Планеты-гиганты. Планеты-гиганты солнечной системы Какие особенности у планет гигантов

Решебник по астрономии 11 класс на урок №14 (рабочая тетрадь) - Планеты-гиганты

1. Пользуясь справочниками, заполните таблицу с основными физическими характеристиками планет-гигантов.

Физические характеристики планет Юпитер Сатурн Уран Нептун
Масса (в массах Земли) 318 95.2 14.5 17.2
Диаметр (в диаметрах Земли) 11.2 9.5 4 3.9
Плотность, кг/м^3 1270 690 1290 1640
Период вращения 9 ч 55 мин 10 ч 40 мин 17 ч 14 мин 16 ч 7 мин
Атмосфера: температура, °C; химический состав 90% H, 10% He 96% H, 4% He 83% H, 15% He, 2% CH(4) 80% H, 19% He, 1% CH(4)
Число спутников 63 61 27 13
Названия самых крупных спутников Ио, Европа, Ганимед, Каллисто, Амальтея Титан, Рея, Япет, Диона, Тефия Ариэль, Оберон, Умбриэль, Дездемона, Джульетта Тритон, Нереида, Протей, Ларисса, Таласса

Заполнив таблицу, сделайте выводы и укажите сходства и различия между планетами-гигантами.

Выводы: Это газообразные тела с мощным протяжёнными атмосферами, быстро вращаются вокруг своих осей, имеют много спутников, также все они обладают кольцами. У планет-гигантов нет ни твёрдой не жидкой поверхности. Основные компоненты всех планет-гигантов - гелий и водород.

2. Проведите качественное сравнение свойств планет земной группы и планет-гигантов. Используйте при этом слова: «высокая», «низкая», «большая» и т. п. В выводе укажите принципиальное отличие планет земной группы от планет-гигантов.

Вывод: Планеты земной группы обладают значительно меньшими массами и размерами, но большей плотностью, не имеют колец. Они ближе расположены к Солнцу и быстрее движутся по своим орбитам, но медленнее вращаются вокруг своей оси и меньше сжаты у полюсах. Также они имеют значительно меньше спутников.

3. Закончите предложения.

Особенностью вращения планет-гигантов вокруг оси является то, что они вращаются слоями: слой планеты вблизи экватора вращается быстрее других слоёв.

Наличие у Юпитера и Сатурна плотных и протяжённых атмосфер объясняется тем, что при формировании они быстро достигли такой массы, чтобы удержать больше кислорода.

Спутник Сатурна Титан обладает мощной атмосферой, состоящей в основном из азота.

Планеты-гиганты имеют малую среднюю плотность по причине того, что их атмосферы имеют в основном водородо-гелевый состав.

Существование колец обнаружено у следующих планет-гигантов: Юпитер, Сатурн, Уран и Нептун.

Юпитер излучает значительно больше тепловой энергии, чем получает её от Солнца. Причиной этого можно считать постепенное сжатие планеты и процесса радиоактивного распада в её недрах.

4. Звёздный период вращения Сатурна вокруг Солнца T = 29.5 года. Какого среднее расстояние от Сатурна до Солнца?

5. Какой вид будет иметь кольцо Сатурна для наблюдателя, находящегося на экваторе и на полюсах Сатурна?

6. Закончите предложения, касающиеся внутреннего строения планет-гигантов.

У планет Юпитер и Сатурн между центральным ядром и протяжённой атмосферой имеется оболочка со свойствами металла.

Планеты-гиганты, как и Земля, обладают магнитным полем, напряжённость которого

у Юпитера в 12 раз выше, чем у Земли;
у Сатурна близка к земной;
у Урана примерно равна земной;
у Нептуна в 3 раза меньше, чем у Земли.

Полярные сияния были отмечены у следующих планет-гигантов: Юпитер, Сатурн и Уран.

Наша Солнечная система, если иметь в виду ее вещество, состоит из Солнца и четырех планет-гигантов, а еще проще − из Солнца и Юпитера, поскольку масса Юпитера больше, чем всех прочих околосолнечных объектов – планет, комет, астероидов − вместе взятых. Фактически, мы живем в двойной системе Солнце-Юпитер, а вся остальная «мелочь» подчиняется их гравитации

Сатурн вчетверо меньше Юпитера по массе, но по составу похож на него: он тоже в основном состоит из легких элементов – водорода и гелия в отношении 9:1 по количеству атомов. Уран и Нептун еще менее массивны и по составу богаче более тяжелыми элементами – углеродом, кислородом, азотом. Поэтому группу из четырех гигантов обычно делят пополам, на две подгруппы. Юпитер и Сатурн называют газовыми гигантами, а Уран и Нептун – ледяными гигантами. Дело в том, что Уран и Нептун обладают не очень толстой атмосферой, а большая часть их объема – это ледяная мантия; т. е. довольно твердое вещество. А у Юпитера и Сатурна почти весь объем занят газообразной и жидкой «атмосферой». При этом все гиганты имеют железокаменные ядра, превышающие по массе нашу Землю.

На первый взгляд, планеты-гиганты примитивны, а маленькие планеты намного интереснее. Но может быть это потому, что мы пока плохо знаем природу этих четырех гигантов, а не потому что они малоинтересны. Просто мы с ними слабо знакомы. Например, к двум ледяным гигантам − Урану и Нептуну − за всю историю астрономии лишь однажды приближался космический зонд («Вояджер-2», NASA, 1986 и 1989 гг.), да и то – пролетел, не останавливаясь, мимо них. Много ли он мог там увидеть и измерить? Можно сказать, что к исследованию ледяных гигантов мы еще по-настоящему не приступали.

