Основные требования предъявляемые к гипотезам. Разработка гипотезы исследования

Проблема различения науки и лженауки является весьма сложной. В настоящее время существует множество лженаучных концепций, некоторые из которых пытаются представиться как научные. Особенно сложно отличить от научных теорий те, которые создаются самими учеными и являются либо заблуждением, либо намеренной фальсификацией. Требуется некоторое правило, которое позволило бы отличить научную концепцию от лженаучной уже в момент появления. Однако все попытки найти точный формальный критерий до сих пор остаются безуспешными. Правила, которое позволяло бы достоверно определить научность гипотез, не существует.

Философы – постпозитивисты К.Поппер и Т.Кун показали, что научные представления изменяются со временем. Те теории, которые когда-то признавались научными, позднее могли быть отвергнуты как ненаучные. И наоборот, слишком смелая гипотеза, которая не признавалась сначала научным сообществом, могла быть классифицированная как научная, после того как была подтверждена экспериментально. Совокупность теорий, которые считаются научными, был в разное время разным. Поэтому нам представляется, что построить точный критерий для такого изменяющегося объекта вряд ли возможно в принципе.

Витгенштейн предложил использовать для характеристики понятий с нечеткими границами семейные сходства. В "Философских исследованиях" Витгенштейн пишет о языковых играх и замечает, что нет такого свойства, которое было бы присущим для всех игр. "Мы видим сложную сеть подобий, накладывающихся друг на друга и переплетающихся друг с другом, сходств в большом и малом" . Каким образом должен строиться критерий для понятия с нечеткими границами?

Рассмотрим сначала то, как формулируется критерий в том случае, если считать понятие точно определенным. (Примером таких понятий могут служить математические понятия.) Стандартный критерий формулируется следующим образом:

"Объект x обладает свойством A тогда и только тогда, когда x находится в отношениях B1 с объектами x1, x2, ..., xn; в отношениях B2 с объектами y1, y2, ..., ym и т.д.".

Формально этот критерий может быть записан:

A(x) Û B1(x; x1, x2,.. xn) Ù B1(x; y1, y2,.. ym) Ù B1(x; z1, z2,.. zl).

где x – имя определяемого объекта;

xi, yi, ..., zi – имена некоторых объектов;

A – одноместный предикат;

B1, B2, …, Bk – некоторые предикаты, которые показывают отношения объекта x с объектами.

Если понятие не имеет четких границ, то мы не можем требовать, чтобы x обладал перечисленными отношениями с необходимостью. Тогда в формулировке критерия для нечетких понятий конъюнкция отношений заменится на дизъюнкцию:


A(x) Û B1(x; x1, x2,.. xn) Ú B2(x; y1, y2,.. ym) Ú…Ú Bk (x; z1, z2,.. zl). (1) Чтобы x обладал свойством A необходимо и достаточно, чтобы хотя бы одно условие выполнялось, то есть, чтобы хотя бы один предикат B1, B2, …, Bk был истинным.

Однако, это условие недостаточно жесткое для наших целей. Дело в том, что некоторые свойства могут оказаться присущими какой-нибудь из лженаучных теории. Мы предполагаем, что научная гипотеза характеризуется большим числом перечисленных свойств, чем ненаучная поэтому для того, чтобы построить рабочий критерий требуется ограничить снизу количество характеристик которые должны быть истинными

Обозначим через m минимальное количество свойств или отношений, которыми должен обладать объект x, для того, чтобы мы могли сказать: "x имеет свойство A". Учитывая, что P(x) = 1, если P(x) – истинно и P(x) = 0, если P(x) – ложно, запишем формально ограничение на количество отношений, в которых должен находиться объект x с объектами xi, yi, ..., zi.

B1 (x; x1, x 2,.. xn) + B2 (x; y1, y2,.. ym) +…+ Bk (x; z1, z2,.. zl) ³ m. (2) где 1 £ m £ k.

Таким образом, условие (2) позволяет отбросить те объекты, которые имеют недостаточное количество требуемых характеристик. Теперь "x имеет свойство A" если и только если x обладает не менее чем m свойствами и отношениями.

Реально часто оказывается, что свойства не равноценны между собой. Наличие некоторых свойств может оказаться более существенным, чем наличие каких-нибудь других. Чтобы это пояснить рассмотрим пример.

Среди требований, которые предъявляются к научным теориям, фигурируют, в частности, требования логической непротиворечивости и эмпирической подтверждаемости. Если проверяемая теория является естественно-научной, то требование эмпирической подтверждаемости является более важным. Требование логической непротиворечивости в естественных науках не столь важно. Новая эмпирическая теория, как правило, в какой-то момент времени противоречит некоторым из сложившихся убеждений. Однако, если речь идет о математической теории, то требование логической непротиворечивости является необходимым.

Таким образом, нам требуется приписать веса нашим предикатам, которые мы обозначим bi. Эти веса позволяют отразить степень значимости того или иного признака для объектов данного вида.

b1 * B1(x; x1, x2,.. xn) + b2* B2(x; y1, y2,.. ym) +…+ bk* Bk (x; z1, z2,.. zl) ³ m. (2")

где bi такие, что 0 £ bi < 1; и b1 + b2 +…+ bk = 1.

Таким образом, окончательный вид критерия для нечетких понятий, построенный по правилу семейных сходств, формально записывается формулами (1) и (2").

Чтобы продемонстрировать то, как можно использовать критерий, построенный с использованием правила семейных сходств для нечетких понятий, рассмотрим его приложение к оценке выдвигаемой гипотезы на научность. Оценка новых теорий на научность особенно затруднительна в момент их появления. Поэтому чтобы продемонстрировать, каким образом может быть использован этот критерий, рассмотрим как строится этот критерий для определения научности гипотезы.

Переменная x обозначает проверяемую на научность гипотезу, одноместный предикат A(x) имеет значение "истина" если гипотеза x научна. Опираясь на исследование Л.Б.Баженова, перечислим признаки, которыми характеризуется научная гипотеза. "От простой догадки гипотеза отличается рядом весьма важных ограничений" . Этими ограничениями являются следующие требования:

· непротиворечивости известным фактам;

· непротиворечивости новой гипотезы установившимся теориям;

· эмпирической проверяемости;

· приложимость к возможно более широкому кругу явлений;

· предсказательная сила гипотезы;

· простота.

Рассмотрим эти требования подробнее.

Требование непротиворечивости известным фактам обозначает то, что научная гипотеза должна быть в согласии с известным фактическим материалом. Если обозначить через Ai предложение о фактах, то это условие запишется следующим образом:

x Ù (A1 Ù A2 Ù… Ù An) a B ÙØ B,

где B некоторое утвердительное предложение. Однако это требование не может быть необходимым, так как бывают случаи, когда интерпретация фактов должны быть пересмотрены под влиянием гипотезы, и в результате факты получают новую интерпретацию.

Например, при разработке волновой гипотезы света гипотеза Френеля противоречила очевидному, казалось бы факту. Если между экраном и точечным источником света поместить непрозрачный диск, то на экран отбрасывается тень в форме круга. Из волновой гипотезы Френеля следовало, что в центре тени должно быть небольшое светлое пятно. Более тщательные эксперименты показали, что в центре тени действительно образуется светлое пятно, так что отброшенной оказалась не новая гипотеза, а казавшийся достоверным факт.

Для выдвигаемой гипотезы необходимым требованием является согласие с установившимися законами. Научная гипотеза является частью системы развивающегося научного знания, поэтому, она должна быть согласована с основными установившимися законами, теориями и т.п. Если множество сложившихся представлений обозначить как множество высказываний T, то можно требование непротиворечивости новой гипотезы x сложившимся представлениям записать в виде:

x È T a B Ù Ø B,

где B некоторое высказывание.

Это требование не является необходимым, так как вновь выдвигаемые гипотезы часто приходят в противоречие с ранее существовавшими научными положениями, что и обеспечивает прогресс науки.

Требование эмпирической проверяемости следствий очень важно для определения статуса гипотезы. Гипотеза содержит предположения о причинах явлений (объяснительная гипотеза) и о связях явлений между собой (описательная гипотеза), которые не могут быть установлены непосредственно из опыта. Проверка гипотезы производится путем сопоставления выводимых из гипотезы следствий с фактами. Возможность вывести проверяемые следствия позволяет перейти от предположений к наблюдаемым явлениям. Гипотеза может оказаться эмпирически непроверяемой, но допускающей возможность косвенных проверок.

