Кем было доказано что свет электромагнитная волна. Что такое свет с точки зрения физики? Закон отражения света

На протяжении всей жизни нас окружают удивительные вещи, предметы, места. Мы видим их, но вовсе не потому, что они существуют, а благодаря свету.


Если бы не свет, то у живых существ не было бы зрения как инструмента, и нам пришлось бы довольствоваться другими органами чувств. Как кроты, проживающие под землей, довольствуются слухом. Что же представляет собой свет? Что это за понятие с точки зрения физики и какое значение он имеет для жизни на Земле?

Что такое свет?

Тайну света люди пытались раскрыть в течение многих столетий, однако приблизиться к разгадке удалось только в XVIII веке. Сначала датский физик Ганс Эрстеда выяснил, что электроток способен оказывать влияние на стрелку в магнитном компасе, а затем британский математик Джеймс Максвелл сумел доказать, что магнитные и электрические поля существуют в виде волн, распространяющихся со скоростью света.

Из этого ученые дали определение света как формы электромагнитного излучения, которое воспринимается глазом человека.

Какова природа света?

Установить природу света помогают оптические явления, изучением которых занимается оптика. Эта наука стала одним из первых разделов физики, установившим двойственную природу света. Согласно корпускулярной теории, свет – это поток частиц, называемых фотонами и квантами.


По волновой теории, свет являет собой совокупность электромагнитных волн, при этом возникающие в природе оптические эффекты становятся результатом сложения данных волн. Что интересно, и теория о потоках частиц, и теория о волнах имеют право на жизнь.

Какие характеристики имеет свет?

Как и любое природное явление, свет обладает множеством уникальных характеристик, среди которых одной из важнейших является цвет. Электромагнитное излучение, воспринимаемое нашим глазом, различается по диапазону длин и частоте волны, что, в свою очередь, влияет на световой спектральный состав. К примеру, фиолетовый цвет видится при длине волн 380–440 нм и частоте 790–680 ТГц, а желтый – при показателях 565–590 нм и 530–510 ТГц.

Помимо цвета, свет обладает способностью перемещаться в пространстве, преломляться и отражаться. Преломление света представляет собой изменение направления электромагнитных волн. В нашей обыденной жизни такое явление встречается повсеместно. Например, если посмотреть на стакан чая, в котором находится ложка, можно заметить, что на границе воздуха и жидкости она будто «преломлена».


Аналогично привычным явлением для нас является отражение света, позволяющее увидеть себя в водной глади, зеркале или на блестящих предметах. К другим характеристикам можно отнести способность света к поляризации и изменению интенсивности.

Какова скорость света?

Скорость света рассчитывается в двух субстанциях – в вакууме и прозрачной среде. В первом случае ее показатели неизменны. В космическом пространстве является фундаментальной постоянной единицей и составляет 299 792 458 метров в секунду.

Считается, что помимо света, с аналогичной скоростью в природе распространяются электромагнитные излучения (например, рентгеновские лучи или радиоволны) и, возможно, гравитационные волны. Скорость света, находящегося в прозрачной среде, может меняться в зависимости от фазы колебательных движений.

В связи с этим различают фазовую скорость, которая обычно (но необязательно) меньше скорости в вакууме, и групповую – всегда меньше скорости в вакууме.

Как свет воспринимается глазом?

Как говорилось выше, способность человека видеть окружающие предметы существует только благодаря свету. При этом мы не смогли бы воспринимать электромагнитные излучения, если бы в наших глазах не было специальных рецепторов, которые реагируют на данное излучение. Глазная сетчатка человека состоит из двух типов клеток – палочек и колбочек. Первые высоко чувствительны к освещению, поэтому могут работать только при низкой освещенности, то есть отвечают за ночное зрение. При этом они демонстрируют мир исключительно в черно-белых цветах.


Колбочки обладают пониженной чувствительностью к свету и обеспечивают дневное зрение, позволяющее видеть цветное изображение. Спектральный состав света хорошо воспринимается благодаря тому, что в наших глазах существуют 3 вида колбочек, которые различаются между собой распределением чувствительности.