Газовые гиганты изучены намного детальнее, поскольку кроме пролетных аппаратов («Пионер-10 и 11», «Вояджер-1 и 2», «Улисс», «Кассини», «Новые горизонты», NASA и ESA) рядом с ними длительно работали искусственные спутники: «Галилео» (NASA) в 1995-2003 гг. и «Джуно» (NASA) с 2016 г. исследовали Юпитер, а «Кассини» (NASA и ESA) в 2004-2017 гг. изучал Сатурн.

Наиболее глубоко был исследован Юпитер, причем – в прямом смысле: в его атмосферу с борта «Галилео» был сброшен зонд, который влетел туда со скоростью 48 км/с, раскрыл парашют и за 1 час опустился на 156 км ниже верхней кромки облаков, где при внешнем давлении 23 атм и температуре 153 °C прекратил передавать данные, по-видимому, из-за перегрева. На траектории спуска он измерил многие параметры атмосферы, включая даже ее изотопный состав. Это заметно обогатило не только планетологию, но и космологию. Ведь гигантские планеты не отпускают от себя вещество, они навечно сохраняют то, из чего они родились; особенно это касается Юпитера. У его облачной поверхности вторая космическая скорость составляет 60 км/с; ясно, что ни одной молекуле оттуда никогда не уйти.

Поэтому мы думаем, что изотопный состав Юпитера, особенно состав водорода, характерен для самых первых этапов жизни, по крайней мере, Солнечной системы, а, может быть, и Вселенной. И это очень важно: соотношение тяжелого и легкого изотопов водорода говорит о том, как в первые минуты эволюции нашей Вселенной протекал синтез химических элементов, какие физические условия тогда были.

Юпитер быстро вращается, c периодом около 10 часов; а поскольку средняя плотность планеты невелика (1,3 г/см 3), центробежная сила заметно деформировала ее тело. При взгляде на планету можно заметить, что она сжата вдоль полярной оси. Степень сжатия Юпитера, т. е. относительная разница между его экваториальным и полярным радиусами составляет (R экв − R пол)/R экв = 0,065. Именно средняя плотность планеты (ρ ∝ M/R 3) и ее суточный период (T ) определяют форму ее тела. Как известно, планета – это космическое тело в состоянии гидростатического равновесия. На полюсе планеты действует только сила тяготения (GM/R 2), а на экваторе ей противодействует центробежная сила (V 2 /R = 4π 2 R 2 /RT 2). Их отношением и определяется форма планеты, поскольку давление в центре планеты не должно зависеть от направления: экваториальная колонка вещества должна весить столько же, сколько полярная. Отношение этих сил (4π 2 R /T 2)/(GM /R 2) ∝ 1/(M/R 3)T 2 ∝ 1/(ρT 2). Итак, чем меньше плотность и продолжительность суток, тем сильнее сжата планета. Проверим: средняя плотность Сатурна 0,7 г/см 3 , период его вращения 11 час, − почти такой же, как у Юпитера, − а сжатие 0,098. Сатурн сжат в полтора раза сильнее Юпитера, и это легко заметить при наблюдении планет в телескоп: сжатие Сатурна бросается в глаза.

Быстрое вращение планет-гигантов определяет не только форму их тела, а значит и форму их наблюдаемого диска, но и его внешний вид: облачная поверхность планет-гигантов имеет зональную структуру с полосами разного цвета, вытянутыми вдоль экватора. Потоки газа движутся быстро, со скоростями во многие сотни километров в час; их взаимное смещение вызывает сдвиговую неустойчивость и совместно с силой Кориолиса порождает гигантские вихри. Издалека заметны Большое Красное Пятно на Юпитере, Большой Белый Овал на Сатурне, Большое Темное Пятно на Нептуне. Особенно знаменит антициклон Большое Красное Пятно (БКП) на Юпитере. Когда-то БКП было вдвое больше нынешнего, его видели еще современники Галилея в свои слабенькие телескопы. Сегодня БКП побледнело, но все-таки этот вихрь уже почти 400 лет живет в атмосфере Юпитера, поскольку охватывает гигантскую массу газа. Его размер больше земного шара. Такая масса газа, единожды закрутившись, не скоро остановится. На нашей планете циклоны живут примерно неделю, а там − столетия.

В любом движении рассеивается энергия, а значит требуется ее источник. Каждая планета обладает двумя группами источников энергии – внутренними и внешними. Извне на планету льется поток солнечного излучения и падают метеороиды. Изнутри планету греет распад радиоактивных элементов и гравитационное сжатие самой планеты (механизма Кельвина - Гельмгольца). . Хотя мы уже видели, как на Юпитер падают крупные объекты, вызывающие мощные взрывы (комета Шумейкеров - Леви 9), оценки частоты их падения показывают, что средний поток приносимой ими энергии существенно меньше, чем приносит солнечный свет. С другой стороны, роль внутренних источников энергии неоднозначна. У планет земной группы, состоящих из тяжелых тугоплавких элементов, единственным внутренним источником тепла служит радиоактивный распад, но вклад его ничтожен по сравнению с теплом от Солнца.

У планет-гигантов доля тяжелых элементов существенно ниже, зато они массивнее и легче сжимаются, что делает выделение гравитационной энергии их главным источником тепла. А поскольку гиганты удалены от Солнца, внутренний источник становится конкурентом внешнему: порой планета греет себя сама сильнее, чем ее нагревает Солнце. Даже Юпитер, ближайший к Солнцу гигант, излучает (в инфракрасной области спектра) на 60 % больше энергии, чем получает от Солнца. А энергия, которую излучает в космос Сатурн, в 2,5 раза больше той, которую планета получает от Солнца.

