Отношения делимость на нуль = Error. Отношение делимости в кольце целых чисел

Как уже отмечалось, натуральное число а делится нацело на натуральное число b, если существует натуральное число с, при умножении которого на b получается а:

Слово «нацело» обычно опускают – для краткости.

Если а делится на b, то говорят еще, что а кратно b. Например, число 48 кратно числу 24.

Теорема 1. Если один из множителей делится на некоторое число, то и произведение делится на это число .

Например, 15 делится на 3, значит, и 15∙11 делится на 3, потому что 15∙11=(3∙5)∙11=3∙(5∙11).

Эти рассуждения подходят и для общего случая. Пусть число а делится на с, тогда найдется такое натуральное число n, что a = n∙c. Рассмотрим произведение числа а и произвольного натурального числа b. a∙b = n∙(c∙b) =
= n∙(b∙c) = (n∙b)∙c. Отсюда, по определению, вытекает, что произведение a∙b тоже делится на с. Что и требовалось доказать.

Теорема 2. Если первое число делится на второе, а второе делится на третье, то первое число делится на третье .

Например, 777 делится на 111, потому что 777=7∙111, а 111 делится на 3, потому что 111 = 3∙37. Из этого следует, что 777 делится на 3, так как 777 = 3∙(37∙7).

В общем случае эти рассуждения можно повторить почти дословно. Пусть число а делится на число b, а число b делится на число с. Это означает, что найдутся такие натуральные числа n и m, что a = n∙b и b = m∙c. Тогда число а можно представить в виде: а = n∙b = n∙(m∙c) = (n∙m)∙c. Равенство а = (n∙m)∙c означает, что число а тоже делится на с.

Теорема 3. Если каждое из двух чисел делится на некоторое число, то их сумма и разность делятся на это число .

Например, 100 делится на 4, потому что 100=25∙4; 36 тоже делится на 4, потому что 36 = 9∙4. Из этого следует, что 136 делится на 4, потому что

136 = 100+ 36 = 25∙4+ 9∙4 = (25+ 9)∙4 = 34∙4.

Можно также заключить, что число 64 делится на 4, потому что

64 = 100 – 36 = 25∙4 – 9∙4 =(25 – 9)∙4= 16∙4.

Докажем теорему в общем случае. Пусть каждое из чисел а и b делится на число с. Тогда, по определению, найдутся такие натуральные числа n и m, что
а = n∙c и b = m∙c. Рассмотрим сумму чисел а и b.

a + b = n∙c + m∙c = (n + m)∙c.

Отсюда следует, что а + b делится на с.

Аналогично, а – b = n∙c – m∙c = (n – m)∙c. Следовательно, а – b делится на с.

Теорема 4. Если одно из двух чисел делится на некоторое число, а другое на него не делится, то их сумма и разность не делятся на это число .

Например, 148 делится на 37, потому что 148 = 4∙37, а 11 не делится на 37. Очевидно, что сумма 148 + 11 и разность 148 – 11 не делятся на 37, иначе это противоречило бы свойству 3.



Признаки делимости

Если число оканчивается цифрой 0, то оно делится на 10 .

Например, число 4560 оканчивается цифрой 0, его можно представить в виде произведения 456∙10, которое делится на 10 (по теореме 1).

Число 4561 не делится на 10, потому что 4561 = 4560+1 – сумма числа 4560, делящегося на 10, и числа 1, не делящегося на 10 (по теореме 4).

Если число оканчивается одной из цифр 0 или 5, то оно делится на 5 .

Например, число 2300 делится на 5, потому что это число делится на 10, а 10 делится на 5 (по теореме 2).

Число 2305 оканчивается цифрой 5, оно делится на 5, так как его можно записать в виде суммы чисел, делящихся на 5: 2300 + 5 (по теореме 3).

Число 52 не делится на 5, потому что 52 = 50 + 2 – сумма числа 50, делящегося на 5, и числа 2, не делящегося на 5 (по теореме 4).

Если число оканчивается одной из цифр 0, 2, 4, 6, 8, то оно делится на 2.

Например, число 130 оканчивается цифрой 0, оно делится на 10, а 10 делится на 2, следовательно, 130 делится на 2.

Число 136 оканчивается цифрой 6, оно делится на 2, так как его можно записать в виде суммы чисел, делящихся на 2: 130 + 6 (по теореме 3).

Число 137 не делится на 2, потому что 137 = 130 + 7 – сумма числа 130, делящегося на 2, и числа 7, не делящегося на 2 (по теореме 4).

Число, делящееся на 2, называют четным.

Число, не делящееся на 2, называют нечетным .

Например, числа 152 и 790 – четные, а числа 111 и 293 – нечетные.

Если сумма цифр числа делится на 9, то и само число делится на 9 .

Например, сумма цифр 7 + 2 + 4 + 5 = 18 числа 7245 делится на 9. Число 7245 делится на 9, потому что его можно представить в виде суммы 7∙1000 +
+ 2∙100 + 4∙10 + 5 = 7 (999 + 1) + 2∙(99 + 1) + + 4∙(9 + 1) + 5 = (7∙999 + 2∙99 +
+ 4∙9) + (7 + 2 + 4 + 5), где сумма в первых скобках делится на 9, а во вторых скобках – сумма цифр данного числа – также делится на 9 (по теореме 3).

Число 375 не делится на 9, так как сумма его цифр 3 + 7 + 5=15 не делится на 9 Это можно доказать следующим образом: 375 = 3∙(99 + 1) + 7∙(9+1) + 5 =
+ (3∙99 + 7∙9) + (3 + 7 + 5), где сумма в первых скобках делится на 9, а во вторых скобках – сумма цифр числа 375 – не делится на 9 (по теореме 4).



Если сумма цифр числа делится на 3, то и само число делится на 3 .

Например, у числа 375 сумма цифр 3 + 7 + 5=15 делится на 3, и оно само делится на 3 потому, что 375 = (3∙99 + 7∙9) + (3 + 7 + 5), где сумма в первых скобках делится на 3, а во вторых скобках – сумма цифр числа 375 – также делится на 3.

Сумма цифр числа 679, равная 6 + 7 + 9 = 22, не делится на 3, и само число не делится на 3, потому что 679 = (6∙99 + 7∙9) + (6 + 7 + 9), где сумма в первых скобках делится на 3, а во вторых скобках – сумма цифр числа 679 – не делится на 3.