Однако следует различать невозможность проверки гипотезы, которая обусловлена несовершенством экспериментальной техники, и принципиальную ненаблюдаемость, когда наблюдаемые следствия не могут быть выведены в принципе. Тем гипотезам, которые принципиально ненаблюдаемы, следует отказать в научности. Это требование защищает науку от введения в нее непроявляющихся сущностей, некоего рода "вещей в себе". Требование выводимости наблюдаемых следствий можно записать в виде [(x È T) a A] Ù , где A предложение наблюдения. Требование приложимости гипотезы к возможно более широкому кругу явлений ограничивает доступ в науку доступ гипотез ad hoc. Гипотеза, первоначально выдвинутая для объяснения некоторого явления, должна быть способна при некоторых коррективах описать более широкий класс явлений. Если гипотеза придумывается для объяснения только некоторого опытного факта и не ведет ни к каким другим следствиям, то она носит характер гипотезы ad hoc. Подлинно научная гипотеза выходят за пределы узкой области явлений, позволяет предсказывать новые явления, соотношения и законы. Это требование также не может быть абсолютизировано, так как гипотезы могут выдвигаться и об уникальных явлениях. (Например, о движениях комет.)

Предсказательная сила гипотезы делает ее плодотворной для открытия новых явлений, фактов и соотношений.

Требование простоты гипотезы предписывает объяснять как можно большее число явлений через как можно меньшее число причин. Это требование отражает убеждение ученых в существовании некоторой единой объективной структуры мира. На предмет простоты можно сравнивать между собой только гипотезы, выдвинутые для объяснения сходных явлений.

Этот перечень свойств может оказаться несовершенным. Возможно, он нуждается в дополнении новыми требованиями, а возможно, что некоторые из приведенных выше свойств избыточны. Такой недостаток приведенного выше критерия научности гипотезы, построенному по правилу семейных сходств, легко исправляется изменением состава предикатов.

Возможно, что ни одна из проверяемых научных гипотез не будет обладать всеми перечисленными качествами одновременно. Также возможно, что существуют лженаучные теории, которые могут обладать некоторыми из перечисленных свойств. Поэтому потребуется задать какой-то допустимый минимум m количества свойств. Для определения этого числа требуется провести калибровку – рассмотреть ряд примеров научных и ненаучных гипотез и просчитать количество свойств, которые были присущи тем и другим. При этом следует учитывать, что с течением времени мог изменяться и состав и важность требований, которые предъявлялись к научным теориям. Определение значения этого числа является делом конвенции и зависит, в частности, от общего числа характеристик.

Чем ближе это число к общему числу характеристик, тем более жестким является критерий. Задание значений весов bi является также делом конвенции и зависит, в частности, от конкретной области применения. Например, если критерий применяется для оценки исторических гипотез, то требование приложимости гипотезы к возможно более широкому кругу явлений является несущественным, так как историческая наука имеет дело с единичными явлениями, поэтому соответствующему коэффициенту bi может быть приписан исчезающе малый вес.

Среди достоинств критерия, построенного по правилу семейных сходств, можно указать следующие. Он лучше отражает положение дел в случае нечетких понятий. Возможность изменять и перестраивать критерий в случае изменения состава требований и их значимости в данный момент времени и для данной сферы применения.

Данный критерий смещает проблему из области расплывчатых философских рассуждений в область проверок, которые доступны интерсубъективно. (Логический анализ, эмпирическая проверяемость.)

Работа с критерием предполагает активную роль научного сообщества в решении вопросов состава свойств, определении степени их значимости, количества свойств, которые должны выполняться. Кроме того, данный критерий позволяет количественную оценку.

Среди недостатков критерия можно указать следующие. В построении критерия слишком большую роль играет конвенция, что не исключает возможность спекуляций. Поэтому требуется тестирование критерия на некотором количестве примеров. Однако при такой проверке следует обращать внимание на то, что требования к научным теориям могут быть различными в разное время, и желательно опробовать критерий на примерах тех гипотез, к которым предъявляются требования, аналогичные современным.

Решающая роль отводится научному коллективу, который представляет собой сложный субъект, и, следовательно, не застрахован от ошибок, проистекающих от субъективного видения.

Научные гипотезы при нормальном ходе развития науки проходят естественный отбор. Существует мнение, что если в ход развития науки не вмешиваются неспециалисты, то опасности возникновения лженаучных теорий просто не возникает. "Если научная ценность работы определяется не приказом администратора, а общественным мнением больших коллективов, вероятность ошибки минимальна" . Однако, административные структуры руководствуются, как правило, не научной ценностью поддерживаемой или отвергаемой теории, а политическими интересами. Если это так, то предлагаемый критерий является бесполезным.

Этот критерий не может дать представления о механизмах выбора альтернативных теорий. Наши предпочтения, которые обуславливают наш выбор, часто являются нерациональными. Однако, возможно, что критерий, построенный с использованием правила семейных сходств, позволит отличать ложные и ненаучные теории.

Прежде чем гипотеза станет правдоподобным предположением, она обязана пройти стадию предварительной проверки и обоснования. Такое обоснование должно быть как теоретическим, так и эмпирическим, поскольку любая гипотеза в опытных науках опирается на все предшествующее знание и строится в соответствии с имеющимися фактами. Однако сами факты, или эмпирические данные, не определяют гипотезу: для объяснения одних и тех же фактов можно предложить множество различных гипотез. Чтобы отобрать из этого множества те гипотезы, которые ученый может подвергнуть дальнейшему анализу, необходимо наложить на них ряд требований, выполнение которых будет свидетельствовать о том, что они не являются чисто произвольными предположениями, а представляют научные гипотезы. Это, конечно, не означает, что такие гипотезы непременно окажутся истинными или даже очень вероятными. Окончательным критерием их истинности служит опыт, практика.

Но предварительная стадия обоснования необходима для того, чтобы отсеять заведомо неприемлемые, крайне маловероятные гипотезы.

Вопрос о критериях обоснования гипотез самым тесным образом связан с философской позицией ученых. Так, представители эмпиризма настаивают, чтобы всякая гипотеза опиралась на непосредственные данные опыта. Защитники рационализма склонны подчеркивать в первую очередь необходимость связи новой гипотезы с имеющимся теоретическим знанием (более ранние представители рационализма требовали согласия гипотезы с законами, или принципами, разума).

4.4.1. Эмпирическая проверяемость

Требование эмпирической проверяемости является одним из тех критериев, которые дают возможность исключать из опытных наук всякого рода спекулятивные предположения, незрелые обобщения, произвольные догадки. Но можно ли требовать непосредственной проверки любой гипотезы?

В науке редко бывает, чтобы любая гипотеза оказывалась непосредственно проверяемой данными опыта. От гипотезы до опытной проверки существует значительная дистанция: чем глубже по своему содержанию гипотеза, тем больше эта дистанция.

Гипотезы в науке, как правило, существуют не обособленно друг от друга, а объединены в определенную теоретическую систему. В такой системе встречаются гипотезы разного уровня общности и логической силы.

На примере гипотетико-дедуктивных систем классической механики мы убедились, что в них не каждая гипотеза допускает эмпирическую проверку. Так, в системе гипотез, законов и принципов классической механики принцип инерции (всякое тело остается в покое или движется прямолинейно с постоянной скоростью, если оно не подвержено действию внешних сил) нельзя проверить ни в каком реальном опыте, ибо фактически невозможно полностью абстрагироваться от действия всех внешних сил, таких, как силы трения, сопротивления воздуха и т.д. Так же обстоит дело со многими другими гипотезами, входящими в состав определенной научной теории.

Поэтому о правдоподобии таких гипотез мы можем судить лишь косвенно, через непосредственную проверку тех следствий, которые вытекают из этих гипотез. Кроме того, во всякой теории существуют промежуточные гипотезы, которые связывают эмпирически непроверямые гипотезы с проверяемыми. Такие гипотезы не нуждаются в проверке, ибо они играют в теории вспомогательную роль.

Сложность проблемы проверки гипотез проистекает также из того, что в реальном научном знании, в частности в теориях, одни гипотезы зависят от других, подтверждение одних гипотез служит косвенным свидетельством правдоподобия других, с которыми они связаны логическим отношением. Поэтому тот же принцип инерции механики подтверждается не только теми эмпирически проверяемыми следствиями, которые из него вытекают непосредственно, но также следствиями других гипотез и законов. Именно поэтому принципы опытных наук настолько хорошо подтверждаются наблюдениями и экспериментом, что их считают практически достоверными истинами, хотя они и не обладают характером той необходимости, которая присуща аналитическим истинам. В естествознании часто в качестве принципов выступают наиболее фундаментальные законы науки; например, в механике такими принципами служат основные законы движения, сформулированные Ньютоном. Наконец, нельзя не отметить, что проверка многих гипотез, сформулированных с помощью абстрактного языка современной математики, требует поисков соответствующей реальной интерпретации математического формализма, а это, как было показано на примере математических гипотез теоретической физики, оказывается весьма сложной задачей;

В связи с проблемой эмпирической проверяемости гипотез встает вопрос о тех критериях, которыми ученые должны руководствоваться при их оценке. Этот вопрос составляет часть более общего вопроса о критериях всех суждений науки вообще. Ранние позитивисты считали научными только те понятия, гипотезы и теории, которые сводятся непосредственно к данным чувственного опыта, причем сам чувственный опыт трактовался ими субъективно. Сторонники неопозитивизма, и прежде всего участники Венского кружка, в качестве такого критерия вначале выдвинули принцип верифицируемое, т.е. проверки утверждений, гипотез и теорий эмпирических наук на истинность. Однако на опыте мы можем верифицировать только единичные утверждения. Для науки же наиболее ценными и важными являются как раз утверждения общего характера, сформулированные в виде гипотез, обобщений, законов и принципов. Такого рода утверждения не могут быть окончательно верифицированы, поскольку большинство из них охватывает бесконечное множество частных случаев. Поэтому принцип верифицируемости, выдвинутый неопозитивистами, подвергся критике не только со стороны представителей конкретных наук, но и многих философов. С резкой критикой этого принципа выступил Карл Поппер, предложивший вместо него критерий опровержимости или фальсифицируемоети. «...Не верифицируемость, а фальсифицируемость системы должна быть взята, - писал он, - в качестве критерия демаркации научных гипотез и теорий от ненаучных».