Гравитационная энергия выделяется как при сжатии планеты в целом, так и при дифференциации ее недр, т. е. при опускании к центру более плотного вещества и вытеснении оттуда более «плавучего». Вероятно, работают оба эффекта. Например, Юпитер в нашу эпоху уменьшается приблизительно на 2 см в год. А сразу после формирования он имел вдвое больший размер, сжимался быстрее и был значительно теплее. В своих окрестностях тогда он играл роль маленького солнышка, на что указывают свойства его галилеевых спутников: чем ближе они к планете, тем плотнее и тем меньше содержат летучих элементов (как и сами планеты в Солнечной системе).

Кроме сжатия планеты как целого, важную роль в гравитационном источнике энергии играет дифференциация недр. Вещество разделяется на плотное и плавучее, и плотное тонет, выделяя свою потенциальную гравитационную энергию в виде тепла. Вероятно, в первую очередь, это конденсация и последующее падение капель гелия сквозь всплывающие слои водорода, а также фазовые переходы самого водорода. Но могут быть явления и поинтереснее: например, кристаллизация углерода – дождь из алмазов (!), правда, выделяющий не очень много энергии, поскольку углерода мало.

Внутреннее строение планет-гигантов пока изучается только теоретически. На прямое проникновение в их недра у нас мало шансов, а методы сейсмологии, т. е. акустического зондирования, к ним пока не применялись. Возможно, когда-нибудь мы научимся просвечивать их с помощью нейтрино, но до этого еще далеко.

К счастью, в лабораторных условиях уже неплохо изучено поведение вещества при тех давлениях и температурах, которые царят в недрах планет-гигантов, что дает основания для математического моделирования их недр. Для контроля адекватности моделей внутреннего строения планет есть методы. Два физических поля, – магнитное и гравитационное, − источники которых находятся в недрах, выходят в окружающее планету пространство, где их можно измерять приборами космических зондов.

На структуру магнитного поля действует много искажающих факторов (околопланетная плазма, солнечный ветер), зато гравитационное поле зависит только от распределения плотности внутри планеты. Чем сильнее тело планеты отличается от сферически симметричного, тем сложнее ее гравитационное поле, тем больше в нем гармоник, отличающих его от простого ньютоновского GM/R 2 .

Прибором для измерения гравитационного поля далеких планет, как правило, служит сам космический зонд, точнее – его движение в поле планеты. Чем дальше зонд от планеты, тем слабее в его движении проявляются мелкие отличия поля планеты от сферически симметричного. Поэтому необходимо запускать зонд как можно ближе к планете. С этой целью с 2016 года рядом с Юпитером работает новый зонд Juno (NASA). Он летает по полярной орбите, чего раньше не было. На полярной орбите высшие гармоники гравитационного поля проявляются заметнее, поскольку планета сжата, а зонд время от времени подходит очень близко к поверхности. Именно это дает возможность измерить высшие гармоники разложения гравитационного поля. Но по этой же причине зонд довольно скоро закончит свою работу: он пролетает через наиболее плотные области радиационных поясов Юпитера, и его аппаратура от этого сильно страдает.

Радиационные пояса Юпитера колоссальны. При большом давлении водород в недрах планеты металлизируется: его электроны обобщаются, теряют связь с ядрами, и жидкий водород становится проводником электричества. Огромная масса сверхпроводящей среды, быстрое вращение и мощная конвекция − эти три фактора способствуют генерации магнитного поля за счет динамо-эффекта. В колоссальном магнитном поле, захватывающем летящие от Солнца заряженные частицы, формируются чудовищные радиационные пояса. В их наиболее плотной части лежат орбиты внутренних галилеевых спутников. Поэтому на поверхности Европы человек не прожил и дня, а на Ио – и часа. Даже космическому роботу нелегко там находиться.

Более удаленные от Юпитера Ганимед и Каллисто в этом смысле значительно безопаснее для исследования. Поэтому именно туда Роскосмос собирается в будущем послать зонд. Хотя Европа с ее подледным океаном была бы намного интереснее.

Ледяные гиганты Уран и Нептун выглядят промежуточными между газовыми гигантами и планетами земного типа. По сравнению с Юпитером и Сатурном у них меньше размер, масса и центральное давление, но при этом их относительно высокая средняя плотность указывает на большую долю элементов группы CNO. Протяженная и массивная атмосфера Урана и Нептуна в основном водородно-гелиевая. Под ней водная с примесью аммиака и метана мантия, которую принято называть ледяной. Но у планетологов принято называть «льдами» сами химические элементы группы CNO и их соединения (H 2 O, NH 3 , CH 4 и т. п.), а не их агрегатное состояние. Так что мантия в большей степени может быть жидкой. А под ней лежит сравнительно небольшое железно-каменное ядро. Поскольку концентрация углерода в недрах Урана и Нептуна выше, чем у Сатурна и Юпитера, в основании их ледяной мантии может лежать слой жидкого углерода, в котором конденсируются кристаллы, т. е. алмазы, оседающие вниз.

Подчеркну, что внутреннее строение планет-гигантов активно обсуждается, и конкурирующих моделей пока довольно много. Каждое новое измерение с борта космических зондов и каждый новый результат лабораторного моделирования в установках высокого давления приводят к пересмотру этих моделей. Напомню, что прямое измерение параметров весьма неглубоких слоев атмосферы и только у Юпитера было осуществлено лишь однажды зондом, сброшенным с «Галилео» (NASA). А все остальное – косвенные измерения и теоретические модели.

Магнитные поля Урана и Нептуна слабее, чем у газовых гигантов, но сильнее, чем у Земли. Хотя у поверхности Урана и Нептуна индукция поля примерно такая же, как у поверхности Земли (доли гаусса), но объем, а значит и магнитный момент намного больше. Геометрия магнитного поля у ледяных гигантов очень сложная, далекая от простой дипольной формы, характерной для Земли, Юпитера и Сатурна. Вероятная причина в том, что генерируется магнитное поле в относительно тонком электропроводящем слое мантии Урана и Нептуна, где конвекционные потоки не обладают высокой степенью симметрии (поскольку толщина слоя много меньше его радиуса).

