Преломление света при прохождении через стеклянный торр. Оптическая плотность веществ

Рассмотрим, как меняется направление луча при переходе его из воздуха в воду. В воде скорость света меньше, чем в воздухе. Среда, в которой скорость распространения света меньше, является оптически более плотной средой.

Таким образом, оптическая плотность среды характеризуется различной скоростью распространения света .

Это значит, что скорость распространения света больше в оптически менее плотной среде. Например, в вакууме скорость света равна 300 000 км/с, а в стекле - 200 000 км/с. Когда световой пучок падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, например воздух и воду, то часть света отражается от этой поверхности, а другая часть проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе сред (рис. 144). Это явление называется преломлением света .

Рис. 144. Преломление света при переходе луча из воздуха в воду

Рассмотрим преломление света подробнее. На рисунке 145 показаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр к поверхности раздела двух сред, проведённый в точку падения О. Угол АОС - угол падения (α) , угол DOB - угол преломления (γ) .

Рис. 145. Схема преломления луча света при переходе из воздуха в воду

Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD.

Вода - среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачной средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать, что если свет идёт из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения (см. рис. 145):

Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

При изменении угла падения меняется и угол преломления. Чем больше угол падения, тем больше угол преломления (рис. 146). При этом отношение между углами не сохраняется. Если составить отношение синусов углов падения и преломления, то оно остаётся постоянным.

Рис. 146. Зависимость угла преломления от угла падения

Для любой пары веществ с различной оптической плотностью можно написать:

где n - постоянная величина, не зависящая от угла падения. Она называется показателем преломления для двух сред. Чем больше показатель преломления, тем сильнее преломляется луч при переходе из одной среды в другую.

Таким образом, преломление света происходит по следующему закону: лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:

В атмосфере Земли происходит преломление света, поэтому мы видим звёзды и Солнце выше их истинного расположения на небе.

Вопросы

  1. Как меняется направление луча света (см. рис. 144) после того, как в сосуд наливают воду?
  2. Какие выводы получены из опытов по преломлению света (см. рис. 144, 145)?
  3. Какие положения выполняются при преломлении света?

Упражнение 47

Явление преломления света.

Если световой пучок падает на поверхность, разделяющую две прозрачные среды разной оптической плотности, например воздух и воду, то часть света отражается от этой поверхности, а другая часть - проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе этих сред. Это явление называется преломле­нием света.

Рассмотрим преломление света подробнее. На рисунке п оказаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр CD, восстановленный из точки падения О к поверхности, разделяющей две разные среды. Угол АОС - угол падения, угол DOB - угол преломле­ния. Угол преломления DOB меньше угла падения АОС.

Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD. Вода - среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачней средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать: если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения.

Опыты показывают, что при одном и том же угле падения угол преломления тем меньше, чем плотнее в оптическом отношении среда, в которую проникает луч.
Если на пути преломлённого луча расположить перпендикулярно лучу зеркало, то свет отразится от зеркала и выйдет из воды в воздух по направлению падающего луча. Следовательно, лучи падающий и преломлённый обратимы так же, как обратимы падающий и отражённый лучи.
Если свет идёт из среды более оптически плотной в среду менее плотную, то угол преломления луча больше угла падения.

Давайте проведем дома маленький эксперимент. м дома маленькийэксперимент. ам надо опустить в стакан с водой карандаш, и он покажется поломанным. Э то можно объяснить только тем, что лучи света, идущие от карандаша, имеют в воде другое направление, чем в воздухе, т. е. происходит преломление света на границе воздуха с водой. Когда свет переходит из одной среды в другую, на границе раздела происходит отражение части падающего на неё света. Остальная часть света проникает в новую среду. Если свет падает под углом к поверхности раздела, отличным от прямого, от на границе световой луч изменяет своё направление.
Это и называется явлением преломлением света. Явление преломления света наблюдается на границе двух прозрачных сред и объясняется разной скоростью распространения света в различных средах. В вакууме скорость света составляет приблизительно 300000 км/с, во всех других

с редах она меньше.

На рисунке ниже показан луч, переходящий из воздуха в воду. Угол называется углом падения луча, а - углом преломления. Обратите внимание на то, что в воде луч приближается к нормали. Так происходит всякий раз, когда луч попадает в среду, где скорость света меньше. Если же свет распространяется из одной среды в другую, где скорость света больше, то он отклоняется от нормали.