Примечание . Когда говорят «число оканчивается цифрой...» имеют в виду «десятичная запись числа заканчивается цифрой...»

Простые и составные числа

Каждое натуральное число р делится на 1 и само на себя:

р:1=р, р:р=1.

Простым числом называют такое натуральное число, которое больше единицы и делится только на 1 и само на себя .

Вот первые десять простых чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

Непростые натуральные числа, большие единицы, называют составными . Каждое составное число делится на 1, само на себя и еще хотя бы на одно натуральное число.

Вот все составные числа, меньшие 20:

4, 6, 8, 9, 10, 12, 14, 15, 16, 18.

Таким образом, множество всех натуральных чисел состоит из простых чисел, составных чисел и единицы.

Простых чисел бесконечно много, есть первое число – 2, но нет последнего простого числа.

Делители натурального числа

Если натуральное число а делится на натуральное число b, то число b называют делителем числа а.

Например, делителями числа 13 являются числа 1 и 13, делителями числа 4 – числа 1, 2, 4, а делителями числа 12 – числа 1, 2, 3, 4, 6, 12.

Каждое простое число имеет только два делителя – единицу и само себя, а каждое составное число, кроме единицы и себя, имеет и другие делители.

Если делитель – простое число, то его называют простым делителем. Например, число 13 имеет простой делитель 13, число 4 – простой делитель 2, а число 12 – простые делители 2 и 3.

Каждое составное число можно представить в виде произведения его простых делителей. Например,

28 = 2∙2∙7 = 2 2 ∙7;

81 = 3∙3∙3∙3 = З 4 ;

100 = 2∙2∙5∙5 = 2 2 ∙5 2 .

Правые части полученных равенств называют разложением на простые множители чисел 28, 22, 81 и 100.

Разложить данное составное число на простые множители – значит представить его в виде произведения различных его простых делителей или их степеней.

Покажем, как можно разложить число 90 на простые множители.

1) 90 делится на 2, 90:2 = 45;

2) 45 не делится на 2, но делится на 3, 45:3= 15;

3) 15 делится на 3, 15:3 = 5;

4) 5 делится на 5, 5:5 = 1.

Таким образом, 90 = 2∙45 = 2∙3∙15 = 2∙3∙3∙5.

Наибольший общий делитель

Число 12 имеет делители 1, 2, 3, 4, 12. Число 54 имеет делители 1, 2, 3, 6, 9, 18, 27, 54. Мы видим, что числа 12 и 54 имеют общие делители 1, 2, 3, 6.

Наибольшим общим делителем чисел 12 и 54 является число 6.

Наибольший общий делитель чисел а и b обозначают: НОД (а, b).

Например, НОД (12, 54) = 6.

Наименьшее общее кратное

Число, делящееся на 12, называется кратным числу 12. Числу 12 кратны числа 12, 24, 36, 48, 60, 72, 84, 96, 108 и т.д. Числу 18 кратны числа 18, 36, 54, 72, 90, 108, 126 и т. д.

Мы видим, что имеются числа, кратные одновременно 12 и 18. Например, 36, 72, 108, ... . Эти числа называются общими кратными чисел 12 и 18.

Наименьшим общим кратным натуральных чисел а и b называют наименьшее натуральное число, делящееся нацело на а и b. Это число обозначают: НОК (а, b).

Наименьшее общее кратное двух чисел обычно находят одним из двух способов. Рассмотрим их.

Найдем НОК(18, 24).

I способ. Будем выписывать числа, кратные 24 (большему из данных чисел), проверяя, делится ли каждое из них на 18: 24∙1=24 – не делится на 18, 24∙2 = 48 – не делится на 18, 24∙3 = 72 – делится на 18, поэтому НОК (24, 18) =
= 72.

II способ. Разложим числа 24 и 18 на простые множители: 24 = 2∙2∙2∙3,
18 = 2∙3∙3.

НОК(24, 18) должно делиться и на 24, и на 18. Поэтому искомое число содержит все простые делители большего числа 24 (т. е. числа 2, 2, 2, 3) и еще недостающие множители из разложения меньшего числа 18 (еще одно число 3). Поэтому НОК(18, 24) = 2∙2∙2∙3∙3 = 72.

Так как взаимно простые числа не имеют общих простых делителей, то их наименьшее общее кратное равно произведению этих чисел. Например, 24 и 25 – взаимно простые числа. Поэтому НОК (24, 25) = 24∙25 = 600.

Если одно из двух чисел делится нацело на другое, то наименьшее общее кратное этих чисел равно большему из них. Например, 120 делится нацело на 24, следовательно, НОК (120, 24)= 120.

Целые числа

Напоминание. Числа, которые используют при подсчете количества предметов, называют натуральными числами . Нуль не считается натуральным числом. Натуральные числа и нуль, записанные в порядке возрастания и без пропусков, образуют ряд целых неотрицательных чисел:

В этой разделе будут введены новые числа – целые отрицательные .

Целые отрицательные числа

Базовый пример из жизни – термометр. Предположим, он показывает температуру 7° тепла. Если температура понизится на 4°, то термометр будет показывать 3° тепла. Уменьшению температуры соответствует действие вычитания: 7 – 4 = 3. Если температура понизится на 7°, то термометр покажет 0°: 7 – 7 = 0.

Если же температура понизится на 8°, то термометр покажет –1° (1° мороза). Но результат вычитания 7 – 8 нельзя записать с помощью натуральных чисел и нуля, хотя он имеет реальный смысл.

Отсчитать в ряду неотрицательных целых чисел от числа 7 влево 8 чисел нельзя. Чтобы действие 7 – 8 стало выполнимым, расширим ряд неотрицательных целых чисел. Для этого влево от нуля запишем (справа налево) по порядку все натуральные числа, добавляя к каждому из них знак «–», показывающий, что это число стоит слева от нуля.

Записи –1, –2, –3, ... читают «минус 1», «минус 2», «минус 3» и т. д.:

–5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, ... .

Полученный ряд чисел называют рядом целых чисел. Точки слева и справа в этой записи означают, что ряд можно продолжать неограниченно вправо и влево.

Справа от числа 0 в этом ряду расположены числа, которые называют натуральными или целыми положительными.