При внешнем сходстве Уран и Нептун нельзя назвать близнецами. Об этом говорит их разная средняя плотность (соответственно 1,27 и 1,64 г/см 3) и разная интенсивность выделения тепла в недрах. Хотя Уран в полтора раза ближе к Солнцу, чем Нептун, и поэтому получает от него в 2,5 раза больше тепла, он холоднее Нептуна. Дело в том, что Нептун выделяет в своих недрах даже больше тепла, чем получает от Солнца, а Уран не выделяет почти ничего. Поток тепла из недр Урана вблизи его поверхности составляет всего 0,042 ± 0,047 Вт/м 2 , что даже меньше чем у Земли (0,075 Вт/м 2). Уран – самая холодная планета в Солнечной системе, хотя и не самая далекая от Солнца. Связано ли это с его странным вращением «на боку»? Не исключено.

Теперь поговорим о кольцах планет.

Все знают, что «окольцованная планета» − это Сатурн. Но при внимательном наблюдении выясняется, что кольца есть у всех планет-гигантов. С Земли их заметить сложно. Например, кольцо Юпитера мы не видим в телескоп, но замечаем его в контровом освещении, когда космический зонд смотрит на планету с ее ночной стороны. Это кольцо состоит из темных и очень мелких частиц, размер которых сравним с длинной волны света. Они практически не отражают свет, но хорошо рассеивают его вперед. Тонкими кольцами окружены Уран и Нептун.

В общем, двух одинаковых колец у планет не бывает, они все разные.

В шутку можно сказать, что и у Земли есть кольцо. Искусственное. Оно состоит из нескольких сотен спутников, выведенных на геостационарную орбиту. На этом рисунке не только геостационарные спутники, но и те, что на низких орбитах, а также на высоких эллиптических орбитах. Но геостационарное кольцо выделяется на их фоне вполне заметно. Впрочем, это рисунок, а не фото. Сфотографировать искусственное кольцо Земли пока никому не удалось. Ведь его полная масса невелика, а светоотражающая поверхность ничтожна. Едва ли суммарная масса спутников в кольце составит 1000 тонн, что эквивалентно астероиду размером 10 м. Сравните это с параметрами колец планет-гигантов.

Заметить какую-либо взаимосвязь между параметрами колец довольно сложно. Материал колец Сатурна белый как снег (альбедо 60 %), а остальные кольца чернее угля (А = 2-3 %). Все кольца тонкие, а у Юпитера довольно толстое. Все из булыжников, а у Юпитера из пылинок. Структура колец тоже разная: одни напоминают граммофонную пластинку (Сатурн), другие – матрешкообразную кучу обручей (Уран), третьи – размытые, диффузные (Юпитер), а кольца Нептуна вообще не замкнуты и похожи на арки.

В голове не укладывается относительно малая толщина колец: при диаметре в сотни тысяч километров их толщина измеряется десятками метров. Мы никогда не держали в руках столь тонкие предметы. Если сравнить кольцо Сатурна с листом писчей бумаги, то при его известной толщине размер листа был бы с футбольное поле!

Как видим, кольца у всех планет различаются по составу частиц, по их распределению, по морфологии – у каждой планеты-гиганта свое уникальное украшение, происхождение которого мы пока не понимаем. Обычно кольца лежат в экваториальной плоскости планеты и вращаются в ту же сторону, куда вращается сама планета и группа близких к ней спутников. В прежние времена астрономы считали, что кольца вечны, что они существуют от момента зарождения планеты и останутся при ней навсегда. Сейчас точка зрения изменилась. Но расчеты показывают, что кольца не слишком долговечны, что их частицы тормозятся и падают на планету, испаряются и рассеиваются в пространстве, оседают на поверхности спутников. Так что украшение это временное, хотя и долгоживущее. Сейчас астрономы считают, что кольцо – это результат столкновения или приливного разрушения спутников планеты. Возможно, кольцо Сатурна самое молодое, поэтому оно такое массивное и богатое летучими веществами (снегом).

А так может сфотографировать хороший телескоп с хорошей камерой. Но здесь еще мы не видим у кольца почти никакой структуры. Давно была замечена темная «щель» − разрыв Кассини, который более 300 лет назад открыл итальянский астроном Джованни Кассини. Кажется, что в разрыве ничего нет.

Плоскость кольца совпадает с экватором планеты. Иного и быть не может, поскольку у симметричной сплющенной планеты вдоль экватора в гравитационном поле потенциальная яма. На серии снимков, полученных с 2004 по 2009 гг., мы видим Сатурн и его кольцо в разных ракурсах, поскольку экватор Сатурна наклонен к плоскости его орбиты на 27°, а Земля всегда недалеко от этой плоскости. В 2004 г. мы точно оказались в плоскости колец. Сами понимаете, при толщине несколько десятков метров самого кольца мы не видим. Тем не менее, черная полоска на диске планеты ощущается. Это тень кольца на облаках. Она видна нам, поскольку Земля и Солнце с разных направлений смотрят на Сатурн: мы смотрим точно в плоскости кольца, но Солнце освещает немножко под другим углом и тень кольца ложится на облачный слой планеты. Раз есть тень, значит в кольце довольно плотно упакованное вещество. Тень кольца исчезает только в дни равноденствия на Сатурне, когда Солнце оказывается точно в его плоскости; и это независимо указывает на малую толщину кольца.

Кольцу Сатурна посвящено много работ. Джеймс Клерк Максвелл, тот самый, что прославился своими уравнениями электромагнитного поля, исследовал физики кольца и показал, что оно не может быть единым твердым предметом, а должно состоять из мелких частиц, иначе центробежная сила его разорвала бы. Каждая частица летит по своей орбите – чем ближе к планете, тем быстрее.