Общие определения

С точки зрения оптики, свет - это электромагнитное излучение, которое воспринимается глазом человека. За единицу изменения принято брать участок в вакууме 750 ТГц. Это коротковолновая граница спектра. Ее длина равна 400 нм. Что касается границы широких волн, то за единицу измерения берется участок в 760 нм, то есть 390 ТГц.

В физике свет рассматривается как совокупность направленных частиц, называемых фотонами. Скорость распределения волн в вакууме постоянна. Фотоны обладают определенным импульсом, энергией, нулевой массой. В более широком смысле слова, свет - это видимое Также волны могут быть и инфракрасными.

С точки зрения онтологии, свет - это начало бытия. Об этом твердят и философы, и религиоведы. В географии этим термином принято называть отдельные области планеты. Сам по себе свет - это понятие социальное. Тем не менее в науке оно имеет конкретные свойства, черты и законы.

Природа и источники света

Электромагнитное излучение создается в процессе взаимодействия заряженных частиц. Оптимальным условием для этого будет тепло, которое имеет непрерывный спектр. Максимум излучения зависит от температуры источника. Отличным примером процесса является Солнце. Его излучение близко к аналогичным показателям абсолютно черного тела. Природа света на Солнце обуславливается температурой нагревания до 6000 К. При этом около 40% излучения находится в пределах видимости. Максимум спектра по мощности располагается вблизи 550 нм.

Источниками света также могут быть:

  1. Электронные оболочки молекул и атомов во время перехода с одного уровня на другой. Такие процессы позволяют достичь линейный спектр. Примером могут служить светодиоды и газоразрядные лампы.
  2. которое образуется при движении заряженных частиц с фазовой скоростью света.
  3. Процессы торможения фотонов. В результате образуется синхро- или циклотронное излучение.

Природа света может быть связана и с люминесценцией. Это касается и искусственных источников, и органических. Пример: хемилюминесценция, сцинтилляция, фосфоресценция и др.

В свою очередь, источники света разделяются на группы относительно температурных показателей: А, В, С, D65. Самый сложный спектр наблюдается у абсолютно черного тела.

Характеристики света

Человеческий глаз субъективно воспринимает электромагнитное излучение как цвет. Так, свет может отдавать белыми, желтыми, красными, зелеными переливами. Это лишь зрительное ощущение, которое связано с частотой излучения, будь оно по составу спектральным или монохроматическим. Доказано, что фотоны способны распространяться даже в вакууме. При отсутствии вещества скорость потока равняется 300.000 км/с. Это открытие было сделано еще в начале 1970-х годов.

На границе сред поток света испытывает либо отражение, либо преломление. Во время распространения он рассеивается через вещество. Можно сказать, что оптические показатели среды характеризуются значением преломления, равным отношению скоростей в вакууме и поглощения. В изотропных веществам распространение потока не зависит от направления. Здесь представлен скалярной величиной, определяющейся координатами и временем. В анизотропной среде фотоны проявляется в виде тензора.

Кроме того, свет бывает поляризованным и нет. В первом случае главной величиной определения будет вектор волны. Если же поток не поляризован, то он состоит из набора частиц, направленных в случайные стороны.

Важнейшей характеристикой света является и его интенсивность. Она определяется такими фотометрическими величинами, как мощность и энергия.

Основные свойства света

Фотоны могут не только взаимодействовать между собой, но и иметь направление. В результате соприкосновения с посторонней средой поток испытывает отражение и преломление. Это два основополагающих свойства света. С отражением все более-менее ясно: оно зависит от плотности материи и угла падения лучей. Однако с преломлением дело обстоит куда сложнее.

Для начала можно рассмотреть простой пример: если опустить соломинку в воду, то со стороны она покажется изогнутой и укороченной. Это и есть преломление света, которое наступает на границе жидкой среды и воздуха. Этот процесс определяется направлением распределения лучей во время прохождения через границу материи.

