 мг/л по каолину;

  • цветность – не более 35 град.

Метод ультрафиолетового обеззараживания имеет следующие преимущества по отношению к окислительным обеззараживающим методам (хлорирование, озонирование):


  • УФ облучение летально для большинства водных бактерий, вирусов, спор и протозоа. Оно уничтожает возбудителей таких инфекционных болезней, как тиф, холера, дизентерия, вирусный гепатит, полиомиелит и др. Применение ультрафиолета позволяет добиться более эффективного обеззараживания, чем хлорирование, особенно в отношении вирусов;

  • обеззараживание ультрафиолетом происходит за счет фотохимических реакций внутри микроорганизмов, поэтому на его эффективность изменение характеристик воды оказывает намного меньшее влияние, чем при обеззараживании химическими реагентами. В частности, на воздействие ультрафиолетового излучения на микроорганизмы не влияют рН и температура воды;

  • в обработанной ультрафиолетовым излучением воде не обнаруживаются токсичные и мутагенные соединения, оказывающие негативное влияние на биоценоз водоемов;

  • в отличие от окислительных технологий в случае передозировки отсутствуют отрицательные эффекты. Это позволяет значительно упростить контроль за процессом обеззараживания и не проводить анализы на определение содержания в воде остаточной концентрации дезинфектанта;

  • время обеззараживания при УФ облучении составляет 1-10 секунд в проточном режиме, поэтому отсутствует необходимость в создании контактных емкостей;

  • достижения последних лет в светотехнике и электротехнике позволяют обеспечить высокую степень надежности УФ комплексов. Современные УФ лампы и пускорегулирующая аппаратура к ним выпускаются серийно, имеют высокий эксплуатационный ресурс;

  • для обеззараживания ультрафиолетовым излучением характерны более низкие, чем при хлорировании и, тем более, озонировании эксплуатационные расходы. Это связано со сравнительно небольшими затратами электроэнергии (в 3-5 раз меньшими, чем при озонировании); отсутствием потребности в дорогостоящих реагентах: жидком хлоре, гипохлорите натрия или кальция, а также отсутствием необходимости в реагентах для дехлорирования;

  • отсутствует необходимость создания складов токсичных хлорсодержащих реагентов, требующих соблюдения специальных мер технической и экологической безопасности, что повышает надежность систем водоснабжения и канализации в целом;

  • ультрафиолетовое оборудование компактно, требует минимальных площадей, его внедрение возможно в действующие технологические процессы очистных сооружений без их остановки, с минимальными объемами строительно-монтажных работ.