Взгляд на любой предмет с другой стороны всегда полезен. Там, где в прямом свете мы видели черноту, «провал» в кольце, здесь мы видим вещество; просто оно другого типа, по-другому отражает и рассеивает свет

Когда космические зонда прислали нам снимки кольца Сатурна, нас поразила его тонкая структура. Но еще в XIX в выдающиеся наблюдатели на обсерватории Пик-дю-Миди во Франции именно эту структур видели глазом, но им тогда никто особенно не поверил, потому что никто кроме них такие тонкости не замечал. Но оказалось, кольцо Сатурна именно такое. Объяснение этой тонкой радиальной структуре кольца специалисты по звездной динамике ищут в рамках резонансного взаимодействия частиц кольца с массивными спутниками Сатурна вне кольца и мелкими спутниками внутри кольца. В целом теория волн плотности справляется с задачей, но до объяснения всех деталей еще далеко.

На верхнем фото дневная сторона кольца. Зонд пролетает через плоскость кольца, и мы видим на нижнем фото, как оно повернулось к нам ночной стороной. Вещество в делении Кассини стало вполне заметно с теневой стороны, а яркая часть кольца, напротив, потемнела, поскольку она плотная и непрозрачная. Там, где была чернота, появляется яркость, потому что мелкие частицы не отражают, но рассеивают свет вперед. Эти снимки показывают, что вещество есть везде, просто частицы разного размера и структуры. Какие физические явления сепарируют эти частицы, мы пока не очень понимаем. На верхнем снимке виден Янус − один из спутников Сатурна.

Надо сказать, что хоть и близко от кольца Сатурна пролетали космические аппараты, тем не менее ни одному из них не удалось увидеть реальные частицы, составляющие кольцо. Мы видим лишь общее их распределение. Отдельные глыбы увидеть не удается, не рискуют аппарат внутрь кольца запускать. Но когда-нибудь это придется сделать.

С ночной стороны Сатурна сразу появляются те слабо видимые части колец, которые в прямом свете не видно.

Это не настоящий цветной снимок. Цветами здесь показан характерный размер тех частиц, которые составляют ту или иную область. Красные – мелкие частицы, бирюзовые – более крупные.

В ту эпоху, когда кольцо разворачивалась ребром к Солнцу, тени от крупных неоднородностей ложатся на плоскость кольца (верхнее фото). Самая длинная тень здесь − от спутника Мимас, а многочисленные мелкие пики, которые в увеличенном изображении показаны на врезке, однозначного объяснения пока не получили. За них ответственны выступы километрового размера. Не исключено, что некоторые из них – это тени от наиболее крупных камней. Но квазирегулярная структура теней (фото внизу) более соответствует временным скоплениям частиц, возникающим в результате гравитационной неустойчивости.

Вдоль некоторых колец летают спутники, так называемые «сторожевые псы» или «пастушьи собаки», которые своей гравитацией удерживают от размытия некоторые кольца. Причем сами спутники довольно интересные. Один движется внутри тонкого кольца, другой снаружи (например, Янус и Эпиметей). У них орбитальные периоды чуть-чуть разные. Внутренний ближе к планете и, следовательно, быстрее облетает ее, догоняет наружный спутник и за счет взаимного притяжения меняет свою энергию: наружный притормаживается, внутренний ускоряется, и они меняются орбитами – тот, что затормозил переходит на низкую орбиту, а тот, что ускорился – на высокую. Так они делают несколько тысяч оборотов, а затем вновь меняются местами. Например, Янус и Эпиметей меняются местами раз в 4 года.

Несколько лет назад открыли самое далекое кольцо Сатурна, о котором вообще не подозревали. Это кольцо связано со спутником Феба, с поверхности которого улетает пыль, заполняя область вдоль орбиты спутника. Плоскость вращения этого кольца, как и самого спутника, не связана с экватором планеты, поскольку из-за большого расстояния гравитация Сатурна воспринимается как поле точечного объекта.

У каждой гигантской планеты есть семейство спутников. Особенно богаты ими Юпитер и Сатурн. На сегодняшний день у Юпитера их 69, а у Сатурна 62 и регулярно обнаруживаются новые. Нижняя граница массы и размера для спутников формально не установлена, поэтому для Сатурна это число условное: если вблизи планеты обнаруживается объект размером 20-30 метров, то что это – спутник планеты или частица ее кольца?

В любом многочисленном семействе космических тел мелких всегда больше, чем крупных. Спутники планет – не исключение. Мелкие спутники – это, как правило, глыбы неправильной формы, в основном состоящие изо льда. Имея размер менее 500 км, они не в состоянии своей гравитацией придать себе сфероидальную форму. Внешне они очень похожи на астероиды и ядра комет. Вероятно, многие из них таковыми и являются, поскольку движутся вдали от планеты по весьма хаотическим орбитам. Планета могла захватить их, а через некоторое время может потерять.

С малыми астероидоподобными спутниками мы пока не очень близко знакомы. Детальнее других исследованы такие объекты у Марса − два его небольших спутника, Фобос и Деймос. Особенно пристальное внимание было к Фобосу; на его поверхность даже зонд хотели отправить, но пока не получилось. Чем внимательнее присматриваешься к любому космическому телу, тем больше в нем загадок. Фобос – не исключение. Посмотрите, какие странные структуры идут вдоль его поверхности. Уже несколько физических теорий существует, пытающихся объяснить их образование. Эти линии из мелких провалов и борозд похожи на меридианы. Но физической теории их формирования пока никто не предложил.