Преломлением обусловлен целый ряд широко известных оптических иллюзий. Например, наблюдателю на берегу, кажется, что у человека, зашедшего в воду по пояс, ноги стали короче.

Законы преломления света.

Из всего сказанного заключаем:
1 . На границе раздела двух сред различной оптической плотности луч света при переходе из одной среды в другую меняет своё направление.
2. При переходе луча света в среду с большей оптической плотностью угол преломления меньше угла падения; при переходе луча света из оптически более плотной среды в среду менее плотную угол преломления больше угла паде ния.
Преломление света сопровождается отражением, причём с увеличением угла падения яркость отражённого пучка возрастает, а преломлённого ослабевает. Это можно увидеть проводя опыт, изображённом на рисунке. С ледовательно, отражённый пучок уносит с собой тем больше световой энергии, чем больше угол падения.

Пусть MN -граница раздела двух про зрачных сред, например, воздуха и воды, АО -падающий луч, ОВ - преломленный луч, -угол падения, -угол преломления, -скорость распространения света в первой среде, - скорость распространения света во второй среде.

Первый закон преломления звучит так: отношение синуса угла падения к синусу угла преломления является постоянной величиной для данных двух сред:

, где - относительный показатель преломления (показатель преломления второй среды относительно первой).

Второй закон преломления света очень напоминает второй закон отражения света:

падающий луч, луч преломленный и перпендикуляр, проведенный в точку падения луча, лежит в одной плоскости.

Абсолютный показатель преломления.

Скорость распространения света в воздухе почти не отличается от скорости света в вакууме: с м/с.

Если свет попадает из вакуума в какую-нибудь среду, то

где n - абсолютный показатель преломления данной среды. Относительный показатель преломления двух сред связанный с абсолютными показателями преломления этих сред, где и - соответственно абсолютные показатели преломления первой и второй сред.

Абсолютные показатели преломления света:

Вещество

Алмаз 2,42. Кварц 1,54. Воздух (при нормальных условиях) 1,00029. Этиловый спирт 1,36. Вода 1,33. Лёд 1,31. Скипидар 1,47. Плавленый кварц 1,46. Крон 1,52. Лёгкий флинт 1,58. Хлорид натрия (соль) 1,53.

(Как мы увидим в дальнейшем, показатель преломления n несколько меняется в зависимости от длины волны света – постоянное значение он сохраняет только в вакууме. Поэтому приведённые в таблице данные соответствуют желтому свету с длинной волны .)

Напимер, так как для алмаза , свет распространяется в алмазе со скоростью

Оптическая плотность среды.

Если абсолютный показатель преломления первой среды меньше абсолютного показателя преломления второй среды, то первая среда имеет меньшую оптическую плотность, нежели вторая и > . Оптическую плотность среды не следует путать с плотностью вещества.

Прохождение света сквозь плоско-параллельную пластинку и призму .

Большое практическое значение имеет прохождение света через прозрачные тела различной формы. Рассмотрим наиболее простые случаи.
Направим луч света сквозь толстую плоскопараллельную пластинку (пластинку, ограниченную параллельными гранями). Проходя через пластинку, луч света преломляется дважды: один раз при входе в пластинку, второй раз при выходе из пластинки в воздух.

Прошедший через пластинку луч света остаётся параллельным своему первоначальному направлению и только немного смещается. Это смещение тем больше, чем толще пластинка и чем больше угол падения. Величина смещения зависит и от того, из какого вещества изготовлена пластинка.
Примером плоскопараллельной пластинки служит оконное стекло. Но рассматривая предметы через стекло, мы не замечаем изменений в их расположении и форме потому, что стекло тонкое; лучи света, проходя оконное стекло, смещаются незначительно.
Если рассматривать какой-либо предмет через призму, то предмет кажетсясмещённым. Идущий от предмета луч света падает на призму в точке А, преломляется и идёт внутри призмы по направленшо АВ Дойдя до второй грани призмы. луч света ещё раз преломляется, отклоняясь к основанию призмы. Поэтому кажется, что луч идет из точки. располо женной на продолжении луча ВС, то есть предмет кажется смещённым к вершине угла, образованного преломляющими гранями призмы.

Полное отражение света.

Красивое зрелище представляет собой фонтан, у которого выбрасываемые струи освещаются изнутри. (Это можно изобразить в обычных условиях, проделав следующий опыт№1). Обьясним это явление чуть ниже.