Определение. Пусть даны натуральные числа а и b. Говорят, число а делится на число b, если существует такое натура число q, что а= bq.

В этом случае число b, называют делителем числа а, а число а – кратным числа b.

Например, 24 делится на 8, так как существует такое q = 3, что 24 = 8×3. Можно сказать иначе: 8 – это делитель числа 24, а 24 есть кратное числа 8.

В том случае, когда а делится на b, пишут: а b. Эту запись часто читают и так: «а кратно b».

Заметим, что понятие «делитель данного числа» следует отличать понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но 5 не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства а = a , справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а . Сначала рассмотрим следующую теорему.

Теорема 1. Делитель b данного числа а не превышает этого числа, т.е. если а b, то b £ а.

Доказательство. Так как а b, то существует такое q Î N, что а = bq и, значит, а - b = bq - b = b×(q - 1). Поскольку q Î N, то q ³ 1. Тогда b×(q- 1) ³ 0 и, следовательно, b £ а.

Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. Они образуют конечное множество {1, 2, 3, 4, 6, 9, 12, 18, 36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое натуральное число, большее 1, которое имеет только два делителя - единицу и само это число.

Например, число 13 - простое, поскольку у него только два делителя: 1 и 13.

Определение. Составным числом называется такое натуральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1, 2 и 4.

Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, – их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, ..., и все они могут быть получены по формуле а = 4q , где q принимает значения 1, 2, 3,....

Нам известно, что отношение делимости на множестве N обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.

Теорема 2 . Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство. Для любого натурального а справедливо равенство а = а× 1. Так как 1 ÎN, то, по определению отношения делимости, a a .

Теорема 3 . Отношение делимости антисимметрично, т.е. если а b и а ¹ b, то

Доказательство. Предположим противное, т. е. что b а. Но тогда а £ b, согласно теореме, рассмотренной выше.

По условию а b и а ¹ b. Тогда, по той же теореме, b £ а.

Неравенства а £ b и b £ а будут справедливы лишь тогда, когда а = b что противоречит условию теоремы. Следовательно, наше предположение неверное и теорема доказана.

Теорема 4 . Отношение делимости транзитивно, т.е. если а b и b с, то а с.

Доказательство. Так как а b, q, что а = bq, а так как b с, то существует такое натуральное число р, что b = ср. Но тогда имеем: а = bq = (ср)q = с(рд). Число pq -натуральное. Значит, по определению отношения делимости, а с .

Теорема 5. (признак делимости суммы). Если каждое из натуральных чисел а 1 , а 2 , …, а п делится на натуральное число b, то и их сумма a 1 + а 2 + ... + а п делится на это число.

Доказательство. Так как а 1 b, то существует такое натуральное число q 1 , что а 1 – bq 1 . Так как а 2 b, то существует такое натуральное число q 2 , что а 2 = bq 2 . Продолжая рассуждения, получим, что если а п b, то существует такое натуральное число q п, что а п = bq n . Эти равенства позволяют преобразовать сумму а 1 + а 2 + ... + а n в сумму вида bq 1 + bq 2 + ... + bq п. Вынесем за скобки общий множитель b, а получившееся в скобках натуральное число q 1 + q 2 + ... + q n обозначим буквой q. Тогда a 1 + а 2 + ... + а п = b(q 1 + q 2 + ... + q п) = bq, т.е. сумма a 1 + а 2 + ... + а п оказалась представленной в виде произведения числа и некоторого натурального числа q. А это значит, что сумма а 1 + a 2 + ... + а п делится на b, что и требовалось доказать.

Например, не производя вычислений, можно сказать, что сумма 175 + 360 + 915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа а 1 и a 2 делятся на b и a 1 ³ а 2 , то их разность а 1 - а 2 делится на b.

Доказательство этой теоремы аналогично доказательству признака делимости суммы.

Теорема 7 (признак делимости произведения). Если число а делится на b, то произведение вида ах, где х Î N. делится на b.

Доказательство. Так как а b, то существует такое натуральное число q, что а = bq. Умножим обе части этого равенства на натуральное число х. Тогда ах = (bq )х, откуда на основании свойства ассоциативности умножения (bq)х = b(qх) и, значит, ах = b(qх), где qх – натуральное число. Согласно определению отношения делимости, ах b, что и требовалось доказать.

Из доказанной теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b.

Например, произведение 24×976×305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся сумма на число b не делится.

Доказательство. Пусть s = a 1 + а 2 + ... + а п + с и известно, что

а 1 b, а 2 b,а 3 b, ...,а п b, но . Докажем, что тогда .

Предположим противное, т.е. пусть s. Преобразуем сумму 5 к виду с = 5 - (й| + а 2 + ... + а п). Так как s b по предположению, (a 1 + а 2 + + ... + а п) b согласно признаку делимости суммы, то по теореме о делимости разности с b. Пришли к противоречию с тем, что дано. Следовательно, .

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так как 34 2,376 2, 124 2, но .

Теорема 9. Если в произведении аb множитель а делится на натуральное число т, а множитель b делится на натуральное число n , то ab делится на тп.

Справедливость этого утверждения вытекает из теоремы о делимости произведения.

Теорема 10. Если произведение ас делится на произведение bс, причем с - натуральное число, то и a делится на b.

Доказательство. Так как ас делится на bс, то существует такое натуральное число q, что ас = (bс)q, откуда ас - (bq)с и, следовательно, a = bq, т.е a b .

Упражнения

1. Объясните, почему число 15 является делителем числа 60 и не ляется делителем числа 70.

2. Постройте граф отношения «быть делителем данного числа», заданного на множестве X = {2, 6, 12, 18, 24}. Как отражены на этом графе свойства данного отношения?

3. Известно, что число 24 - делитель числа 96, а число 96 - делите числа 672. Докажите, что число 24 делитель числа 672, не выполнять деления.

4. Запишите множество делителей числа.

а) 24; б)13; в) 1.

5. На множестве X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} задано отношение «иметь одно и то же число делителей». Является ли оно отношением эквивалентности?

6. Постройте умозаключение, доказывающее, что:

а) число 19 является простым;

б) число 22 является составным.

7. Докажите или опровергните следующие утверждения:

а) Если сумма двух слагаемых делится на некоторое число, то и каждое слагаемое делится на это число.