Когда поток света касается границы между средами, длина его волны существенно изменяется. Тем не менее частота распространения остается прежней. Если луч не ортогональный по отношению к границе, то изменению подвергнется и длина волны, и ее направление.

Искусственное часто используется в исследовательских целях (микроскопы, линзы, лупы). Также к таковым источникам изменения характеристик волны относятся очки.

Классификация света

В настоящее время различают искусственный и естественный свет. Каждый из этих видов определяется характерным источником излучения.

Естественный свет представляет собой набор заряженных частиц с хаотичным и быстро изменяющимся направлением. Такое электромагнитное поле обуславливается переменным колебанием напряженностей. К естественным источникам относятся раскаленные тела, солнце, поляризованные газы.

Искусственный свет бывает следующих видов:

  1. Местный. Его используют на рабочем месте, на участке кухни, стены и т.д. Такое освещение играет важную роль в дизайне интерьера.
  2. Общий. Это равномерное освещение всей площади. Источниками являются люстры, торшеры.
  3. Комбинированный. Смесь первого и второго видов для достижения идеальной освещенности помещения.
  4. Аварийный. Он крайне полезен при отключениях света. Питание производится чаще всего от аккумуляторов.

Солнечный свет

На сегодняшний день это главный источник энергии на Земле. Не будет преувеличением сказать, что солнечный свет воздействует на все важные материи. Это количественная постоянная, которая определяет энергию.

В верхних слоях земной атмосферы содержится около 50% излучения инфракрасного и 10% ультрафиолетового. Поэтому количественная составляющая видимого света равна всего 40%.

Солнечная энергия используется в синтетических и природных процессах. Это и фотосинтез, и преобразование химических форм, и отопление, и многое другое. Благодаря солнцу человечество может пользоваться электроэнергией. В свою очередь, потоки света могут быть прямыми и рассеянными, если они проходят через облака.

Три главных закона

С древних времен ученые занимались изучением геометрической оптики. На сегодняшний день основополагающими являются следующие законы света:


Восприятие света

Окружающий мир человеку виден благодаря способности его глаз взаимодействовать с электромагнитным излучением. Свет воспринимается рецепторами сетчатки, которые могут уловить и отреагировать на спектральный диапазон заряженных частиц.

У человека есть 2 типа чувствительных клеток глаза: колбочки и палочки. Первые обуславливают механизм зрения в дневное время при высоком уровне освещения. Палочки же являются более чувствительными к излучению. Они позволяют человеку видеть в ночное время.

Зрительные оттенки света обуславливаются длиной волны и ее направленностью.

Международная команда физиков из Университета Гуанчжоу в Китае и Института Вейцмана в Израиле, работающая во главе с Ульфом Леонхардтом (Ulf Leonhardt) впервые продемонстрировала толкающее давление света на жидкость. Результаты исследования и выводы из своей работы учёные изложили в статье , опубликованной в издании New Journal of Physics.

Дискуссия о природе давления или, как его ещё называют физики, импульса света, восходит к 1908 году. Тогда знаменитый немецкий учёный Герман Минковский выдвинул гипотезу о том, что свет воздействует на жидкости, такие как масло или вода, притягивая их на себя. Однако в 1909 году физик Макс Абрахам (Max Abraham) опроверг эту гипотезу и теоретически доказал, что свет оказывает толкающее давление на жидкости.

"Учёные спорили на протяжении столетия о природе импульса света и его воздействия на среду. Мы обнаружили, что импульс света не является основной физической величиной, но она проявляется во взаимодействии между светом и материей и зависит от способности света деформировать материю.

Если среда движется под воздействием пучка излучения, то прав Минковский, и свет оказывает тянущее давление. Если же среда неподвижна, то прав Абрахам, и свет оказывает толкающее давление на жидкости", — рассказывает Леонхардт.

Два различных типа давления могут быть идентифицированы экспериментально, путём освещения поверхности жидкости световым лучом. Необходимо только проследить за тем, как ведёт себя жидкость — поднимается или опускается. В первом случае окажется, что свет тянет жидкую среду на себя, а во втором — наоборот. Добавим, что обе теории согласуются в пустом пространстве (когда показатель преломления среды эквивалентен единице), но расходятся в том случае, если показатель преломления больше 1.