При переходе света из оптически более плотной среды в оптически менее плотую наблюдается явление полного отражения света. Угол преломления в этом случае больший по сравнению с углом падения (рис. 141). При увеличении угла падения световых лучей от источника S на поверхность раздела двух сред МN наступит такой момент, когда преломленный луч пойдет вдоль границы раздела двух сред, то есть = 90°.

Угол падения , которому отвечает угол преломления = 90°, называют граничным углом полного отражения.

Если превысить этот угол, то лучи не выйдут из первой среды вообще, будет наблюдаться только явление отражения света от границы раздела двух сред.

Из первого закона преломления:

Так как , то .

Если вторая среда - воздух (вакуум), то где n - абсолютный показатель преломления среды, из которой идут лучи.

Объяснение явления наблюдаемого вами в опыте довольно простое. Луч света проходит вдоль струи воды и попадает на изогнутую поверхность под углом, большим предельного, испытывает полное внутреннее отражение, а затем опять попадает на противоположную сторону струи под углом опять больше предельного. Так луч проходит вдоль струи изгибаясь вместе с ней.

Но если бы свет полностью отражался внутри струи, то она не была бы видна извне. Часть света рассеивается водой, пузырьками воздуха и различными примесями, имеющимися в ней, а также вследствие неровностей поверхности струи, поэтому она видна снаружи.


Явление преломления света - это физическое явление, которое происходит каждый раз, когда волна перемещается из одного материала в другой, в котором ее скорость распространения изменяется. Визуально оно проявляется в том, что изменяется направление распространения волны.

Физика: преломление света

Если падающий луч попадает на раздел между двумя средами под углом 90°, то ничего не происходит, он продолжает свое движение в том же направлении под прямым углом к границе раздела. Если угол падения луча отличается от 90°, происходит явление преломления света. Это, например, производит такие странные эффекты, как кажущийся излом объекта, частично погруженного в воду или миражи, наблюдаемые в горячей песчаной пустыне.

История открытия

В первом столетии н. э. древнегреческий географ и астроном Птолемей попытался математически объяснить величину рефракции, но предложенный им закон позже оказался ненадежным. В XVII в. голландский математик Виллеброрд Снелл разработал закон, который определял величину, связанную с отношением падающего и преломленного углов, которая впоследствии была названа показателем рефракции вещества. По сути, чем больше вещество способно преломлять свет, тем больше этот показатель. Карандаш в воде «сломан», потому что лучи, идущие от него, изменяют свой путь на границе раздела воздух-вода прежде, чем достигают глаз. К разочарованию Снелла, ему так и не удалось обнаружить причину этого эффекта.

В 1678 году еще один голландский ученый Христиан Гюйгенс разработал математическую зависимость, объясняющую наблюдения Снеллиуса и предположил, что явление преломления света - это результат разной скорости, с которой луч проходит через две среды. Гюйгенс определил, что отношение углов прохождения света через два материала с разными показателями рефракции должно быть равным отношению его скоростей в каждом материале. Таким образом, он постулировал, что через среды, имеющие больший коэффициент преломления, свет движется медленнее. Иначе говоря, скорость света через материал обратно пропорциональна его показателю преломления. Хотя впоследствии закон был экспериментально подтвержден, для многих исследователей того времени это не было очевидным, т. к. отсутствовали надежные средства света. Ученым казалось, что его скорость не зависит от материала. Лишь через 150 лет после смерти Гюйгенса скорость света была измерена с достаточной точностью, доказывающей его правоту.

Абсолютный показатель рефракции

Абсолютный показатель преломления n прозрачного вещества или материала определяется как относительная скорость, при которой свет проходит через него относительно скорости в вакууме: n=c/v, где с - скорость света в вакууме, а v - в материале.

Очевидно, что преломление света в вакууме, лишенном любого вещества, отсутствует, и в нем абсолютный показатель равен 1. Для других прозрачных материалов это значение больше 1. Для расчета показателей неизвестных материалов может использоваться преломление света в воздухе (1,0003).

Законы Снеллиуса

Введем некоторые определения:

  • падающий луч - луч, который приближается к разделению сред;
  • точка падения - точка разделения, в которую он попадает;
  • преломленный луч покидает разделение сред;
  • нормаль - линия, проведенная перпендикулярно к разделению в точке падения;
  • угол падения - угол между нормалью и падающим лучом;
  • определить света можно как угол между преломленным лучом и нормалью.