б) Если одно из слагаемых суммы не делится на некоторое число, то и сумма не делится на это число.

в) Если ни одно слагаемое не делится на некоторое число, то и сумма не делится на это число.

г) Если одно из слагаемых суммы делится на некоторое число, а другое не делится на это число, то и сумма не делится на это число.

8 . Верно ли, что:

а) а т и b п Þ аb тп;

в) аb п Þ а п или b п.

Признаки делимости

Рассмотренные в п. 88 свойства отношения делимости позволяю доказать известные признаки делимости чисел, записанных в десяти ной системе счисления, на 2, 3, 4, 5, 9.

Признаки делимости позволяют установить по записи числа делится ли оно на другое, не выполняя деления.

Теорема 11 (признак делимости на 2). Для того чтобы число x делилось на 2, необходимо и достаточно, чтобы его десятичная за оканчивалась одной из цифр 0, 2, 4, 6, 8.

Доказательство. Пусть число х х = а n × 10 n + a n -1 10 n -1 + ... + а 1 ×10 + а 0 , где а п, а п -1 , ..., а 1 принимают значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а п ¹ 0 и а 0 принимает значения 0, 2, 4, 6, 8. Докажем, что тогда х 2.

Так как 10 2, то 10 2 2, 10 3 2,..., 10 n 2 и, значит, (а n ×10 n + а n -1 × 10 n -1 + … + a 1 × 10) 2. По условию а 0 тоже делится на 2, и поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 2. Следовательно, согласно признаку делимости суммы, число х делится на 2.

Докажем обратное: если число х делится на 2, то его десятичная запись оканчивается одной из цифр 0, 2, 4, 6, 8.

Запишем равенство х = а n ×10 n + а п-1 × 10 n -1 +... + а 1 ×10 + а 0 таком виде: a 0 = х -(а n × 10 n -1 +а n -1 ×10 n -1 + ... + а 1 × 10). Но тогда, по теореме о делимости разности, а 0 2, поскольку х 2 и (а n ×10 n + а n -1 ×10 n -1 + ... +а 1 ×10) 2. Чтобы однозначное число а 0 делилось на 2, оно должно принимать значения 0, 2, 4, 6, 8.

Теорема 12 (признак делимости на 5). Для того чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5.

Доказательство этого признака аналогично доказательству признака делимости на 2.

Теорема 13 (признак делимости на 4). Для того чтобы число х делилось на 4, необходимо и достаточно, чтобы на 4 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х.

Доказательство. Пусть число х записано в десятичной системе счисления, т.е. х = a n ×10 n + а n -1 ×10 n -1 +...+ а 1 × 10 + а 0 и две последние цифры в этой записи образуют число, которое делится на 4. Докажем, что тогда х 4.

Так как 100 4, то (а n ×10 n + а n -1 ×10" n -1 + ...+ а 2 ×10 2) 4. По условию, а 1 ×10 + а 0 (это и есть запись двузначного числа) также делится на 4. Поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 4. Следовательно, согласно признаку Делимости суммы, и само число х делится на 4.

Докажем обратное, т.е. если число х делится на 4, то двузначное число, образованное последними цифрами его десятичной записи, тоже длится на 4.

Запишем равенство х = а n × 10 n +а п -1 ×10 n -1 +...+а 1 ×10+а 0 в таком виде: a 1 ×10 + a 0 = x – (a n × 10 n + a n -1 × 10 n -1 + …+a 2 ×10 2). Так как х 4 и (a n × 10 n + a n -1 ×10 n -1 +...+а 2 ×10 2) 4, то по теореме о делимости разности (a 1 × 10 + a 0 ) 4. Но выражение а 1 ×10 +а 0 есть запись двузначного числа, образованного последними цифрами записи числа х.

Например, число 157872 делится на 4, так как последние две цифры в его записи образуют число 72, которое делится на 4. Число 987641 не делится на 4, так как последние две цифры в его записи образуют число 41, которое не делится на 4.

Теорема 14 (признак делимости на 9). Для того чтобы число х делилось на 9, необходимо и достаточно, чтобы сумма цифр его десятичной записи делилась на 9.

Доказательство. Докажем сначала, что числа вида 10 n - 1 делятся на 9. Действительно, 10 n - 1 = (9×10 n -1 + 10 n -1 ) - 1 = (9×10 n -1 + 9×10 n -2 + 10 n -2 )- 1 = (9×10 n -1 + 9×10 n - 2 + ... + 10) - 1 = 9×10 n -1 + 9×10 n -2 + ... + 9. Каждое слагаемое полученной суммы делится на 9 значит, и число 10 n - 1 делится на 9.

Пусть число х = а п ×10 n + а п -1 ×10 n -1 +...+а 1 × 10 +а 0 и (а п + а n -1 +…+ а 1 + а 0) 9. Докажем, что тогда x 9.

Преобразуем сумму а п × 10 n + а n -1 ×10 n -1 + ... + а 1 × 10 + а 0 , прибавив и вычтя из нее выражение а п + а п-1 +...+а 1 + а 0 и записав результат в таком виде: х = (а n ×10 n - а п) + (а n -1 ×10 n -1 - а п-1 ) + ... + (а 1 × 10 1 - а 1 ) + (а 0 -а 0 ) + (а п + а n -1 + ... + а 1 + а 0 ) = а n ×(10 n - 1) + а n -1 ×(10 n -1 - 1) +...+ а 1 ×(10-1) + (а n + a n -1 +...+ а 1 + а 0).

В последней сумме каждое слагаемое делится на 9:

а n ×(10 n – 1) 9,так как (10 n -1) 9,

а п -1 ×(10 n -1 - 1) 9, так как (10 n -1 - 1) 9 и т.д.

а 1 ×(10-1) 9,таккак(10-1) 9,

(а п + а n -1 +...+ a 1 + а 0) 9 по условию.

Следовательно, х 9.

Докажем обратное, т.е. если х 9, то сумма цифр его десятичной записи делится на 9.

Равенство х = a n ×10 n + a n -1 ×10 n -1 +...+ а 1 × 10 + а 0 запишем в таком виде: а п + а п-1 + ...+ а 1 + а 0 = х - (а n ×(10 n - 1) + a n -1 × 10 n -1 - 1)+...+ a 1 × (10 - 1)). Так как в правой части этого равенства и уменьшаемое, и вычитаемое кратны 9, то по теореме о делимости разности (а п + а п-1 +...+ а, + а 0 ) 9, т.е. сумма цифр десятичной записи числа х делится на 9, что и требовалось доказать.