Все мелкие спутники несут на себе многочисленные следы ударов. Время от времени они сталкиваются друг с другом и с приходящими издалека телами, дробятся на отдельные части, а могут и объединяться. Поэтому восстановить их далекое прошлое и происхождение будет нелегко. Но среди спутников есть и те, что генетически связаны с планетой, поскольку движутся рядом с ней в плоскости ее экватора и, скорее всего имеют общее с ней происхождение.

Особый интерес представляют крупные планетоподобные спутники. У Юпитера их четыре; это так называемые «галилеевы» спутники – Ио, Европа, Ганимед и Каллисто. У Сатурна выделяется своим размером и массой могучий Титан. Эти спутники по своим внутренним параметрам почти неотличимы от планет. Просто их движение вокруг Солнца контролируется еще более массивными телами – материнскими планетами.

Вот перед нами Земля и Луна, а рядом в масштабе спутник Сатурна Титан. Замечательная маленькая планета с плотной атмосферой, с жидкими большими «морями» из метана, этана и пропана на поверхности. Моря из сжиженного газа, который при температуре поверхности Титана (–180 °C) находятся в жидком виде. Очень привлекательная планета, потому что на ней будет легко и интересно работать – атмосфера плотная, надежно защищает от космических лучей и по составу близка к земной атмосфере, поскольку тоже в основном состоит из азота, хотя и лишена кислорода. Вакуумные скафандры там не нужны, поскольку атмосферное давление почти как на Земле, даже чуть больше. Тепло оделись, баллончик с кислородом за спину, и вы легко будете работать на Титане. Кстати, это единственный (кроме Луны) спутник, на поверхность которого удалось посадить космический аппарат. Это был «Гюйгенс», доставленный туда на борту «Кассини» (NASA, ESA), и посадка была довольно удачной.

Вот единственный снимок, сделанный на поверхности Титана. Температура низкая, поэтому глыбы – это очень холодный водяной лед. Мы в этом уверены, потому что Титан вообще по большей части состоит из водяного льда. Цвет красновато-рыжеватый; он естественный и связан с тем, что в атмосфере Титана под действием солнечного ультрафиолета синтезируется довольно сложные органические вещества под общим названием «толины». Дымка из этих веществ пропускает к поверхности в основном оранжевый и красный цвет, довольно сильно его рассеивая. Поэтому изучать из космоса географию Титана довольно сложно. Помогает радиолокация. В этом смысле ситуация напоминает Венеру. Кстати, и циркуляция атмосферы на Титане тоже венерианского типа: по одному мощному циклону в каждом из полушарий.

Спутники других планет-гигантов тоже оригинальны. Это Ио – ближайший спутник Юпитера. На таком же расстоянии находится, что и Луна от Земли, но Юпитер – гигант, а значит, действует на свой спутник очень сильно. Юпитера расплавило недра спутника и на нем мы видим множество действующих вулканов (черные точки). Видно, что вокруг вулканов выбросы ложатся по баллистическим траекториям. Ведь там практически нет атмосферы, поэтому то, что выброшено из вулкана, летит по параболе (или по эллипсу?). Малая сила тяжести на поверхности Ио создает условия для высоких выбросов: 250-300 км вверх, а то и прямо в космос!

Второй от Юпитера спутник – Европа. Покрыт ледяной корой, как наша Антарктида. Под корой, толщина которой оценивается в 25-30 км, океан жидкой воды. Ледяная поверхность покрыта многочисленными древними трещинами. Но под влиянием подледного океана пласты льда медленно перемещаются, напоминая этим дрейф земных материков.

Трещины во льду время от времени открываются, и оттуда фонтанами вырывается вода. Теперь мы это точно знаем, поскольку видели фонтаны с помощью космического телескопа «Хаббл». Это открывает перспективу исследовать воду Европы. Кое-что о ней мы уже знаем: это соленая вода, хороший проводник электричества, на что указывает магнитное поле. Ее температура, вероятно, близка к комнатной, но о ее биологическом составе мы пока ничего не знаем. Хотелось бы зачерпнуть и проанализировать эту воду. И экспедиции с этой целью уже готовятся.

Другие крупные спутники планет, включая нашу Луну, не менее интересны. По сути, они представляют самостоятельную группу планет-спутников.

Здесь в одном масштабе показаны наиболее крупные спутники в сравнении с Меркурием. Они ничем ему не уступают, а по своей природе некоторые из них даже более интересны.

Лекция: Солнечная система: планеты земной группы и планеты-гиганты, малые тела солнечной системы

Солнечная система состоит из различного рода тел. Основным из них, конечно же, является солнце. Но если не брать его во внимание, то главными элементами Солнечной системы считаются планеты. Именно они являются вторыми по значимости элементами после солнца. Сама солнечная система носит такое название в связи с тем, что солнце здесь играет ключевую роль, поскольку все планеты вращаются именно вокруг солнца.

Планеты земной группы


В настоящее время выделяется две группы планет Солнечной системы. Первая группа - это планеты земной группы. К ним относятся Меркурий, Венера, Земля, а также Марс. В данном списке все они перечислены, исходя из расстояния от Солнца до каждой из этих планет. Свое название они получили в связи с тем, что их свойства чем-то напоминают характеристики планеты Земля. Все планеты земной группы имеют твердую поверхность. Особенностью каждой из этих планет является то, что все они по-разному вращаются вокруг собственной оси. К примеру, у Земли один оборот полного вращения происходит в течение суток, то есть 24 часа, в то время как у Венеры полное вращение осуществляется за 243 земных дня.

У каждой из планет земной группы присутствует своя атмосфера. Она различная по уровню плотности и составу, но она точно существует. К примеру, у Венеры она достаточно плотная, в то время как у Меркурия она практически незаметна. Фактически на данный момент бытует мнение относительно того, что у Меркурия вообще отсутствует атмосфера, однако, на самом деле, это не так. Все атмосферы планет земной группы состоят из веществ, молекулы которых сравнительно тяжёлые. К примеру, атмосфера Земли, Венеры и Марса состоит из углекислого газа и водяных паров. В свою очередь, атмосфера Меркурия состоит в основном из гелия.