Согласно законам рефракции:

  1. Падающий, преломленный луч и нормаль находятся в одной плоскости.
  2. Отношение синусов углов падения и рефракции равно отношению коэффициентов рефракции второй и первой среды: sin i/sin r = n r /n i .

Закон преломления света (Снеллиуса) описывает взаимосвязь между углами двух волн и показателями рефракции двух сред. Когда волна переходит из менее рефракционной среды (например, воздуха) в более преломляющую (например, воду), ее скорость падает. Наоборот, когда свет переходит из воды в воздух, скорость увеличивается. в первой среде по отношению к нормали и угол рефракции во второй будут отличаться пропорционально разнице в показателях преломления между этими двумя веществами. Если волна переходит из среды с низким коэффициентом в среду с более высоким, то она изгибается в направлении к нормали. А если наоборот, то она удаляется.

Относительный показатель рефракции

Показывает, что отношение синусов падающего и преломленного углов равно константе, которая представляет собой отношение в обеих средах.

sin i/sin r = n r /n i =(c/v r)/(c/v i)=v i /v r

Отношение n r /n i называется относительным коэффициентом преломления для данных веществ.

Ряд явлений, которые являются результатом рефракции, часто наблюдаются в повседневной жизни. Эффект «сломанного» карандаша - одно из самых распространенных. Глаза и мозг следуют за лучами обратно в воду, как будто они не преломляются, а приходят от объекта по прямой линии, создавая виртуальный образ, который появляется на меньшей глубине.

Дисперсия

Тщательные измерения показывают, что на преломление света длина волны излучения или его цвет оказывают большое влияние. Другими словами, вещество имеет много которые могут различаться при изменении цвета или длины волны.

Такое изменение имеет место во всех прозрачных средах и носит название дисперсии. Степень дисперсии конкретного материала зависит от того, насколько показатель рефракции изменяется с длиной волны. С ростом длины волны становится менее выраженным явление преломления света. Это подтверждается тем, что фиолетовый рефрагирует больше красного, так как его длина волны короче. Благодаря дисперсии в обычном стекле происходит известное расщепление света на его составляющие.

Разложение света

В конце XVII века сэр Исаак Ньютон провел серию экспериментов, которые привели к его открытию видимого спектра, и показал, что белый свет состоит из упорядоченного массива цветов, начиная от фиолетового через синий, зеленый, желтый, оранжевый и заканчивая красным. Работая в затемненной комнате, Ньютон помещал стеклянную призму в узкий луч, проникавший через отверстие в оконных ставнях. При прохождении через призму происходило преломление света - стекло проецировало его на экран в виде упорядоченного спектра.

Ньютон пришел к выводу о том, что белый свет состоит из смеси разных цветов, а также, что призма «разбрасывает» белый свет, преломляя каждый цвет под другим углом. Ньютон не смог разделить цвета, пропуская их через вторую призму. Но когда он поставил вторую призму очень близко к первой таким образом, что все диспергированные цвета вошли во вторую призму, ученый установил, что цвета рекомбинируют, снова образуя белый свет. Этот открытие убедительно доказало спектральный который может быть легко разделен и соединен.

Явление дисперсии играет ключевую роль в большом числе разнообразных явлений. Радуга возникает в результате преломления света в каплях дождя, производя впечатляющее зрелище спектрального разложения, подобное тому, которое происходит в призме.

Критический угол и полное внутреннее отражение

При прохождении через среду с более высоким показателем рефракции в среду с более низким путь движения волн определяется углом падения относительно разделения двух материалов. Если угол падения превышает определенное значение (зависящее от показателя рефракции двух материалов), он достигает точки, когда свет не преломляется в среду с более низким показателем.

Критический (или предельный) угол определяется как угол падения, результирующий в угол рефракции, равный 90°. Другими словами, пока угол падения меньше критического, рефракция происходит, а когда он равен ему, то преломленный луч проходит вдоль места разделения двух материалов. Если угол падения превышает критический, то свет отражается обратно. Явление это носит название полного внутреннего отражения. Примеры его использования - алмазы и Огранка алмаза способствует полному внутреннему отражению. Большинство лучей, входящих сквозь верхнюю часть бриллианта, будет отражаться, пока они не достигнут верхней поверхности. Именно это дает бриллиантам их яркий блеск. Оптическое волокно представляет собой стеклянные «волосы», настолько тонкие, что когда свет входит в один конец, он не может выйти наружу. И только когда луч достигнет другого конца, он сможет покинуть волокно.