С точки зрения Поппера, только принципиальная возможность опровержения гипотез и теоретических систем делает их ценными для науки, тогда как любое число подтверждений не гарантирует их истинности. В самом деле, любой противоречащий гипотезе случай опровергает ее, в то время как всякое число подтверждений оставляет вопрос о гипотезе открытым. В этом проявляется асимметрия между подтверждением и опровержением, впервые ясно сформулированная еще Ф. Бэконом. Однако без некоторого числа подтверждений гипотезы у исследователя не может быть уверенности в ее правдоподобии.

Принципиальная возможность опровержимости гипотезы служит противоядием против догматизма, наталкивает мысль исследователя на поиски таких фактов и явлений, которые не подтверждают ту или иную гипотезу или теорию, тем самым устанавливает границы их применимости. В настоящее время большинство специалистов по методологии науки считает критерий подтверждения необходимым и достаточным, чтобы судить о научности гипотезы с точки зрения ее эмпирического обоснования.

4.4.2. Теоретическое обоснование гипотезы

Каждая гипотеза в науке возникает на основе имеющихся теоретических представлений и некоторых твердо установленных фактов. Сопоставление гипотезы с фактами составляет задачу ее эмпирического обоснования. Теоретическое обоснование связано с учетом и использованием всего накопленного предшествующего знания, которое имеет непосредственное отношение к гипотезе. В этом проявляется преемственность в развитии научного знания, его обогащение и расширение.

Прежде чем подвергнуть гипотезу эмпирической проверке, необходимо убедиться, что она является достаточно разумным предположением, а не скороспелой догадкой.

Одним из способов такой проверки служит теоретическое обоснование гипотезы. Наилучшим способом такого обоснования служит включение гипотезы в некоторую теоретическую систему. Если будет установлена логическая связь исследуемой гипотезы с гипотезами какой-либо теории, то тем самым будет продемонстрировано правдоподобие такой гипотезы. Как мы уже отмечали, в данном случае она будет подтверждаться не только непосредственно относящимися к ней эмпирическими данными, но и данными, подтверждающими другие гипотезы, логически связанные с исследуемой.

Однако во многих практических случаях приходится довольствоваться тем, чтобы гипотезы находились в соответствии с установленными принципами и законами той или иной области науки. Так, при разработке физических гипотез предполагается, что они не противоречат основным законам физики, таким, как закон сохранения энергии, заряда, момента количества движения и т.д. Поэтому физик вряд ли серьезно отнесется к гипотезе, в которой допускается возможность осуществления вечного движения. Однако слишком поспешное следование установившимся теоретическим представлениям чревато и опасностью: оно может задержать обсуждение и проверку новых, революционизирующих науку, гипотез и теорий. Наука знает немало таких примеров: долгое непризнание в математике неевклидовой геометрии, в физике - теории относительности А. Эйнштейна и т.д.

4.4.3. Логическое обоснование гипотезы

Требование логической состоятельности гипотезы сводится прежде всего к тому, чтобы гипотеза не была формально противоречивой, ибо в таком случае из нее следует как истинное, так и ложное утверждение и такую гипотезу невозможно подвергнуть эмпирической проверке. Для эмпирических наук не представляют какой-либо ценности и так называемые тавтологические высказывания, то есть высказывания, остающиеся истинными при любых значениях их компонентов. Эти высказывания хотя и играют существенную роль в современной формальной логике, но не расширяют нашего эмпирического знания и поэтому не могут выступать в роли гипотез в эмпирических науках.

Итак, гипотезы, выдвигаемые в опытных науках, должны избегать двух крайностей: во-первых, они не должны быть формально противоречивыми и, во-вторых, они обязаны расширять наше знание, и поэтому их скорее следует отнести к синтетическому, чем аналитическому знанию. Последнее требование нуждается, однако, в уточнении. Как уже отмечалось, наилучшее обоснование гипотезы состоит в том, чтобы она входила в рамки некоторой теоретической системы, т.е. могла бы быть логически выведена из совокупности некоторых других гипотез, законов и принципов теории, в состав которой ее пытаются включить. Однако это будет свидетельствовать скорее об аналитической природе рассматриваемой гипотезы, чем об ее синтетическом происхождении. Не возникает ли здесь логического противоречия? Скорее всего, не возникает, ибо требование синтетического характера гипотезы относится к эмпирическим данным, на которых она строится. Аналитический же характер гипотезы проявляется в ее отношении к предшествующему, известному, готовому знанию. Гипотеза должна максимально учитывать весь относящийся к ней теоретический материал, который по сути дела представляет собой обработанный и аккумулированный прошлый опыт. Поэтому требования аналитичности и синтетичности гипотезы отнюдь не исключают друг друга, поскольку в них выражается необходимость теоретического и эмпирического обоснования гипотезы.

4.4.4. Информативность гипотезы

Понятие информативности гипотезы характеризует ее способность объяснить соответствующий круг явлений действительности. Чем шире этот круг, тем большей информативностью она обладает. Вначале гипотеза создается для объяснения некоторых фактов, которые не укладываются в существующие теоретические представления. Впоследствии она помогает объяснить другие факты, которые без нее было бы трудно или даже невозможно обнаружить.

Замечательным примером такой гипотезы является предположение о существовании квантов энергии, выдвинутое в начале XX века М.Планком. Первоначально эта гипотеза преследовала довольно ограниченную цель - объяснить особенности излучения абсолютно черного тела. Как уже отмечалось, вначале Планк вынужден был ввести ее в качестве рабочего предположения, так как не хотел порывать со старыми, классическими представлениями о непрерывности физических процессов.

Через пять лет А. Эйнштейн использовал эту гипотезу для объяснения закономерностей фотоэффекта, а позднее Н. Бор с ее помощью построил теорию атома водорода.

В настоящее время квантовая гипотеза стала теорией, которая лежит в фундаменте современной физики.

Этот пример весьма поучителен: он показывает, насколько подлинно научная гипотеза выходит за пределы той информации, которую ученый получает непосредственно из анализа эксперимента. Если бы гипотеза выражала простую сумму эмпирической информации, она в лучшем случае годилась бы для объяснения каких-то конкретных явлений. Возможность предсказания новых явлений свидетельствует о том, что гипотеза содержит дополнительное количество информации, ценность которой раскрывается в процессе разработки гипотезы, в ходе превращения вероятного знания в достоверное.

Информативность гипотезы тесно связана с ее логической силой: из двух гипотез логически сильнее та, из которой дедуктивно следует другая. Например, из исходных принципов классической механики с помощью дополнительной информации можно логически вывести все остальные гипотезы, которые первоначально могли быть установлены независимо от них. Исходные принципы, аксиомы, основные законы любой научной дисциплины будут логически сильнее всех остальных ее гипотез, законов и утверждении, поскольку они служат посылками логического вывода в рамках соответствующей теоретической системы. Вот почему поиски таких принципов и гипотез составляют труднейшую часть научного исследования, которая не поддается логической формализации.

4.4.5. Предсказательная сила гипотезы

Предсказания новых фактов и явлений, которые вытекают из гипотезы, играют существенную роль в ее обосновании. Все сколько-нибудь важные гипотезы в науке ставят своей целью не только объяснить факты известные, но и предсказать новые факты. Галилей с помощью своей гипотезы смог не только объяснить особенности движения тел вблизи земной поверхности, но и предсказать, какова будет траектория тела, брошенного под некоторым углом к горизонту.

Во всех случаях, когда гипотеза позволяет объяснить и предсказать неизвестные, а порой и совершенно неожиданные явления, наше доверие к ней заметно возрастает.