Например, число 34578 делится на 9, так как сумма его цифр, равная 27, делится на 9. Число 130542 не делится 9, так как сумма его цифр, равная 15,не делится на 9.

Теорема 15 (признак делимости на 3). Для того чтобы число х делилось на 3, необходимо и достаточно, чтобы сумма цифр его десятичной записи делилось на 3.

Доказательство этого утверждения аналогично доказательству признака делимости на 9.

Мы рассмотрели признаки делимости чисел на 2, 3, 4, 5, 9. Из школьного курса математики известен еще ряд других, например, на10 и 25. Конечно, этого недостаточно, чтобы решать вопросы делимости. Существует общий признак делимости для чисел, записанных в любой позиционной системе счисления, открытый в XVII веке французским математиком Паскалем. Мы рассмотрим его для случая, когда основанием системы счисления является число 10.

Теорема 16 (признак делимости Паскаля). Число

х = а n × 10 n + а n -1 × 10 n -1 + ... + а 1 × 10 + а 0 (1)

делится на число b тогда и только тогда, когда на b делится сумма а n ×r п + а п-1 ×r п-1 + ... + а 1 ×r 1 + а 0 , где r 1 , r 2 , ..., r n - остатки от деления на b разрядных единиц 10, 10 2 ,..., 10 n .

Доказательство. Разделим на b каждую из разрядных единиц числах, получим: 10 = bq 1 + r 1 , 10 2 = bq 2 + r 2 , ..., 10 n -1 = bq n -1 + r п-1 , 10 n = bq п + r n , где q 1 , q 2 , ..., q n -1 , q п - частные, а r 1 , r 2 , ..., r n -1 , r п - остатки.

Подставим в равенство (1) вместо разрядных единиц соответствующие выражения и, используя свойства сложения и умножения, выполним преобразования: х = а п ×(b ×q n + r п ) +а п-1 ×(b ×q n -1 + r n -1 ) + ... + + а 1 (b×q 1 + r 1) + а 0 = (а п ×q п + а n -1 ×q п-1 + ... + а 1 ×q 1 ) ×b + (а n ×r п + а п-1 × r п-1 +...+ а 1 ×r 1 + а 0 ). Если сумму а n ×r n + а n -1 ×r п-1 + ... + а 1 ×r 1 + а 0 обозначить буквой s , то будем иметь: х = (а n ×q n + а n -1 ×q п-1 + ... + а 1 ×q 1 ) ×b + s . Разделим s на b : s = bq + r, где 0 £ r < b. Тогда х = (а n ×q n + а n -1 ×q n -1 + ...+ а 1 ×q 1 ) ×b + (b ×q + r) = (а n ×q п +а n -1 ×q n -1 +...+ а 1 ×q 1 + q ) ×b + r. Короче: х = b ×Q + r, где Q = а n ×q п + а n -1 ×q n -1 +...+а 1 ×q 1 + q и 0 £ r < b. Равенство х = b ×Q + r означает, что r является остатком при делении х на b, причем r - число единственное согласно теореме о единственности частного и остатка при делении натуральных чисел. Таким образом, установлено, что при делении натурального числа х = а n ×10 n + а n -1 10 n -1 + ... + а 1 ×10 + а 0 на натуральное число b получается такой же остаток r, как и при делении на число b суммы s . Теорема доказана.

Используя этот признак, выведем, например, известный признак Делимости на 3 в десятичной системе счисления.

Найдем остатки от деления разрядных единиц на 3:

10 = 3×3+1(r 1 = 1);

10 2 = 3×33 + 1(r 2 = 1);

10 3 = 10 2 × 10 = (3×33 + 1) × (3×3+ 1) = 3q 3 + 1(r 3 = 1).

На основании рассмотренных случаев можно предположить, что (" n Î N) 10 n = 3q n + 1. Убедиться в истинности этого утверждения можно, если воспользоваться методом математической индукции.

Подставив полученные остатки в сумму, обозначенную при доказательстве признака делимости Паскаля буквой s, получим: s = а п ×1 +а n -1 ×r ×1 +...+ а 1 ×1 + а 0 = а n + а n -1 +...+ а 1 + а 0 . Согласно этому признаку, если данная сумма делится на 3, то и число х делится на 3 Но а п + a n -1 +…+ а 1 + а 0 - это сумма цифр в записи числа х. Получаем утверждение: если сумма цифр в десятичной записи числа делится на 3, то и само число делится на 3.

Докажем теперь, что если число х делится на 3, то сумма цифр его десятичной записи делится на 3. Запишем равенство х = a n ×10 n + а п-1 ×10 n -1 + ... + а 1 ×10 + а 0 в таком виде: a n + а n -1 +…+ а 1 + a 0 = х - (а n × (10 n -1) + а n -1 × (10 n -1 -1) +...+а 1 × (10-1)). Так как в правой части этого равенства и уменьшаемое, и вычитаемое кратны 3 то на основании признака делимости разности (а п + а п-1 + ...+ а 1 + а 0 ) 3 т.е. сумма цифр десятичной записи числа х делится на 3. Таким образов доказано, что число делится на 3 тогда и только тогда, когда сумма цифр его десятичной записи делится на 3.

Используя признак делимости Паскаля, можно доказать следующий признак делимости чисел на 11: для того чтобы число делилось на 11, необходимо и достаточно, чтобы разность между суммой его цифр стоящих на нечетных местах, и суммой цифр, стоящих на четных местах, делилась на 11. Обычно при нахождении разности из большего числа вычитают меньшее. Например, число 540309 делится на 11 так как(4 + 3 + 9)-(5 + 0 + 0) = 11, а 11:11. Число 236 не делится на 11 поскольку (2 + 6) - 3 = 5, но 5 не кратно 11.

Упражнения

1 . Выпишите из ряда чисел 132, 1050, 1114, 364, 12000 те, которые:

а) делятся на 2;

б) делятся на 4;

в) делятся на 2 и не делятся на 4;

г) делятся и на 2 и на 4.

2 . Верно ли утверждение:

а) Для того чтобы число делилось на 2, необходимо и достаточно, чтобы оно делилось на 4?