Понимать и управлять

Оптические приборы, начиная от микроскопов и телескопов до фотокамер, видеопроекторов, и даже человеческий глаз полагаются на тот факт, что свет может быть сфокусирован, преломлен и отражен.

Рефракция производит широкий спектр явлений, в том числе миражи, радуги, оптические иллюзии. Из-за преломления толстостенная кружка пива кажется более полной, а солнце садится на несколько минут позже, чем на самом деле. Миллионы людей используют силу рефракции, чтобы исправить дефекты зрения с помощью очков и контактных линз. Благодаря пониманию этих свойств света и управлению ими, мы можем увидеть детали, невидимые невооруженным глазом, независимо от того, находятся ли они на предметном стекле микроскопа или в далекой галактике.

Законы преломления света.

Физический смысл показателя преломления. Свет преломляется вследствие изменения скорости его распространения при переходе из одной среды в другую. Показатель преломления второй среды относительно первой численно равен отношению скорости света в первой среде к скорости света во второй среде:

Таким образом, показатель преломления показывает, во сколько раз скорость света в той среде, из которой луч выходит, больше (меньше) скорости света в той среде, в которую он входит.

Поскольку скорость распространения электромагнитных волн в вакууме постоянна, целесообразно определить показатели преломления различных сред относительно вакуума. Отношение скорости с распространения света в вакууме к скорости распространения его в данной среде называется абсолютным показателем преломления данного вещества () и является основной характеристикой его оптических свойств,

,

т.е. показатель преломления второй среды относительно первой равен отношению абсолютных показателей этих сред.

Обычно оптические свойства вещества характеризуются показателем преломления n относительно воздуха, который мало отличается от абсолютного показателя преломления. При этом среда, у которой абсолютный показатель больше, называется оптически более плотной.

Предельный угол преломления. Если свет переходит из среды с меньшим показателем преломления в среду с большим показателем преломления (n 1 < n 2 ), то угол преломления меньше угла падения

r < i (рис.3).

Рис. 3. Преломление света при переходе

из оптически менее плотной среды в среду

оптически более плотную.

При увеличении угла падения до i m = 90° (луч 3, рис.2) свет во второй среде будет распространяться только в пределах угла r пр , называемого предельным углом преломления . В область второй среды в пределах угла, дополнительного к предельному углу преломления (90° - i пр ), свет не проникает (на рис.3 эта область заштрихована).

Предельный угол преломления r пр

Но sin i m = 1, следовательно .

Явление полного внутреннего отражения. Когда свет переходит из среды с большим показателем преломления n 1 > n 2 (рис.4), то угол преломления больше угла падения. Свет преломляется (переходит в вторую среду) только в пределах угла падения i пр , который соответствует углу преломления r m = 90°.

Рис. 4. Преломление света при переходе из оптически более плотной среды в среду

оптически менее плотную.

Свет, падающий под большим углом, полностью отражается от границы сред (рис. 4 луч 3). Это явление называется полным внутренним отражением, а угол падения i пр – предельным углом полного внутреннего отражения.

Предельный угол полного внутреннего отражения i пр определяется согласно условию:

, то sin r m =1, следовательно, .

Если свет идет из какой-либо среды в вакуум или в воздух, то

Вследствие обратимости хода лучей для двух данных сред предельный угол преломления при переходе из первой среды во вторую равен предельному углу полного внутреннего отражения при переходе луча из второй среды в первую.

Предельный угол полного внутреннего отражения для стекла меньше 42°. Поэтому лучи, идущие в стекле и падающие на его поверхность под углом 45°, полностью отражаются. Это свойство стекла используется в поворотных (рис.5а) и оборотных (рис. 4б) призмах, часто применяемых в оптических приборах.


Рис. 5: а – поворотная призма; б – оборотная призма.

Волоконная оптика. Полное внутреннее отражение используется при устройстве гибких световодов . Свет, попадая внутрь прозрачного волокна, окруженного веществом с меньшим показателем преломления, многократно отражается и распространяется вдоль этого волокна (рис.6).

Рис.6. Прохождение света внутри прозрачного волокна, окруженного веществом

с меньшим показателем преломления.