Нередко для объяснения одних и тех же эмпирических фактов можно предложить несколько различных гипотез. Поскольку все эти гипотезы должны согласовываться с имеющимися данными, то возникает настоятельная необходимость выведения из них эмпирически проверяемых следствий. Такие следствия представляют не что иное, как предсказания, на основе которых обычно и элиминируют гипотезы, которым недостает необходимой общности. На самом деле, всякий случай предсказания, который противоречит действительности, служит опровержением гипотезы. С другой стороны, всякое новое подтверждение гипотезы увеличивает ее вероятность.

При этом, чем больше предсказанный случай отличается от случаев уже известных, тем больше возрастает правдоподобие гипотезы.

Предсказательная сила гипотезы в существенной степени зависит от ее логической силы: чем больше следствий можно вывести из гипотезы, тем большими возможностями предсказания она обладает. При этом предполагается, что такие следствия будут эмпирически проверяемыми. В противном случае мы лишаемся возможности судить о предсказаниях гипотезы. Поэтому обычно и вводят специальное требование, характеризующее предсказательную силу гипотезы, а не ограничиваются только ее информативностью.

Перечисленные требования являются основными, с которыми так или иначе должен считаться исследователь в процессе построения и формулирования гипотез.

Разумеется, эти требования могут и должны дополняться рядом других специальных требований, в которых обобщается опыт построения гипотез в тех или иных конкретных областях научного исследования. На примере математической гипотезы было показано, какое значение для теоретической физики имеют, например, принципы соответствия и ковариантности. Однако такого рода принципы и соображения играют скорее эвристическую, чем детерминирующую роль. То же самое следует сказать о принципе простоты, который нередко фигурирует как одно из обязательных требований при выдвижении гипотезы.

Например, Л.Б.Баженов в статье «Современная научная гипотеза» в качестве одного из условий состоятельности гипотезы выдвигает «требование ее принципиальной (логической) простоты». Требование простоты существенно отличается от других рассматриваемых им требований, таких, как эмпирическая проверяемость, предсказуемость, возможность выведения следствий и т.д. Возникает два вопроса: (1) Когда исследователь обращается к критерию простоты при выдвижении гипотез? (2) О какой простоте гипотез может идти речь при их выдвижении?

Пользоваться критерием простоты можно лишь, в том случае, когда исследователь уже располагает некоторым количеством гипотез. В противном случае бессмысленно говорить об отборе. Кроме того, исследователь должен провести предварительную работу по обоснованию имеющихся в его распоряжении гипотез, то есть оценить их с точки зрения тех требований, которые мы уже рассмотрели.

А это означает, что критерий простоты является скорее эвристическим, чем строго обязательным требованием. Во всяком случае, обоснование гипотез никогда не начинается с их простоты. Правда, при прочих равных условиях исследователь предпочитает выбрать гипотезу, которая проще других по своей форме. Однако такой выбор делается уже после довольно сложной и кропотливой работы по предварительному обоснованию гипотезы.

Что же следует понимать под простотой гипотезы? Нередко простота теоретического знания отождествляется с привычностью его представления, возможностью использования наглядных образов. С этой точки зрения геоцентрическая гипотеза Птолемея будет проще гелиоцентрической гипотезы Коперника, так как она находится ближе к нашим повседневным представлениям: нам кажется, что движется Солнце, а не Земля. В действительности гипотеза Птолемея ложная. Для объяснения попятных движений планет Птолемей вынужден был настолько усложнить свою гипотезу, что впечатление об ее искусственности становилось все более очевидным.

Наоборот, гипотеза Коперника хотя и противоречила житейским представлениям о движении небесных тел, логически проще объясняла эти движения, исходя из центрального положения Солнца в нашей планетной системе. В результате искусственные построения и произвольные допущения, которые выдвигались Птолемеем и его последователями, были отброшены. Этот пример из истории науки ясно показывает, что логическая простота гипотезы или теории неразрывно связана с их истинностью.

Чем глубже по содержанию и шире по объему гипотеза или теория, тем логически проще оказываются их исходные положения. Причем под простотой здесь опять таки имеется в виду необходимость, общность и естественность исходных допущений, отсутствие в них произвола, искусственности. Исходные допущения теории относительности логически проще допущений классической механики Ньютона с его представлениями об абсолютном пространстве и движении, хотя овладеть теорией относительности значительно труднее, чем классической механикой, ибо теория относительности опирается на более тонкие методы рассуждений и гораздо более сложный и абстрактный математический аппарат. То же самое можно сказать о квантовой механике. Во всех этих случаях понятия "«простоты» и «сложности» рассматриваются скорее в психологическом и, быть может, социально-культурном аспектах.

В методологии науки простоту гипотезы рассматривают в логическом аспекте. Это означает, во-первых, общность, немногочисленность, естественность исходных допущений гипотезы; во-вторых, возможность выведения из них следствий наиболее простым путем, не прибегая для этого к гипотезам типа ad hoc; в-третьих, использование более простых средств для ее проверки. (Гипотеза ad hoc, ад хок (от лат. ad hoc - специально, применимо только для этой цели), - гипотеза, предназначенная для объяснения отдельных, специальных явлений, которые невозможно объяснить в рамках данной теории. Для объяснения этого явления данная теория предполагает существование дополнительных не открытых условий, с помощью которых объясняется исследуемое явление. Таким образом, гипотеза ad hoc делает предсказание в отношении тех явлений, которые необходимо открыть. Эти предсказания могут сбыться, а могут и не сбыться. Если гипотеза ad hoc подтверждается, тогда она перестает быть гипотезой ad hoc и органично включается в соответствующую теорию. Учёные более скептично относятся к тем теориям, где гипотезы ad hoc существуют в больших количествах. Но с другой стороны без ad hoc гипотез не может обойтись ни одна теория, так как в любой теории всегда найдутся аномалии).

Первое условие иллюстрировалось путем сравнения исходных допущений классической механики и теории относительности. Оно применимо к любой гипотезе и теории. Второе условие характеризует простоту скорее гипотетических теоретических систем, чем отдельных гипотез. Из двух таких систем предпочитается та, в которой все известные результаты определенной области исследования могут быть получены логически из основных принципов и гипотез системы, чем с помощью специально придуманных для этого гипотез ad hoc. Обычно обращение к гипотезам ad hoc делается на первых этапах научного исследования, когда еще не выявлены логические связи между различными фактами, их обобщениями и объясняющими гипотезами. Третье условие связано не только с чисто логическими, но и с прагматическими соображениями.

В действительной же практике научного исследования логические, методологические, прагматические и даже психологические требования выступают в единстве.

Все рассмотренные нами требования к обоснованию и построению гипотез взаимосвязаны и обусловливают друг друга; обособленное их рассмотрение делается ради лучшего уяснения сути проблемы. Например, информативность и предсказательная сила гипотезы существенным образом влияют на ее проверяемость. Нечетко определенные, малоинформативные гипотезы весьма трудно, а порой просто невозможно подвергнуть эмпирической проверке. К. Поппер даже утверждает, что чем логически сильнее гипотеза, тем она лучше проверяема. С таким утверждением нельзя полностью согласиться хотя бы потому, что проверяемость гипотезы зависит не только от ее содержания, но также и от уровня экспериментальной техники, зрелости соответствующих теоретических представлений, словом, имеет такой же относительный характер, как и все остальные принципы науки.

  • (Документ)
  • Добреньков В.И., Кравченко А.И. Методология и методика социологического исследования (Документ)
  • Рузавин Г.И. Методы научного исследования (Документ)
  • Контрольная работа - Методология исследования социально-экономических процессов (Лабораторная работа)
  • Сичивица О.М. Методы и формы научного познания (Документ)
  • Янчук В.А. Методология и методы научного исследования в психологии и социальных науках (Документ)
  • Баскаков А.Я., Туленков Н.В. Методология научного исследования (Документ)
  • Методы научных исследований ответы на билеты (Документ)
  • Лекции - Методология науки (Лекция)
  • n1.doc

    3.4. Требования, предъявляемые к научным гипотезам

    В отличие от обычных догадок и предположений гипотезы в науке тщательно анализируются с точки зрения их соответствия тем критериям и стандартам научности, о которых шла речь в предыдущих главах. Иногда в таких случаях говорят о состоя-тельности научных гипотез, возможности и целесообразности их дальнейшей разработки. Перед разработкой гипотеза должна пройти стадию предварительной проверки и обоснования. Такое обоснование должно быть как эмпирическим, так и теоре-тическим, поскольку в опытных и фактуальных науках гипотеза строится не только на основании существующих фактов, но и имеющегося теоретического знания и, прежде всего, законов, принципов и теорий.

    Поскольку для объяснения одних и тех же фактов можно предложить множество различных гипотез, то возникает задача выбора среди них тех, которые можно подвергнуть дальнейшему анализу и разработке. Для этого уже на предварительной стадии обоснования необходимо наложить на гипотезы ряд требований, выполнение которых будет свидетельствовать, что они не являются простыми догадками или произвольными предположениями. Это, однако, не означает, что после такой проверки гипотезы обязательно окажутся истинными или даже весьма правдоподобными суждениями.