Помимо атмосферы, все планеты земной группы имеют приблизительно одинаковый химический состав. В частности, они состоят преимущественно из соединений кремния, а также железа. Впрочем, в составе этих планет есть и иные элементы, но их количество не столь велико.

Особенностью планет земной группы является то, что в их центре присутствуют ядро различной массы. При этом, все ядра находятся в жидком состоянии - исключение составляет, предположительно, только Венера.

У каждой из планет земной группы существуют собственные магнитные поля. При этом, у Венеры их воздействие практически незаметно, в то время как у Земли, Меркурия и Марса они достаточно ощутимы. Что касается Земли, то ее магнитные поля не стоят на одном месте, а двигаются. И хотя их скорость по сравнению с человеческими представлениями крайне мала, ученые предполагают, что движение полей может в дальнейшем привести к смене магнитных поясов.

Ещё одной особенностью планет земной группы является то, что у них практически отсутствуют естественные спутники. В частности, на сегодняшний день они обнаружены только у Земли и у Марса.


Планеты-гиганты

Вторая группа планет именуется "планеты-гиганты". К ним относятся Юпитер, Сатурн, Уран и Нептун. По своей массе они значительно превышают массу планет земной группы.

Самым лёгким гигантом на сегодняшний день является Уран, однако и его масса превосходит массу земли

приблизительно в 14 с половиной раз. А самой тяжелой планетой солнечной системы (за исключением Солнца) является Юпитер.

Ни у одной из планет-гигантов фактически нет собственной поверхности, поскольку все они находятся в газообразном состоянии. Газы, из которых состоят эти планеты, по мере приближения к центру или экватору, как его называют, переходят в жидкое состояние. В связи с этим можно заметить разницу в особенностях вращения планет-гигантов вокруг своей же оси. Необходимо отметить, что продолжительность полного оборота составляет максимум 18 часов. Между тем, каждый слой планеты вращается вокруг своей оси с разной скоростью. Данная особенность связана с тем, что планеты-гиганты не являются твердыми. В связи с этим, их отдельные части как бы не связаны между собой.

В центре всех планет-гигантов находится твердое ядро небольших размеров. Вероятнее всего, одним из основных веществ данных планет является водород, который обладает металлическими характеристиками. Благодаря этому, на сегодняшний момент доказано, что у планет-гигантов имеется собственное магнитное поле. Впрочем, в науке на данный момент крайне мало убедительных доказательств и крайне много противоречий, которые могли бы охарактеризовать планеты-гиганты.

Отличительной их чертой является то, что у таких планет имеется множество естественных спутников, а также колец. Кольцами в данном случае именуются мелкие скопления частиц, которые вращаются непосредственно вокруг планеты и собирают различного рода пролетающие мимо мелкие частицы.

На сегодняшний момент науки официально известно только 9 больших планет. Впрочем, в состав планет земной группы и планет-гигантов входят только восемь. Девятая планета, которым является Плутон, не подходит ни к одной из перечисленных групп, поскольку находится на очень далеком расстоянии от Солнца и практически не изучена. Единственное, что можно сказать о Плутоне – то, что его состояние близко к твердому. В настоящий момент существует предположение о том, что Плутон вообще не является планетой. Данное предположение существует более 20 лет, однако решение по исключении Плутона из состава планет пока что не принято.

Малые тела солнечной системы

Кроме планет в Солнечной системе существует масса всевозможных, относительно небольших по своему весу тел, которые именуются астероидами, кометами, малыми планетами и так далее. В целом, данные небесные тела входят в группу малых небесных тел. Они отличаются от планет тем, что имеет твердое состояние, относительно небольшие размеры и могут двигаться вокруг Солнца не только в прямом, но и в обратном направлении. Их размеры гораздо меньше, по сравнению с любой из открытых на сегодняшний момент планет. Теряя космическое притяжение, малые небесные тела солнечной системы попадают в верхние слои земной атмосферы, где сгорают либо падают в форме метеоритов. Изменение состояния тел, вращающихся вокруг иных планет ещё не изучено.




В нашей солнечной системе на сегодняшний день учёные насчитывают восемь планет. Четыре планеты Юпитер, Сатурн, Уран и Нептун учёные выделяют в отдельную группу «газовых гигантов», вместе они составляют 99% массы вещества, которое находится на орбитах вращения принадлежащих Солнцу. В статье представлены самые интересные факты о планетах-гигантах .

  1. Визитной карточкой Юпитера являются полосы на его поверхности , есть несколько теорий об их происхождении. Одна из теорий утверждает, что полосы появились в результате конвекции, этот процесс подразумевает подогревание и подымание одних слоёв атмосферы, охлаждение и опадание других.
  2. Большое красное пятно, расположенное на Юпитере, атмосферное явление похожее на шторм, было открыто ещё в XVII веке . На планете обнаружены разряды молний, которые в три раза превышают мощность земных. Скорость порывов ветра превышает 600 км/ч, а их формирование обусловлено выходом тепла из недр газового гиганта.

  3. Сейчас астрономам известно о существовании 67 спутников планеты Юпитер . Самые крупные - Ио, Европа, Ганимед и Каллисто были открыты в XVII веке Галилео Галилеем.

  4. Если название спутника Юпитера заканчивается на «е», например, Карме, Пасифе, это означает, что ни вращаются в противоположную сторону относительно осевого вращения газового гиганта .