б) Для того чтобы число делилось на 2, достаточно, чтобы оно делилось на 4?

3. Из ряда чисел 72, 312,522,483,1197 выпишите те, которые:

а) делятся на 3;

б) делятся на 9;

в) делятся на 3 и не делятся на 9;

г) делятся и на 3 и на 9.

Сделайте вывод о взаимосвязи делимости на 3 и на 9. Докажите его.

4. Докажите признаки делимости на 5 и на 3.

5. Сформулируйте признак делимости на 25 и докажите его.

6. Не выполняя сложения, установите, делится ли значение выражения на 4:

а) 284 + 1440 + 113; в) 284 + 1441 + 113;

б) 284 + 1440 + 792224; г) 284 + 1441 + 113+ 164.

7 . Не выполняя вычитания, установите, делится ли разность на 9.

а) 360- 144; б) 946-540; в) 30240-97.

8. Верно ли, что для делимости числа x на 8 в десятичной системе счисления необходимо и достаточно, чтобы на 8 делилось трехзначное число, образованное последними тремя цифрами десятичной записи числа х ?

Если первое число делится на второе, а второе на третье, то первое число делится на третье.

Например, дано три числа 777, 111 и 3. Число 777 делится на 111, а 111 делится на 3, значит 777 также делится на 3:

Делимость суммы и разности

Если каждое из двух данных чисел делится на некоторое число, то их сумма и разность делятся на это число.

Например, дано два числа: 27 и 12. Число 27 делится на 3, и 12 делится на 3. Из этого следует, что сумма 27 и 12 и разность 27 и 12 делятся на 3:

Если одно из двух данных чисел делится на некоторое число, а другое на него не делится, то их сумма и разность не делятся на это число.

Например, дано два числа: 64 и 10. Число 64 делится на 8, а 10 не делится на 8, значит сумма 64 и 10 и разность 64 и 10 не делятся на 8:

10: 8 = 1 (остаток 2)

74: 8 = 9 (остаток 2)

54: 8 = 6 (остаток 6)

Делимость произведения

Если один из множителей делится на некоторое число, то и произведение делится на это число.

Например, дано два числа: 8 и 9. Число 8 делится на 4, значит и произведение 8 и 9 делится на 4.

Лекция 44. Делимость целых неотрицательных чисел

ДЕЛИМОСТЬ НАТУРАЛЬНЫХ ЧИСЕЛ

1. Отношение делимости на множестве неотрицательных чисел.

2. Свойства отношения делимости.

3. Делимость суммы, разности и произведения целых неотрицательных чисел.

Как известно, вычитание и деление на множестве нату­ральных чисел выполнимо не всегда. Вопрос о существовании разности натуральных чисел а и b решается просто - доста­точно установить (по записи чисел), что b < а. Для деления такого общего и простого признака нет. Поэтому в математической науке с давних пор пытались найти такие правила, которые позволили бы по записи числа а узнавать, делится оно на число b или нет, не выполняя непосредственного деле­ния а на b. В результате этих поисков были открыты не толь­ко некоторые признаки делимости, но и другие важные свой­ства чисел; познакомимся с некоторыми из них.

В начальных курсах математики Делимость натуральных чисел, как правило, не изучается, но многие факты из этого раздела математики неявно используются. Например, признак делимости суммы, разности и произведения на число тесно связаны с правилами деления суммы, разности и произведения на число, изучаемыми в начальных классах. В ряде курсов изучаются признаки делимости чисел на 2,3,5 и другие.

Вообще знания о делимости натуральных чисел расширя­ют представления о множестве натуральных чисел, позволяют глубже усвоить материал, связанный с делением натуральных чисел, применять полученные ранее знания о способах дока­зательства, о свойствах отношений и др.

Определение. Пусть даны натуральные числа а и b. Гово­рят, что число а делится на число b, если существует та­кое натуральное число q, что a = bq.

В этом случае число b называют делителем числа а, а число а - кратным числа b.

Например, 24 делится на 8, так как существует такое q =3, что 24 = 8·3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8. В том случае, когда а делится на b, пишут: а: . b. Эту запись »« читают и так: «а кратно b». Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 -делитель, но 5 не является делителем числа 18. Если 18 делят 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства а = 1·а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.



Теорема 1. Делитель b данного числа а не превышает этого числа, т.е. если

а: . b, то b < а.

Доказательство. Так как а: . b, то существует такое q Є N,что a = bq u, значит, a-b = bq – b= b·(q - 1). Поскольку q Є N,тоq≥ 1. Тогда b· (q - 1) ≥ 0 и, следовательно, b ≤ а.

Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. образуют конечное множество {1,2,3,4,6,9,12,18,36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое нату­ральное число, которое имеет только два делителя - единицу и само это число.

Например, число 13- простое, поскольку, у него только два делителя: 1 и 13.

Определение. Составным числом называется такое нату­ральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1,2 и 4.

Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, - их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, …, и все они могут быть получены по формуле а = 4q, где q принимает значения 1, 2, 3,....

Нам известно, что отношение делимости обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимо­сти, мы можем доказать эти и другие его свойства.

Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство. Для любого натурального а справед­ливо равенство а = а·1. Так как 1 Є N, то, по определению отношения делимости, а: . а.

Теорема 3. Отношение делимости антисимметрично, т.е. если а: . b и а ≠ b,

то b ⁞͞ a.

Доказательство. Предположим противное, т.е. что ba. Но тогда а ≤ b, согласно теореме, рассмотренной выше.

По условию и а . b и а ≠ b. Тогда, по той же теореме, b ≤ а.

Неравенства а ≤ b и b ≤ а будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следова­тельно, наше предположение неверное и теорема доказана.

Теорема 4 . Отношение делимости транзитивно, т.е. если а b и b с, то а с.

Доказательство. Так как а: . b, то существует такое нату­ральное число q, что a = bq, а так как b с, то существует такое натуральное число р, что b = ср. Но тогда имеем: a = bq = (cp)q = c(pq)- Число pq - натуральное. Значит, по определе­нию отношения делимости,

а с.

Теорема 5 (признак делимости суммы). Если каждое из натуральных чисел а 1 , а 2 , ...,а п делится на натуральное число b, то и их сумма a 1 + а 2 + ... + а n делится на это число.