    Обсуждая вопрос о критериях научности гипотез, нельзя не учитывать философских и методологических аргументов в их защиту. Общеизвестно, что сторонники эмпиризма и позити-визма неизменно подчеркивают приоритет опыта над размыш-лением, эмпирии над теорией. Поэтому они настаивают, чтобы любая гипотеза опиралась, на данные наблюдения и опыта, а

    Наиболее радикальные эмпиристы - даже на свидетельства непосредственных чувственных восприятий. Их противники - рационалисты, наоборот, требуют, чтобы новая гипотеза была как можно лучше связана с прежними теоретическими пред-ставлениями. С диалектической точки зрения обе эти позиции являются односторонними и поэтому одинаково неприемле-мыми, когда абсолютизируются и противопоставляются друг другу. Тем не менее в единой системе критериев они, несомненно, должны учитываться.

    Переходя к обсуждению специфических критериев состоя-тельности гипотез, нельзя не заметить, что требования, кото-рые к ним предъявляются, представляют собой конкретизацию и детализацию общих принципов научности знания, рассмот-ренных в предыдущих главах. Эти специфические требования к научным гипотезам заслуживают особого внимания, ибо они помогают осуществить выбор между гипоте-зами с различной объяснительной и предсказательной силой.


    1. Релевантность гипотезы представляет собой необходимое предварительное условие признания ее допустимой не только в науке, но и в практике повседневного мышления. Термин «релевантный» (от англ. relevant - уместный, относящийся к делу) характеризует отношение гипотезы к фактам, на которые она опирается. Если эти факты могут быть логически выведены из гипотезы, то она считается релевантной к ним. В противном случае гипотеза называется иррелевантной, не имеющей отно-шения к имеющимся фактам 1 . Проще говоря, такие факты не подтверждают, и не опровергают гипотезу. Процесс логического вывода фактов из гипотезы не следует, однако, понимать слиш-ком упрощенно. Обьино гипотеза в науке фигурирует вместе с хорошо установленными законами или теориями, т. е. входит в состав некоторой теоретической системы. В этом случае речь должна идти о логическом выводе фактов именно из такой системы. Поскольку любая гипотеза выдвигается либо для объяснения фактов известных, либо для предсказания фактов неизвестных, постольку гипотеза, безразличная к ним, т.е. иррелевантная, не будет представлять никакого интереса.

    2. Проверяемость гипотезы в опытных и фактуальных науках в конечном итоге всегда связана с возможностью ее сопостав-
    Во избежание недоразумений заметим, что под фактами здесь и в дальнейшем изложении речь идет не об объективных явлениях и событиях, а о высказываниях о них(Авт.),

    Ления с данными наблюдения или эксперимента, т. е. эмпирии-ческими фактами. Отсюда, конечно, не вытекает требование эмпирической проверки каждой гипотезы. Как уже отмечалось, речь должна идти о принципиальной возможности такой проверки. Дело в том, что многие фундаментальные законы и гипотезы науки содержат в своем составе понятия о ненаблюдаемых объектах, их свойствах и отношениях, таких, как элементарные частицы, электромагнитные волны, различные физические поля и т. п., которые невозможно наблюдать непосредственно. Однако предположения об их существовании можно проверить косвенным путем по результатам, которые можно зарегистрировать на опыте с помощью соответствующих приборов. По мере развития науки, проникновения в глубинные структуры материи возрастает число гипотез более высокого теоретического уровня, вводящих различные виды ненаблюдаемых объектов, следствием этого является усложнение и совершенствование экспериментальной техники для их проверки. Так, например, современные исследования в области ядра и элементарных частиц, радиоастрономии, квантовой электроники обьино ведутся на больших установках и требуют значительных материальных затрат 1 .

    Таким образом, прогресс в научном исследовании достигается, с одной стороны, выдвижением более абстрактных гипотез, содержащих ненаблюдаемые объекты, а с другой - совер-шенствованием наблюдательной и экспериментальной техники, с помощью которой возможно проверить следствия непосредственно непроверяемых гипотез.

    Возникает вопрос: возможно ли существование непрове-ряемых гипотез, т.е. гипотез, следствия которых нельзя наблюдать и регистрировать на опыте?

    Следует различать три случая непроверяемых гипотез:

    Во-первых, когда следствия гипотез нельзя проверить существующими в данный период развития науки средствами наблюдения и измерения. Известно, что создатель первой неев-клидовой геометрии, Н. И. Лобачевский, для того, чтобы пока-зать, что его «воображаемая» система реализуется в действии-тельности, попытался измерить сумму углов огромного тре-угольника, две вершины которого расположены на Земле, а

    1 Физический энциклопедический словарь. - М: Советская энциклопедия, 1983. - С.816.

    Третья - на неподвижной звезде. Однако он не смог обнару-жить разницы между суммой внутренних углов треугольника, равной 180° согласно геометрии Евклида, и суммой измеренных углов, которая должна быть меньше 180° в его, неевклидовой, геометрии. Эта разница оказалась в пределах возможных ошибок наблюдения и измерения. Приведенный пример отнюдь не является исключением, так как то, что невозможно наблюдать и точно измерить в одно время, становится возможным осуществить с развитием науки и техники в другое время. Отсюда становится ясным, что проверяемость гипотез имеет относительный, а не абсолютный характер.

    Во-вторых, принципиально непроверяемыми являются гипотезы, структура которых не допускает такой проверки с помощью возможных фактов, или же они специально создаются для оправдания данной гипотезы. Последние в науке именуются как « ad hoc гипотезы». В этой связи заслуживает особого внимания дискуссия, развернувшаяся вокруг гипотезы о суще­ствовании так называемого «мирового эфира». Чтобы проверить ее, американский физик А. Майкельсон осуществил оригинальный эксперимент, в результате которого выяснилось, что эфир не оказывает никакого влияния на скорость распространения света 1 . Этот отрицательный результат опыта ученые интерпретировали по-разному. Наиболее широкое распространение получила гипотеза Лоренца - Фицджеральда, которая объясняла отрицательный результат сокращением линейных размеров плеча интерферометра Майкельсона, движущегося в одном направлении с Землей. Поскольку линейные размеры интерферометра будут в свою очередь сокращаться на соответствующую величину, постольку гипотеза оказывается принципиально непроверяемой. Создается впечатление, что она была придумана для объяснения отрицательного результата эксперимента и поэтому имеет характер гипотезы ad hoc . Такого рода гипотезы обычно не допускаются в научном познании потому, что они могут относиться либо к отдельным фактам, для оправдания которых специально придумываются, либо являются простым описанием наблюдаемых фактов. В первом случае они не могут быть применены для объяснения других фактов и тем самым не расширяют нашего знания, не говоря уже о том,

    Что они не могут быть проверены с помощью других фактов. Во втором случае подобные гипотезы вряд ли следует называть научными, ибо они представляют собой простое описание, а не объяснение фактов 1 .

    Несостоятельность гипотезы Лоренца - Фицджеральда стала очевидной после того, как А. Эйнштейн в специальной (частной) 2 теории относительности показал, что понятия про-странства и времени имеют не абсолютный, а относительный характер, который определяется избранной системой отсчета.

    В-третьих, универсальные математические и философские гипотезы, имеющие дело с весьма абстрактными объектами и суждениями не допускают эмпирической проверки их следствий. Проводя демаркацию между ними и эмпирически проверяемыми гипотезами, К. Поппер был совершенно прав, но в отличие от позитивистов не объявлял эти гипотезы бессмыс-ленными утверждениями. Несмотря на то, что математические и философские гипотезы непроверяемы эмпирически, они могут и должны быть обоснованы рационально-критически. Такое обоснование математические гипотезы могут получить в естественных, технических и социально-экономических науках при использовании их в качестве формального аппарата или языка для выражения количественных и структурных зависимостей между величинами и отношениями, исследуемыми в конкретных науках.

    Многие философские гипотезы часто являются следствием трудностей, возникающих в частных науках. Анализируя эти трудности, философия способствует постановке определенных проблем перед конкретными науками и тем самым способствует поиску их решения. Псевдопроблемы и натурфилософские гипотезы с точки зрения современной науки не допускают никакой проверки и обоснования и поэтому не заслуживают обсуждения в серьезной науке.

    3. Совместимость гипотез с существующим научным знани ем. Это требование очевидно, так как современное научное знание в любой его отрасли представляет собой не совокупность отдельных фактов, их обобщений, гипотез и законов, а определенную логически связанную систему. Вот почему вновь создаваемая гипотеза не должна противоречить не только

    1 Физический энциклопедический словарь/ Под ред. A . M . Прохорова. - М.: Большая российская энциклопедия, 1995. - С. 225.