Для передачи больших световых потоков и сохранения гибкости светопроводящей системы отдельные волокна собираются в пучки – световоды . Раздел оптики, в котором рассматривают передачу света и изображения по светопроводам, называют волоконной оптикой. Этим же термином называют и сами волоконно-оптические детали и приборы. В медицине световоды используют для освещения холодным светом внутренних полостей и передачи изображения.

Практическая часть

Приборы для определения показателя преломления веществ называются рефрактометрами (рис.7).


Рис.7. Оптическая схема рефрактометра.

1– зеркало, 2 – измерительная головка, 3 – система призм для устранения дисперсии, 4 – объектив, 5 – поворотная призма (поворот луча на 90 0), 6 – шкала (в некоторых рефрактометрах

имеются две шкалы: шкала показателей преломления и шкала концентрации растворов),

7 – окуляр.

Основной частью рефрактометра является измерительная головка, состоящая из двух призм: осветительной, которая находится в откидной части головки, и измерительной.

На выходе осветительной призмы ее матовая поверхность создает рассеянный пучок света, который проходит через исследуемую жидкость (2-3 капли) между призмами. На поверхность измерительной призмы лучи падают под различными углами, в том числе и под углом в 90 0 . В измерительной призме лучи собираются в области предельного угла преломления, чем и объясняется образование границы света - тени на экране прибора.

Рис.8. Ход луча в измерительной головке:

1 – осветительная призма, 2 – исследуемая жидкость,

3 – измерительная призма, 4 – экран.

ОПРЕДЕЛЕНИЕ ПРОЦЕНТНОГО СОДЕРЖАНИЯ САХАРА В РАСТВОРЕ

Естественный и поляризованный свет. Видимый свет – это электромагнитные волны с частотой колебаний в интервале от 4∙10 14 до 7,5∙10 14 Гц. Электромагнитные волны являются поперечными : векторы Е и Н напряженностей электрического и магнитного полей взаимно перпендикулярны и лежат в плоскости, перпендикулярной вектору скорости распространения волны.

В связи с тем, что и химическое, и биологическое действие света связано в основном с электрической составляющей электромагнитной волны, вектор Е напряженности этого поля называют световым вектором, а плоскость колебаний этого вектора – плоскостью колебаний световой волны .

В любом источнике света волны излучаются множеством атомов и молекул, световые векторы этих волн расположены в разнообразных плоскостях, а колебания происходят в различных фазах. Следовательно, плоскость колебаний светового вектора результирующей волны непрерывно изменяет свое положение в пространстве (рис.1). Такой свет называется естественным, или неполяризованным .

Рис. 1. Схематическое изображение луча и естественного света.

Если выбрать две взаимно перпендикулярные плоскости, проходящие через луч естественного света и спроецировать векторы Е на плоскости, то в среднем эти проекции будут одинаковыми. Таким образом, луч естественного света удобно изображать как прямую, на которой расположено одинаковое число тех и других проекций в виде черточек и точек:


При прохождении света через кристаллы можно получить свет, плоскость колебаний волны которого занимает постоянное положение в пространстве. Такой свет называется плоско- или линейно–поляризованным . Вследствие упорядоченного расположения атомов и молекул в пространственной решетке, кристалл пропускает только колебания светового вектора, происходящие в некоторой, характерной для данной решетки, плоскости.

Плоско-поляризованную световую волну удобно изображать следующим образом:

Поляризация света может быть также и частичной. В этом случае амплитуда колебаний светового вектора в какой-либо одной плоскости значительно превышает амплитуды колебаний в остальных плоскостях.

Частично поляризованный свет условно можно изобразить следующим образом: , и т.д. Соотношение числа черточек и точек при этом определяет степень поляризации света.

Во всех способах преобразования естественного света в поляризованный из естественного света полностью или частично отбираются составляющие с вполне определенной ориентацией плоскости поляризации.

Способы получения поляризованного света: а) отражение и преломление света на границе двух диэлектриков; б) пропускание света через оптически анизотропные одноосные кристаллы; в) пропускание света через среды, оптическая анизотропия которых искусственно создана действием электрического или магнитного поля, а также вследствие деформации. Эти способы основаны на явлении анизотропии .

Анизотропия – это зависимость ряда свойств (механических, тепловых, электрических, оптических) от направления. Тела, свойства которых одинаковы по всем направлениям, называются изотропными .