  5. У Юпитера самая большая в Солнечной системе скорость вращения вокруг своей оси , полный оборот планета совершает за 9 ч 50 мин. На Юпитере нет смены времён года, это обусловлено небольшим наклоном оси, вокруг которой вращается «гигант», чуть более 3 градусов, для сравнения Земля имеет 23,5.

  6. На северном полюсе Сатурна есть шестиугольник образованный облаками , причем его форма стремится к правильной, причины его возникновения неизвестны. На обоих полюсах ученые обнаружили северные сияния овальной и спиралевидной форм.

  7. Чтобы сделать полный оборот, вокруг Солнца, Сатурну требуется почти 30 земных лет, но смена дня и ночи за это время происходит всего ~10 раз . Разные части этого газового гиганта вращаются с разной скоростью, «1 зона» имеет интервал вращения 10 ч 14 мин, «2 зона» - 10 ч, 34 мин, «3зона» - 10 ч 39 мин.

  8. Из всей группы планет гигантов у Сатурна самые заметные кольца, состоят они из частичек льда . Кольца Сатурна очень тонкие, меньше 1 километра, в 1921 году весь мир решил, что кольца исчезли, так произошло из-за того, что кольца стали под определенным углом и приборы того времени не позволяли их увидеть.

  9. Открытие Урана произошло в 1781 году астрономом Уильямом Гершелем, он стал первой планетой, обнаруженной в современном мире . Изначально этого Газового гиганта принимали за звезду, позже за комету. Первым названием планеты было «Георг», в честь Георга III, который правил в Англии во времена её открытия.

  10. Атмосфера на 98% состоит из водорода и гелия, но в отличие от двух других планет гигантов, Уран и Нептун в своих недрах содержат большое количество льда . Атмосферные явления на Уране крайне незначительны, это обусловлено низкими температурами на планете, он является самой холодной планетой в нашей солнечной системе.

  11. Ось вращения Урана смещена под углом почти 98 градусов относительно его вращения вокруг Солнца , вследствие чего к Солнцу обращены попеременно разные части. День и ночь сменяют друг друга попеременно на полюсах каждые 42 земных года.

  12. Уран стал второй планетой, у которой была обнаружена система колец . Ученые склоняются к мнению, что кольца сформировались не вместе с Ураном, а позже, при разрушении какого-то его спутника. Насчитывают 13 колец, внутренние кольца серого цвета, средние красного, а два внешних синего.

  13. По составу атмосферы и тела Нептун больше всего похож на Уран, но синий окрас ему придает значительное содержание метана в атмосфере . Ученые предполагают, что на этой планете дуют самые быстрые ветры во всей Солнечной системе, до 2100 км/ч. Предположительная температура на поверхности -220 градусов, а в недрах планеты 7000–7100.

  14. С Земли Нептун можно наблюдать только один раз за его год (в день открытия 26 сентября 1846 года, позже в 2011 году). В 2011 году на Нептуне прошел ровно год с момента его открытия, он составил 164,79 земных лет.

  15. Самый большой спутник Нептуна, Тритон, вращается вокруг планеты в обратном направлении относительно её вращения . Движение Тритона происходит по спирали и примерно через 10 миллионов лет будет разрушен после преодоления предела Роша.

Физические характеристики планет Юпитер Сатурн Уран Нептун
Масса (в массах Земли) 318 95.2 14.5 17.2
Диаметр (в диаметрах Земли) 11.2 9.5 4 3.9
Плотность, кг/м 3 1270 690 1290 1640
Период вращения 9 ч 55 мин 10 ч 40 мин 17 ч 14 мин 16 ч 7 мин
Атмосфера: температура, °C; химический состав 90% H, 10% He 96% H, 4% He 83% H, 15% He, 2% CH 4 80% H, 19% He, 1% CH 4
Число спутников 63 61 27 13
Названия самых крупных спутников Ио, Европа, Ганимед, Каллисто, Амальтея Титан, Рея, Япет, Диона, Тефия Ариэль, Оберон, Умбриэль, Дездемона, Джульетта Тритон, Нереида, Протей, Ларисса, Таласса

Заполнив таблицу, сделайте выводы и укажите сходства и различия между планетами-гигантами.

Выводы: Это газообразные тела с мощным протяжёнными атмосферами, быстро вращаются вокруг своих осей, имеют много спутников, также все они обладают кольцами. У планет-гигантов нет ни твёрдой не жидкой поверхности. Основные компоненты всех планет-гигантов - гелий и водород.

2. Проведите качественное сравнение свойств планет земной группы и планет-гигантов. Используйте при этом слова: «высокая», «низкая», «большая» и т. п. В выводе укажите принципиальное отличие планет земной группы от планет-гигантов

Вывод: Планеты земной группы обладают значительно меньшими массами и размерами, но большей плотностью, не имеют колец. Они ближе расположены к Солнцу и быстрее движутся по своим орбитам, но медленнее вращаются вокруг своей оси и меньше сжаты у полюсах. Также они имеют значительно меньше спутников.

3. Закончите предложения

Особенностью вращения планет-гигантов вокруг оси является то, что они вращаются слоями: слой планеты вблизи экватора вращается быстрее других слоёв.

Наличие у Юпитера и Сатурна плотных и протяжённых атмосфер объясняется тем, что при формировании они быстро достигли такой массы, чтобы удержать больше кислорода.

Спутник Сатурна Титан обладает мощной атмосферой, состоящей в основном из азота.

Планеты-гиганты имеют малую среднюю плотность по причине того, что их атмосферы имеют в основном водородо-гелевый состав.

Существование колец обнаружено у следующих планет-гигантов: Юпитер, Сатурн, Уран и Нептун.

Юпитер излучает значительно больше тепловой энергии, чем получает её от Солнца. Причиной этого можно считать постепенное сжатие планеты и процесса радиоактивного распада в её недрах.