    1 Copi I. Introduction to Logic - N.Y.: МастШап, 1954. - P.422-423. » 2 Физический энциклопедический словарь. - С. 507.

    Имеющимся фактам, но и существующему теоретическому знанию. Однако это требование также нельзя абсолютизировать. В самом деле, если бы наука сводилась только к простому накоплению информации, то прогресс, а тем более коренные, качественные изменения, которые принято называть научными революциями, были бы в ней невозможны. Отсюда становится ясным, что новая гипотеза должна согласовываться с наиболее фундаментальным, хорошо проверенным и надежно обосно-ванным теоретическим знанием, каким являются принципы, законы и теории науки. Поэтому, если возникает противоречие между гипотезой и прежним знанием, то в первую очередь сле-дует проверить факты, на которые она опирается, а также эмпирические обобщения, законы и представления, на которых основывается прежнее знание. Только в случае, когда большое число достоверно установленных фактов начинает противоре-чить прежним теоретическим представлениям, возникает необ-ходимость ревизии и пересмотра таких представлений.

    Напомним, что" именно такую ситуацию Т. Кун характери-зует как кризисную, требующую перехода от старой парадигмы к новой. Однако вновь возникшая парадигма или фундамен-тальная теория не отвергает хорошо проверенные и надежно обоснованные старые теории, а указывает определенные границы их применимости.

    Действительно, законы механики Ньютона не опровергли законы свободного падения тел, открытые Галилеем или законы движения планет в Солнечной системе, установленные Кеплером, а только уточнили или определили. реальную область их действительного применения. В свою очередь, частная теория относительности Эйнштейна доказала, что законы механики Ньютона применимы лишь к телам, движущимся со скоростями, значительно меньшими скорости света. Общая теория относительности выявила границы применения теории гравитации Ньютона. Одновременно с этим квантовая механика показала, что принципы классической механики применимы лишь к макротелам, где можно пренебрегать квантом действия.

    Новые теории, имеющие более глубокий и общий характер, не отвергают старые теории, а включают их в себя в качестве так называемого предельного случая. С теоретике-познаватель-ной точки зрения эту особенность научного знания характери-зуют как преемственность в его развитии, а методологически - как определенное соответствие между старыми и новыми тео-

    Риями, а в такой науке, как физика, эта преемственность выступает, например, как принцип соответствия, служащий эвристическим или регулятивным средством для построения новой гипотезы или теории на основе старой.

    4. Объяснительная и предсказательная сила гипотезы. В логике под силой гипотезы или любого другого утверждения понимают количество дедуктивных следствий, которые можно вывести из них вместе с определенной дополнительной информацией (начальные условия, вспомогательные допущения и др.). Очевидно, что чем больше таких следствий может быть вывед-ено из гипотезы, тем большей логической силой она обладает, и наоборот, чем меньше таких следствий, тем меньшую силу она имеет. Рассматриваемый критерий в некотором отношении сходен с критерием проверяемости, но в то же время отличен от него. Гипотеза считается проверяемой, если из нее можно в принципе вывести некоторые наблюдаемые факты.

    Что же касается объяснительной и предсказательной силы гипотез, то этот критерий оценивает качество и количество выводимых из них следствий. Если из двух одинаково проверяемых и релевантных гипотез выводится неодинаковое количество следствий, т.е. подтверждающих их фактов, тогда большей объяснительной силой будет обладать та из них, из которой выводится наибольшее количество фактов, и, наоборот, меньшую силу будет иметь гипотеза, из которой следует меньшее количество фактов. Действительно, выше уже отмечалось, что когда Ньютон выдвинул свою гипотезу об универсальной гравитации, то она оказалась в состоянии объяснить факты, которые следовали не только из гипотез Кеплера и Галилея, ставших уже законами науки, но также дополнительные факты. Только после этого она стала зако-ном всемирного тяготения. Общая теория относительности Эйнштейна сумела объяснить не только факты, долгое время остававшиеся неясными в ньютоновской теории (например, движение перигелия Меркурия), но и предсказать такие новые факты, как отклонение светового луча вблизи больших гравита-ционных масс и равенство инертной и гравитационной массы.

    Оценка гипотезы по качеству напрямую зависит от значе-ния тех фактов, которые из нее выводятся и поэтому сопряжена со многими трудностями, главной из которых является опреде-ление степени, с которой факт подтверждает или подкрепляет гипотезу. Однако никакой простой процедурой оценки этой степени наука не располагает и поэтому при поиске подкрепляю-

    Щих гипотезу фактов стремятся к тому, чтобы факты были как можно более разнообразными.

    Поскольку логическая структура предсказания не отличается от структуры объяснения, постольку все, что говорилось об объяснительной силе гипотез, можно было бы отнести и к их предсказательной силе. Однако с методологической точки зрения такой перенос вряд ли правомерен, ибо предсказание в отличие от объяснения имеет дело не с существующими фактами, а фактами, которые предстоит еще обнаружить, а поэтому их оценка может быть дана лишь в вероятностных терминах. С психологической и прагматической точки зрения предсказание новых фактов гипотезой значительно усиливает нашу веру в нее. Одно дело, когда гипотеза объясняет факты уже известные, существующие, и другое, - когда она предсказывает факты до этого неизвестные. В этой связи особого внимания заслуживает сравнение двух конкурирующих гипотез по их предсказательной силе, которое служит логической основой решающего экс перимента.

    Если имеются две гипотезы Hi и # 2 , причем из первой гипотезы можно вывести предсказание Ej , а из второй - несовместное с ним предсказание Ег, тогда можно осуществить эксперимент, который решит, какая из гипотез будет верной. Действительно, если в результате эксперимента будет опровергнуто предсказание E h а тем самым и гипотеза Hi , тогда верным окажется гипотеза Дг, и наоборот.

    Интересно отметить, что на идею решающего эксперимента опирался еще X. Колумб при обосновании своего мнения, что Земля имеет не плоскую, а сферическую форму. Один из его аргументов состоял в том, что при отдалении корабля от пристани сначала становятся невидимыми его корпус и палуба и только потом исчезают из поля зрения верхние его части и мачты. Ничего подобного не наблюдалось бы, если Земля имела плоскую поверхность. Впоследствии сходные аргументы для доказательства шарообразности Земли использовал Н. Коперник

    5. Критерий простоты гипотез. В истории науки были случаи, когда конкурирующие гипотезы одинаково удовлетворяли всем перечисленным выше требованиям. Тем не менее, одна из гипотез оказывалась наиболее приемлемой именно вследствие своей простоты. Наиболее известным историческим примером такой ситуации является противоборство гипотез К. Птолемея

    И Н. Коперника. Согласно гипотезе Птолемея, центром мира является Земля, вокруг которой вращаются Солнце и другие небесные тела (отсюда происходит ее название «геоцентрическая система мира»). Для описания движения небесных тел Птолемей использовал весьма сложную математическую систему, позволявшую предвычислять их положение в небе, согласно которой, кроме движения по главной орбите (деференту) планеты совершают также движения по малым окружностям, названным эпициклами. Траектория движения планет складывалась из движения по эпициклу, центр которого, в свою очередь, равномерно перемещается по деференту. Такое усложнение, как мы видели, потребовалось Птолемею для того, чтобы согласовать предсказания своей гипотезы с наблюдаемыми астрономическими фактами. По мере расхождения теоретических предсказаний гипотезы с фактами, все более сложной и запутанной оказывалась сама гипотеза: к имеющимся эпициклам добавлялись все новые эпициклы, вследствие чего геоцентрическая система мира установилась все более громоздкой и неэффективной.

    Гелиоцентрическая гипотеза, выдвинутая Н. Коперником, сразу покончила с этими трудностями. В центре его системы находится Солнце (на этом основании ее называют гелиоцен-трической системой), вокруг которого движутся планеты, в том исле и Земля. Несмотря на кажущееся противоречие этой гипотезы с наблюдаемым движением Солнца, а не Земли, и упорное сопротивление церкви признанию гелиоцентрической гипотезы, она в конце концов победила не в последнюю очередь пагодаря своей простоте, ясности и убедительности исходных посылок. Но что подразумевают обычно под термином «простота» в науке и повседневном мышлении? К какой именно простоте стремится научное познание?

    В субъективном смысле под простотой знания подразумевают яечто более знакомое, привычное, связанное с непосредственным опытом и здравым смыслом. С такой точки зрения гео-(дентрическая система Птолемея кажется проще, так как она не требует переосмысления данных непосредственного наблюдения, которые показывают, что движется не Земля, а Солнце, нередко простота гипотезы или теории связывается с легкостью ее понимания, отсутствием в ней сложного математического аппарата, возможностью построения наглядной модели.