В своём эксперименте Леонхардт и его коллеги продемонстрировали, что поверхность жидкости можно заставить изогнуться внутрь, что будет соответствовать толкающему давлению света, и сделать это при помощи относительно широкого пучка излучения в относительно крупном контейнере. Эти два фактора заставляют свет формировать структуру потока в жидкости.

Исследователи показали, что толкающее давление света проявляется как в воде, так и в масле, которые имеют различные показатели преломления. Таким образом им удалось подтвердить теорию Абрахама.

Авторы нового исследования отмечают, что в предыдущих экспериментах их коллеги доказывали лишь правоту Минковского, демонстрируя тянущее давление света. Однако, по их словам, прежде учёные использовали более узкие световые лучи и небольшие контейнеры с жидкостью.

Леонхардт и его команда решили повторить свой эксперимент и, как только они использовали узкий луч и малый контейнер, проявилось тянущее давление света. Это означает, что характер давления зависит не только от света, но и от самой жидкости, поясняют исследователи.

Чтобы понять природу импульса света, Леонхардт предлагает провести аналогию с игрой в бильярд. По его словам, импульс света несколько отличается от него по энергии, и это различие имеет важные аспекты.

"Представьте себе игру в бильярд. Игрок берёт кий и ударяет по белому шару, который, в свою очередь, должен толкнуть шар цветной, а он может толкнуть ещё несколько шаров. Во всей этой цепочке толкающих движений передаётся импульс, изначально сообщённый игроком кию.

Свет также может толкать материю, хотя эти толчки будут микроскопическими, почти незаметными. В некоторых случаях, впрочем, толчки света могут быть очень значительными для среды. К примеру, вспомним хвосты комет.

Великий астроном Иоганн Кеплер предположил сотни лет назад, что хвост кометы — это материя, вытолкнутая с поверхности её ядра светом, поскольку он смотрит всегда в противоположную сторону от Солнца. Сегодня мы знаем, что Кеплер был отчасти прав, так как материя сталкивается солнечным ветром с ядра кометы и формируется хвост.

Так вот, импульсом мы называем способность света приводить материю в движение, и это понятие действительно тесно связано с энергией света, хотя и отличается от него", — поясняет Леонхардт.

Результаты данного исследования имеют как фундаментальное, так и практическое значение для науки. С точки зрения фундаментальных теорий, физики теперь лучше будут понимать природу света. Леонхардт и его коллеги ответили на вопрос о том, увеличивается или уменьшается импульс света с увеличением показателя преломления среды: результат зависит от способности свет привести в механическое движение жидкость, и если пучок света на это способен, то импульс уменьшается, а если нет — то увеличивается.

Что же касается практического значения нового исследования, то оно может пригодиться в развитии инновационной технологии инерциально удерживаемого термоядерного синтеза, которая подразумевает использование силы светового импульса для инициации ядерного синтеза.

Последняя работа также повлияет на оптические технологии в целом, в том числе и на развитие и .

Волне, как известно, свойственно распространяться. Кинетическая энергия проходит через вещество, не заменяя собой молекулы самого вещества. Она проводит вещество через фазы сжатия (сближая молекулы друг с другом) и разрежения (когда молекулы друг от друга отдаляются). Именно это происходит в динамике, вибрирующем от музыки.

Когда волны вступают в контакт друг с другом, на их пути возникает препятствие. Если волны находятся в одной фазе (сжатия или разрежения) одновременно, то происходит усиление. Если же волны находятся в разных фазах (одна старается сжать вещество, другая разредить), то происходит подавление волны. Именно так работают наушники, через которые не проникает внешний шум (шумоподавляющие наушники): они производят звуковую волну, подобную той, которая характерна для нежелательного шума, но в противоположной фазе. Этим обеспечивается эффект подавления волны молекул воздуха постороннего шума. Когда ее энергия достигает вашего уха, внешний крик будет восприниматься вами подобно шепоту, а отголосок рокота могучего мотора самолета донесется до вас слабым жужжанием.