Доказательство. Так как а 1 b, то существует такое на­туральное число q 1 , что а 1 =bq 1 . Так как а 2 b, то существует такое натуральное число q 2 , что а 2 = bq 2 . Продолжая рассуж­дения, получим, что если а n: . b, то существует такое натуральное число q n , что а п = bq n . Эти равенства позволяют преобразовать сумму а 1 + а 2 + ... +а п в сумму вида bq 1 + bq 2 + ... + bq n . Вынесем за скобки общий множитель b, а получившееся в скобках натуральное число q 1 + q 2 + ... + q n обозначим буквой q. Тогда a 1 + a 2 + ... + a n = b(q 1 + q 2 +... + q n) = bq, т.е. сумма а 1 + а 2 +… + а п оказалась представленной в виде произведения числа b и некоторого натурального числа q. А это значит, что сумма а 1 + а 2 +… + а п делится на b, что и требовалось доказать.

Например, не производя вычислений, можно сказать, что 175 + 360 + 915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа а 1 и а 2 делятся на b и а 1 ≥ а 2 , то их разность а 1 - а 2 делится на b.

Доказательство этой теоремы аналогично доказательству признака делимости суммы.

Теорема 7 (признак делимости произведения). Если число а делится на b, то произведениe вида ах, где х Є N, делитcя на b.

Доказательство. Так как а: . b, то существует такое натуральное число q, что a = bq. Умножим обе части этого равенства на натуральное число х. Тогда ах=(bq)x, откуда на основании свойства ассоциативности умножения (bq)x = b(qx)и, значит, ax = b(qx), где qx - натуральное число. Согласно определению отношения делимости, ax: . b, что и требовалось доказать.

Из доказанной теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b. Например, произведение 24·976·305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся cумма на число b не делится.

Доказательство. Пусть s = а 1 + а г + ... + а п +" с и известно, что а 1: . B, а 2: . B,

а 3: . b, … а n: . b, но с: . b. Докажем, что тогда s: . b

Предположим противное, т.е. Пусть s: . b. Преобразуем сумму s к виду с = s- (а 1 + а 2 + + а n ). Так как s: . b по предположению, (а 1 + а 2 + + а n ) : . b согласно признаку делимости суммы, то по теореме делимости разности с: .b

Пришли к противоречию с тем, что дано. Следовательно, s: . b.

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так 34: .2,376: .2,124: .2, но 125 не делится на 2.

Теорема 9 . Если в произведении ab множитель a делится на натуральное число т, а множитель b делится на натуральное число n,то ab делится на mn.

Справедливость этого утверждения вытекает из теоремы о делимости произведения.

Теорема 10. Если произведение ас делится на произведе­ние bс, причем с - натуральное число, то и а делится на b.

Доказательство. Так как ас делится на bc, то существует такое натуральное число q, что ас = (bc)q, откуда ас = (bq)c и, следовательно, а = bq, т.е. а : .b.

Упражнения

1. Объясните, почему число 15 является делителем числа 60 и не является делителем числа 70.

2. Постройте граф отношения «быть делителем данного числа», заданного на множестве Х = {2, 6,. 12, 18, 24}. Как от­ражены на этом графе свойства данного отношения?

3. Известно, что число 24 - делитель числа 96, а число 96 -делитель числа 672. Докажите, что число 24 делитель числа 672, не выполняя деления.

4. Запишите множество делителей числа.

а) 24; 6)13; в) 1.

5 .На множестве X ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; 12} задано отношение «иметь одно и то же число делителей». Является ли оно отношением эквивалентности?

6 .Постройте умозаключение, доказывающее, что:

а) число 19 является простым;

б) число 22 является составным.

7. Докажите или опровергните следующие утверждения:

а) Если сумма двух слагаемых делится на некоторое число, то и каждое слагаемое делится на это число.

б) Если одно из слагаемых суммы не делится на некоторое число, то и сумма не делится на это число.

в) Если ни одно слагаемое не делится на некоторое число, то и сумма не делится на это число.

г) Если одно из слагаемых суммы делится на некоторое число, а другое не делится на это число, то и сумма не делится на это число.

8. Верно ли, что:

а) а: . т и b: . n =>ab: .mn

б) а: .п и b: .n => ab: .n;

Понятие отношения делимости

Определение. Число а делится на число в тогда и только тогда, когда существует такое число q, что а = в × q. а в ( q N 0) [а = вq].

Обозначают: а в. Читают: «число а кратно числу в», «число в – делитель числа а», «а кратно в».

Равенство а=вq называют формулой кратности числа а числу в.

Число а, кратное 2, называют четным. Общий вид четного числа: а = 2n, n N 0 .

Число, кратное 3 имеет формулу: а = 3n, n N 0 .

Определение. Отношение делимости на множестве N 0 N содержит те и только те пары чисел (а, в), у которых первая координата кратна второй. Обозначают: « ».

« » = {(а, в)| (а, в) N 0 N а в}.

Если отношение делимости обозначить , то N 0 N ={(а, в)| (а, в) N 0 N а=вq}.

Теорема. Делитель в данного числа а не превышает этого числа, то есть, если а в в а.

Доказательство. Так как а в, то ( q N 0) [а = вq] а – в=вq-в=в(q – 1), так как q N q 1.

Тогда в (q – 1) 0 в а. Из определения отношения делимости и равенства а = 1 × а, следует, что 1 является делителем для любого натурального числа.

Следствие. Множество делителей данного числа конечно.

Например, делители числа 18 является конечное множество: {1, 2, 3, 6, 9, 18}.

Свойства отношения делимости

1. Отношение делимости рефлексивно, то есть любое натуральное число делится само на себя: ( а N) [(а,а) ], то есть а: а = 1.

Доказательство. ( а N)[а = а × 1] по определению отношения делимости а: а.

2. Отношение делимости антисимметрично, то есть для различных чисел а и в из того, что а в, следует, что в не кратно а. ( а, в N 0 N)[а в а в ].

Доказательство. Допустим, что в а, тогда в а. Но по условию а в, так как а в.

Неравенства в а а в истины только в том случае, если а = в. пришли к противоречию с условием. Следовательно, допущение, что в а Л. Таким образом, отношение делимости антисимметрично.

3. Отношение делимости транзитивно. ( а,в,с N 0 N)[а в в с а с].