    При интерсубъективном подходе к гипотезе, исключающем ее оценку по вышеупомянутым субъективным основаниям, можно

    Выделить по крайней мере четыре значения термина простоты гипотезы:

    ●-Одна гипотеза будет проще другой, если она содержит меньше исходных посылок для вывода из нее следствий. Например, гипотеза Галилея о постоянстве ускорения свободного падения опирается на большее число посылок, чем универсальная, гипотеза тяготения, выдвинутая Ньютоном. Именно поэтому первая гипотеза может быть логически выведена из второй при соответствующем задании начальных или гранич­ных условий.

    ●-С логической простотой гипотезы тесно связана ее общ- ность. Чем меньше исходных посылок содержит гипотеза, тем большее число фактов она в состоянии объяснить. Но в этом случае посылки должны иметь более глубокое содержание и охватывать больший круг следствий. Здесь можно, по-видимому, говорить о законе обратного отношения между содержанием гипотезы и областью ее применения, который аналогичен известному логическому закону об обратном отношении между содержанием и объемом понятия 1 . Возвращаясь к вышеприве-денному примеру, можно сказать, что универсальная гипотеза тяготения Ньютона проще гипотезы Галилея потому, что она содержит меньше посылок, и вследствие этого имеет более общий характер. Следует, однако, обратить внимание на то, что посылки более общей гипотезы имеют и более глубокий характер, т.е. выражают более существенные особенности изучаемой действительности.

    ●-С методологической точки зрения простота гипотезы связана с системностью ее исходных посылок, которая позволяет устанавливать логические связи между фактами, которые охва-тываются такой гипотезой. Целостная система посылок гипо-тезы позволяет единым взглядом усмотреть все относящиеся к лей факты и тем самым объяснить их на основе общих принципов. В таком случае отпадает необходимость обращения к гипотезам типа ad hoc .

    ●-Наконец, для современного этапа развития научного зна-ния очень важно проводить различие между простотой самой гипотезы, заключающейся в ее общности и минимальности ис-ходных посылок, и сложностью математического аппарата для ее выражения. В ходе развития научного познания это разли-

    Чие принимает форму определенного противоречия. С возник-новением более общих и глубоких гипотез и теорий достигается более четкое выделение важнейших элементов их содержания в виде минимального числа исходных посылок. Одновременно с этим усложняются концептуальные модели и математический аппарат, используемый для их выражения.

    На такое различие между простотой физической теории и математическими средствами ее выражения особое внимание обратил А. Эйнштейн, сравнивая свою общую теорию относительности с теорией тяготения И. Ньютона: «Чем проще и фундаментальнее становятся наши допущения, тем сложнее математическое орудие нашего рассуждения; путь от теории к наблюдению становится длиннее, тоньше и сложнее. Хотя это и звучит парадоксально, но мы можем сказать: современная физика проще, чем старая физика, и поэтому она кажется более трудной и запутанной» 1 .

    Требования к гипотезе

    К гипотезе предъявляют следующие требования:

    Она не должна включать в себя слишком много положений: как правило, одно основное, редко большее;

    В нее нельзя включать понятия и категории, не являющиеся однозначными, не уясненные самим исследователем;

    При формулировке гипотезы следует избегать ценностных суждений, гипотеза должна соответствовать фактам, быть проверяемой и приложимой к широкому кругу явлений;

    Требуется безупречное стилистическое оформление, логическая простота, соблюдение преемственности.

    Гипотеза должна соответствовать теме, поставленным задачам и не выходить за рамки предмета исследования. Нередко встречаются интересные гипотезы, которые оказываются лишь искусственно привязанными к проблеме.

    Гипотеза должна нацеливать на решение проблемы, а не уводить от нее. Нельзя давать воображению уводить себя в дебри проблем. Лучше по мере накопления новых фактов углубить и расширить гипотезу, чем вначале строить слишком много предположений, для проверки которых иной раз мало многолетней работы целого научного коллектива или которые даже нет смысла проверять ввиду их абстрактности, оторванности от науки и практики, схоластичности.

    Гипотеза должна соответствовать хорошо проверенным фактам, объяснять их, предсказывать новые. Из гипотез, которые должны объяснять целую серию фактов, предпочтение отдается той, которая единообразно объясняет наибольшее количество фактов.

    Гипотеза, объясняющая явления определенной области, не должна противоречить другим теориям в той же области, истинность которых уже была доказана. Если же новая гипотеза вступает в противоречие с уже известными, но при этом охватывает более широкий круг явлений, чем в предшествующих теориях, то последние становятся частным случаем новой, более общей, теории.

    Гипотеза должна быть доступна проверке. Предположения остаются таковыми, если их нельзя проверить и доказать; они за редким исключением не могут входить в фонд науки как теоретическая ценность, как научный фонд знаний. Поступок исследователя будет справедливым, если он вслед за научными выводами раскроет гипотетические положения своего научного поиска, которые не удалось проверить.

    Научная гипотеза должна содержать в себе проект решения проблемы в теории и на практике. Тогда она станет органической частью исследования.

    Чтобы реализовать эти требования, при разработке гипотезы рекомендуется последовательно продумать и дать ответ на следующие вопросы:

    1. Что наиболее существенно в предмете исследования (процесс формирования качества, связь между педагогическими явлениями, характеристика педагогического явления, процесса, формирование отношений между субъектами учебной, спортивной деятельности и т.д.)?

    2. Что представляют собой составные элементы объекта исследования, из которых складываются изучаемое качество, виды отношений, группы свойств, признаки педагогических явлений и др., так как для гипотезы необходима их структура.

    3. Каковы модель изучаемого процесса, свойства личности, качества? Как можно схематически изобразить составные элементы и связи между ними? Какие данные есть для такой модели? Какие предположения можно сделать по косвенным данным, по интуиции?

    4. Как предположительно протекают процесс, явление, что происходит с элементами при развитии явления? Как изменяется их связь от изменения внешних условий, педагогических влияний? Какова диалектика связи внешних условий и внутренних факторов при нормальном, ускоренном и неправильном протекании процесса, явления?

    5. В чем сущность изучаемого процесса, явления? Таковы основные положения, определяющие повышение качества конструирования и использования гипотезы как методологической основы педагогического исследования.

      Основные этапы построения гипотез

    Основные этапы построения гипотез можно разделить на три части:

      Выдвижение гипотез – это основной вид научного творчества, связанный с объективной потребностью в новом знании. При этом выдвигаемая гипотеза должна быть:

    теоретически надежна, приемственна с предшествующим знанием, не противоречащая фактам науки;

    Логически согласована с проблемой и целью;

    Включать понятия, получившие предварительное уточнение и интерпретацию;

    Приложима к данным, заключенным в предварительном описании предмета исследования;

    Предоставлять возможность эмпирической проверки (верификации) с помощью предметно-методических средств познания, которая обеспечивает переход от нее к теории и закону.

    2. Формулировка (разработка) гипотез. Выдвинутую гипотезу необходимо сформулировать. От правильности, четкости и определенности формулировки гипотезы зависят ход и результат ее проверки.

    3. Проверка гипотез. Доказательство, достоверность гипотез становится главной задачей последующего эмпирического исследования. подтвердившиеся гипотезы становятся теорией и законом и используются для внедрения в практику. Неподтвердившиеся либо отбрасываются, либо становятся основой для выдвижении новых гипотез и новых направлений в исследовании проблемной ситуации.

    5.Функции гипотез в научном исследовании.

    Гипотезы присутствуют на всех стадиях научного исследования независимо от его характера - фундаментального или прикладного, однако наиболее выражено их применение в следующих случаях:

    1)обобщение и суммирование результатов проведенных наблюдений и экспериментов,

    2)интерпретация полученных обобщений,

    3)обоснование некоторых ранее введенных предположений и

    4)планирование экспериментов для получения новых данных или проверке некоторых допущений.

    Гипотезы настолько распространены в науке, что ученые иногда даже не замечают гипотетического характера знания и полагают, что возможны исследования без предпосылок в виде гипотез. Однако это мнение явно ошибочно. Как говорилось выше, исследование состоит в постановке, формулировании и решении проблемы, а каждая проблема возникает только внутри некоторого предварительного знания, содержащего гипотезы и даже предпосылка проблемы имеет гипотетический характер.

    Рассмотрим основные функции гипотез в науке.

    Во-первых, гипотезы применяются для обобщения опыта, суммирования и предположительного расширения наличных эмпирических данных. Наиболее известным видом таких обобщающих наличный опыт гипотез является перенос свойств ряда элементов некоторого класса на весь рассматриваемый класс с помощью методов классической энумеративной индукции. Другим примером гипотез этого класса могут быть так называемые «эмпирические кривые», связывающие ряды данных наблюдений, представленных точками на координатной плоскости. По сути дела, даже представление количественных данных на координатной плоскости точками является в известной мере гипотетическим, поскольку всегда допустимы ошибки измерения или точность их ограничена вполне определенным пределом.

    Во-вторых, гипотезы могут быть посылками дедуктивного вывода, т.е.произвольными предположениями гипотетико-дедуктивной схемы, рабочими гипотезами или упрощающими допущениями, принимаемыми даже при сомнении в их истинности.