Другим важным свойством волн является преломление (дифракция). Когда волны сталкиваются на своем пути с препятствием, они огибают его, а затем вступают друг с другом во взаимодействие. В нижеописанном эксперименте мы поставим на пути света препятствия, обеспечив проходы, которые дадут световой волне возможность преломиться. Разные точки преломления волн демонстрируют примеры конструктивных и деструктивных помех. Вы сможете наблюдать удивительное явление поглощения светом самого себя.

Необходимые материалы

Три или более грифелей для механического карандаша (подойдут диаметром 0,5 или 0,7 миллиметра), лазерная указка (красный свет неплох, но эффект от зеленого будет более наглядным), темная комната.

Ход эксперимента

Затемните комнату. Темнота должна быть близка к абсолютной. Станьте на расстоянии примерно 1 метр 20 сантиметров от стены. Разместите три грифеля между большим и указательным пальцем левой руки. Для тех, чья основная рука левая, рекомендуется размещать грифели в правой руке. Разместите их так, чтобы расстояния между ними были крайне невелики. Таким образом между грифелями образуются два небольших прохода, которые и будут каналами преломления.

Включите лазерную указку и направьте ее свет в сформированные грифелями каналы и посмотрите на отраженный от стены свет. Что вы видите? В ходе эксперимента меняйте положения грифелей и направление лазера, а также ширину каналов преломления. Если вы делаете все правильно, световой рисунок на стене будет меняться. Попробуйте использовать больше грифелей, чтобы создать больше дифракционных каналов. Как дополнительные каналы меняют световую проекцию на стене?

Наблюдения и результаты

Свет лазера проявит себя в форме двух параллельных, но сцепленных между собой, волн. Световые линии будут параллельны друг другу, если фаза волн совпадает. Свет от карманного фонарика этого эффекта не даст: лучи никогда не будут параллельны друг другу. Волны лазерного света преломляются, проходя через дифракционные каналы, образованные карандашными грифелями, порождая проекцию на стене. При перекрытии волнами друг друга они вступают во взаимодействие. В некоторых случаях это перекрытие будет конструктивным, в других деструктивным. При конструктивном взаимодействии свет на стене будет ярким. В других случаях волны будут угнетать друг друга (деструктивное взаимодействие). В этих случаях на световой проекции появятся темные промежутки.

Когда свет станет вести себя только как частица, вы сможете видеть на стене только две точки напротив каналов преломления. К современному представлению о природе света человечество шло долго. Великий английский ученый Исаак Ньютон определял свет в качестве потока частиц. В 19 столетии ученые пришли к выводу, что свет является волной. Но поскольку свет вел себя подобно частицам, высказал предположение о том, что свет на самом деле является частицей, именуемой фотоном. Физик Макс Планк запаниковал, восклицая: «теория света будет отброшена назад не на десятилетия, а на века» в случае, если научное сообщество согласится с теорией Эйнштейна. В конечном итоге научными кругами было выработано компромиссное определение: свет одновременно является и частицей (фотоном) и волной.

Размышления о волновой природе света корреспондируются с вероятностью того, что фотон будет в определенном месте в определенное время. Это позволяет более ясно понять, как можно заставить фотоны занять на стене определенные позиции, когда их волны создают друг другу помехи. Менее интуитивно понятен тот факт, что фотоны могут одновременно проходить через два канала, продолжая проявлять поведение, характерное для волны, наталкивающейся на помехи. И как отдельные фотоны способны, пройдя через два канала, прибыть в одну и ту же точку!

Этот несложный физический эксперимент, проведенный зимним вечером в кругу семьи, позволит получить массу приятных эмоций . Наука бывает не только полезной, но и крайне интересной. А продолжает неуклонно двигаться путем научно-технического прогресса, удовлетворяющего не только материальные потребности, но и потребность разумного существа в новых знаниях.

По мотивам Education.com