Доказательство. Если а в ( q N)[а = вq] (1) Из того, что в с ( t N)[в = сt] (2)

Подставим в = сt в равенство (1), получим: а = (сt)q = c(tq), t,q N tq N tq = р а = ср, р N. А это значит, что а с.

Признаки делимости. Делимость суммы, разности, произведения

Определение. Признаком делимости называется предложение, в котором доказывается как можно предсказать делимость одного числа на другое, не выполняя деления этих чисел.

Теорема (признак делимости суммы). Если числа а и в делится на число n, то их сумма делится на это число, ( а,в, n N 0 N)[а n в n (а + в) n].

Доказательство. Из того что а n в n (по определению отношения делимости)

а=nq 1 (1), q 1 N. в=nq 2 (2), q 2 N. Преобразуем сумму (а + в) к виду:

а + в = nq 1 + nq 2 = n (q 1 + q 2) = nq,q = q 1 + q 2 . а + в = nq.

Следовательно, по определению отношения делимости, что (а + в) n.

Теорема (признак делимости разности). Если числа а и в делятся на число n и а в, то их разность а – в делится на число n, то есть

( а,в,n N 0 N)[а n в n а в (а – в) n].

Теорема (признак делимости произведения). Если один из множителей произведения делится на число n, то и все произведение делится на число n.

( а,в,n N 0 N)[а n (ав) n].

Доказательство. Из того, что а n а = nq (1). Умножим обе части равенства (1) на в N, получим: ав = nqв (по ассоциативности умножения) ав = n(qв) = nt, где t = qв ав = nt. А это значит, что ав n (по определению отношения делимости). Таким образом, для делимости произведения на число достаточно чтобы на данное число делился хотя бы один из множителей этого произведения.

Теорема. Если в произведении ав множитель а делится на натуральное число m, а множитель в делится на натуральное число n, то ав делится на mn.

( а,в,m,n N)[а m в n ав mn].

Доказательство. Из того, что а m а = mq 1 , q 1 N; в n в = nq 2 , q 2 N

ав = mq 1 × nq 2 , = mn(q 1 × q 2) = mnq, q 1 × q 2 = q N. ав = mnq ав mn.

Теорема (признак делимости на 2). Для того, чтобы число х делилось на 2 необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр: 0, 2, 4, 6, 8.

Доказательство. Пусть число х записано в десятичной системе счисления, то есть:

х = а n 10 n + a n –1 10 n –1 + …+a 1 10 + a 0 , где а n , a n –1 , …, а 1 – цифры, принимающие значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и а n 0, а 0 – принимает значения 0, 2, 4, 6, 8.

Докажем, что число х 2. Так как 10 2, то любая степень числа 10 2. Десятичную запись числа х представим в виде: х = (а n 10 n + a n –1 10 n –1 + …+a 1 10) + a 0

I слагаемое II слагаемое

В этой сумме первое слагаемое по признаку делимости суммы делится на 2. Второе слагаемое а 0 2 (по условию). Следовательно, по признаку делимости суммы на число х делится на 2.

Обратно, если число х делится на 2, то его десятичная запись оканчивается цифрой 0, 2, 4, 6, 8.

Запишем число х = а n 10 n + a n –1 10 n –1 + …+a 1 10 + a 0 в виде: а 0 = х – (а n 10 n + a n –1 10 n –1 + …+a 1 10).

В этой разности число х 2 (по условию), вычитаемое (а n 10 n + a n –1 10 n –1 + …+a 1 10) 2 (по признаку делимости суммы). Следовательно, по теореме о делимости разности а 0 2. Чтобы однозначное число а 0 делилось на 2, оно должно принимать значения 0, 2, 4, 6, 8.

Признак делимости на 2. На 2 делятся те и только те числа, в разряде единиц которых содержится число, делящееся на 2 или на 2 делятся те и только те числа, десятичная запись которых оканчивается одной из цифр 0, 2, 4, 6, 8.

Теорема (признак делимости на 5). Для того, чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5.

Лемма . ( n N) .

Доказательство. Так как 100 = 4 × 25, то по признаку делимости произведения

100 4. Тогда ( n N n > 1) 10 n = 100 × 10 n–2 и по признаку делимости произведения 10 n 4.

Теорема (признак делимости на 4). Натуральное число х делится на 4 тогда и только тогда, когда две последние цифры его десятичной записи образуют двузначное число, делящееся на 4.

Пусть х = а n 10 n + a n –1 10 n –1 + …+a 1 10 + a 0 и пусть десятичная запись двух последних цифр a 1 10 + a 0 выражает число , которое делится на 4.

Доказательство. Представим число х в виде суммы двух слагаемых:

х = (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) + (а 1 10 + а 0),

I слагаемое II слагаемое

где первое слагаемое, по доказанной выше Лемме, делится на 4, второе слагаемое делится на 4 по условию. Следовательно, согласно признака делимости суммы на число, число х делится на 4.

Обратно, если число х 4, то – двузначное число, образованное последними цифрами его десятичной записи, делится на 4.

По условию х 4. Докажем, что (а 1 10 + а 0) 4.

Доказательство. Десятичная запись числа х имеет вид:

х = а n 10 n + a n –1 10 n –1 + …+а 2 10 2 + a 1 10 + a 0 , представим число х в виде суммы двух слагаемых:

х = (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) + (а 1 10 + а 0) и запишем равенство в виде:

х – (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) = а 1 10 + а 0 , где х 4 (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) 4 (по лемме).

Следовательно, по признаку делимости разности а 1 10 + а 0 4. выражение а 1 10 + а 0 = – есть запись двузначного числа, образованного последними цифрами записи числа х.

Признак делимости на 4. На 4 делятся те и только те числа, две последние цифры десятичной записи которых образуют число, делящееся на 4.

Теорема. Для того чтобы число х делилось на 25 необходимо и достаточно, чтобы на 25 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х.

Доказывается аналогично.

Признак делимости на 25. На 25 делятся те и только те числа, у которых две последние цифры в записи числа 00, 25, 50, 75.

Лемма. ( n N) [(10 n – 1) 9].

Докажем методом математической индукции.

1. Проверим справедливость утверждения для n = 1, И 3

Признак делимости на 3. На 3 делятся те и только те числа, сумма цифр которых делится на 3.