    В-третьих, гипотезы применяются для ориентировки исследования, придания ему направленного характера. Такую функцию выполняют частично (эмпирически или теоретически)обоснованные гипотезы, которые являются одновременно и объектом исследования. Выполняя эту функцию, гипотеза выступает либо в форме рабочей, либо в форме предварительных и неточных положений программного характера, например «Живые организмы можно синтезировать при воспроизведении физических условий нашей планеты, имевших место 2 млрд.лет назад»и т.п.

    В-четвертых, гипотезы используются для интерпретации эмпирических данных или других гипотез. Все репрезентативные гипотезы являются интерпретирующими, поскольку позволяют объяснить ранее полученные феноменологические гипотезы.

    В-пятых, гипотезы можно применять для защиты других гипотез перед лицом новых опытных данных или выявленного противоречия с уже имевшимся ранее знанием. Так, У.Гарвей (1628) ввел предположение о циркуляции крови, которое противоречило опытным данным о различии венозной и артериальной крови по составу; чтобы защитить исходное предположение от этого опытного опровержения, он ввел защитную гипотезу о замкнутости артериального кровообращения невидимыми капиллярами, которые и были позже открыты.

    В заключении выше сказанного, можно сделать вывод, что гипотезы представляют собой неустранимый элемент эмпирических наук, особую форму развития естествознания, т.е.гипотеза - является формой развития биологического знания.

    Научное исследование как таковое состоит в исследовании проблем, предполагающем формулирование, разработку и проверку гипотез. Чем более смелой является гипотеза, тем больше она объясняет и больше степень ее проверяемости. Однако вместе с тем, чтобы быть научным, предположение должно быть обоснованным и проверяемым, что исключает из области науки гипотезы adhoc и гипотезы,вводимые только на основании их формальной элегантности и простоты. Задачей в научном исследовании является не попытка избегать вообще употребления гипотез, но вводить их сознательно, так как развитие знания в принципе невозможно без предположений, выходящих за рамки данного опыта, в частности при развитии биологического знания [ 8, с. 76-97 ].

    Заключение

    В заключении сделаем некоторые выводы на основе всего выше сказанного и приведенного в пример.

    Непосредственное определение гипотезы звучит примерно так: Гипотеза - это научно обоснованное предположение, служащее для объяснения какого-либо факта, явления, которые на основе прежнего знания необъяснимы.

    Гипотеза еще не истина, свойством истинности она в представлении выдвинувшего ее исследователя не обладает.

    Гипотеза - это предположительно новое знание (его истинность или ложность требуется доказать), полученное путем экстраполяции старого знания и в то же время порывающее с ним. Сохраняя определенную преемственность в отношении прошлого знания, гипотеза должна содержать принципиально новое знание.

    Уже в том, что гипотеза является формой развития, движения всякого знания, проявляется ее диалектическая природа: она необходимая форма перехода от неизвестного к известному, ступень превращения первого во второе, вероятного знания в достоверное, относительного в абсолютное. Если в науке нет гипотез, то это значит, что в ней нет и проблем, на решение которых они направлены, стало быть в ней знание не развивается.

    Итак, мы видим, что научный поиск включает в себя два момента:

    1) постановку проблемы и

    2) формулировку гипотезы.

    При благоприятном исходе, при подтверждении гипотезы поиск завершается открытием. Открытие образует третью, завершающую стадию поиска.

    Список использованной литературы

    1.М.Я.Виленский/электронный ресурс/http://lib.sportedu.ru/press/tpfk/1997N5/p15-17.htm

    Гипотеза научного исследования представляет собой возможную (предполагаемую) ответ на вопрос, который ставит перед собой исследователь, и состоит из предполагаемых связей между исследуемыми фактами. Формулировка гипотезы начинается еще во время размышлений над целью и темой исследования. Анализируя состояние выбранной для исследования проблемы, исследователь рассуждает о необходимости исследовать в первую очередь более актуальные вопросы, сформировать предварительные представления о связи, которые могут существовать между уже известными фактами. На основе этого постепенно возникает представление о гипотезе исследования.

    Формулируя гипотезу, всегда следует помнить, что гипотеза, которая не учитывает специфики изучаемых явлений, может даже мешать процессу исследования. Поэтому для разработки гипотезы исследований в области бухгалтерского учета необходимо прежде всего поставить задачу поисковой работы.

    Научная гипотеза

    Научная гипотеза - это утверждение, что содержит предположение о решении, которое стоит перед исследователем определенной научной проблемы. По сути гипотеза - это главная идея возможного решения.

    Во избежание возможных ошибок в формулировке гипотез в исследованиях в области бухгалтерского учета следует придерживаться определенных подходов (рис. 9.1).

    Рис. 9.1. Подходы к формулированию гипотезы в исследованиях в области бухгалтерского учета

    Первый подход. Необходимость строгого соблюдения первого подхода обусловлена тем, что наука о бухгалтерском учете должна строиться на четкой грамотной терминологии, соответствующей предмету исследования. При осуществлении научного исследования важно правильно формулировать научные мысли и взгляды. Например, правильно сформулированной такая гипотеза: "изменение методики оценки биологических активов на предприятиях лесного хозяйства обеспечит соответствие бухгалтерского учета требованиям национальных положений (стандартов)". Неправильно сформулированной по грамотности языка такая гипотеза: "учетное отражение цены лесопродукции в системе управления предприятием не соответствует требованиям стандартов".

    Второй подход. Научная идея основном не возникает на пустом месте, то есть она должна быть обоснована предварительными знаниями. Недаром один из афоризмов, приписываемых И. Ньютону, звучит так: "Он видел далеко только потому, что стоял на могучих плечах своих предшественников". Этим подчеркивается важность учета в своей научной деятельности научных исследований других ученых. Этот подход легко реализовать при условии, если после четкой постановки проблемы исследователь серьезно работает над изучением имеющихся источников по выбранному вопросу.

    При этом надо учитывать, что чтение "про запас" в основном малоэффективно. Только когда проблема завладела всеми помыслами исследователя, можно ожидать пользы от работы с литературой по этому направлению. И разработана гипотеза при этом не будет оторванной от уже накопленных знаний.

    В исследованиях в области бухгалтерского учета второй подход можно реализовать из-за переноса закономерностей, выявленных в одних исследованиях, на другие. Это делают с помощью гипотетического предположения по принципу аналогии.

    Третий подход. Согласно этому подходу гипотеза может выполнять функции подтверждения и дополнения других гипотез в системе имеющихся (прошлых) и полученных (современных) знаний. Например, в теории и методике бухгалтерского учета расходов принято считать, что обжег расходов имеет целью определение расходов; классификацию расходов; определение метода учета затрат; формирование себестоимости. В связи с этим может быть выдвинута гипотеза о том, что уровень эффективности учета затрат на предприятиях лесного хозяйства зависит от правильности оценки расходов, обоснованности их классификации, точности определения метода учета затрат и калькулирования себестоимости.

    Четвертый подход. По этому подходом гипотеза должна быть сформулирована так, чтобы истинность выдвинутого в ней предположение не вполне очевидной. Например, можно сформулировать следующую гипотезу: "... достоверное определение финансовых результатов на предприятиях лесного хозяйства в первую очередь зависит от эффективной организации учета затрат с учетом организационно-технологических особенностей деятельности этих предприятий". Однако такое утверждение давно доказанным в бухгалтерской науке и само собой разумеющимся.

    Научная гипотеза предшествует как решению проблемы в целом, так и каждого ее составляющей. Гипотеза в процессе исследования может уточняться, дополняться, изменяться, а порой и отклоняться. Формулируя гипотезу, исследователь делает предположение о том, каким образом он стремится достичь поставленной цели. При этом должны быть четко определены положения, в доказывании и защиты (экспериментальной проверки).

    Наиболее продуктивными являются гипотезы, сформулированные в таком виде: "Если имеет место А, то будет место и В при выполнении условия С".

    Требования к научным гипотезам

    При формулировке гипотезы бухгалтерских научных исследованиях следует придерживаться определенных требований (рис. 9.2):

    Рис. 9.2. Требования к формулировке гипотезы бухгалтерских научных исследованиях

    Приведем для примера гипотезы, сформированные ученым, который проводит исследования в области бухгалтерского учета на тему "Бухгалтерский учет и контроль затрат в системе управления предприятий лесного хозяйства":

    1. Правильная организация учета затрат влияет на формирование достоверной себестоимости лесопродукции.

    2. Оценка биологических активов наиболее эффективна при условии ее соответствия нормам П (С) БУ.

    3. Применение современных методов калькулирования себестоимости продукции способствует повышению достоверности формирования себестоимости продукции.

    4. Использование системы бюджетирования на предприятиях лесного хозяйства улучшает финансовое состояние этих предприятий.