Поляризация наблюдается также при рассеянии света. Степень поляризации тем выше, чем меньше размеры частиц, на которых происходит рассеяние.

Устройства, предназначенные для получения поляризованного света, называются поляризаторами .

Поляризация света при отражении и преломлении на границе раздела двух диэлектриков. При отражении и преломлении естественного света на границе раздела двух изотропных диэлектриков проходит его линейная поляризация. При произвольном угле падения поляризация отраженного света является частичной. В отраженном луче преобладают колебания, перпендикулярные плоскости падения, а в преломленном -параллельные ей (рис. 2).

Рис. 2. Частичная поляризация естественного света при отражении и преломлении

Если угол падения удовлетворяет условию tg i Б = n 21 , то отраженный свет поляризуется полностью (закон Брюстера), а преломленный луч поляризуется не полностью, но максимально (рис.3). В этом случае отраженный и преломленный лучи взаимно перпендикулярны.

– относительный показатель преломления двух сред, i Б – угол Брюстера.

Рис. 3. Полная поляризация отраженного луча при отражении и преломлении

на границе раздела двух изотропных диэлектриков.

Двойное лучепреломление. Существует ряд кристаллов (кальцит, кварц, и т.п.), в которых луч света, преломляясь, расщепляется на два луча с разными свойствами. Кальцит (исландский шпат) представляет собой кристалл с гексагональной решеткой. Ось симметрии шестиугольной призмы, образующей его ячейку, называется оптической осью. Оптическая ось – это не линия, а направление в кристалле. Любая прямая, параллельная этому направлению, также является оптической осью.

Если вырезать из кристалла кальцита пластинку так, чтобы ее грани были перпендикулярны оптической оси, и направить луч света вдоль оптической оси, то никакие изменения в нем не произойдут. Если же направить луч под углом к оптической оси, то он разобьется на два луча (рис. 4), из которых один называется обыкновенным, второй – необыкновенным.

Рис. 4. Двойное лучепреломление при прохождении света через пластинку кальцита.

MN –оптическая ось.

Обыкновенный луч лежит в плоскости падения и имеет обычный для данного вещества показатель преломления. Необыкновенный луч лежит в плоскости, проходящей через падающий луч и оптическую ось кристалла, проведенную в точке падения луча. Эта плоскость называется главной плоскостью кристалла . Показатели преломления для обыкновенного и необыкновенного луча отличаются.

Как обыкновенные, так и необыкновенные лучи поляризованы. Плоскость колебаний обыкновенных лучей перпендикулярна главной плоскости. Колебания необыкновенных лучей происходят в главной плоскости кристалла.

Явление двойного лучепреломления обусловлено анизотропией кристаллов. Вдоль оптической оси скорость световой волны для обыкновенного и необыкновенного лучей одна и та же. В других направлениях скорость необыкновенной волны у кальцита больше, чем обыкновенной. Наибольшая разница между скоростями обеих волн возникает в направлении, перпендикулярном оптической оси.

Согласно принципу Гюйгенса при двойном лучепреломлении в каждой точке поверхности волны, достигающей границы кристалла, возникают (не одна, как в обычных средах!) одновременно две элементарные волны, которые и распространяются в кристалле.

Скорость распространения одной волны по всем направлениям одинакова, т.е. волна имеет сферическую форму и называется обыкновенной . Скорость распространения другой волны по направлению оптической оси кристалла одинакова со скоростью обыкновенной волны, а по направлению перпендикулярному к оптической оси, от неё отличается. Волна имеет эллипсоидную форму и называется необыкновенной (рис.5).

Рис. 5. Распространение обыкновенной (о) и необыкновенной (е) волны в кристалле

при двойном лучепреломлении.

Призма Николя. Для получения поляризованного света пользуются поляризационной призмой Николя. Из кальцита выкалывают призму определенной формы и размеров, затем ее распиливают по диагональной плоскости и склеивают канадским бальзамом. При падении светового луча на верхнюю грань вдоль оси призмы (рис. 6) необыкновенный луч падает на плоскость склейки под меньшим углом и проходит, почти не изменяя направления. Обыкновенный луч падает под углом большим, чем угол полного отражения для канадского бальзама, отражается от плоскости склейки и поглощается зачерненной гранью призмы. Призма Николя дает полностью поляризованный свет, плоскость колебаний которого лежит в главной плоскости призмы.


Рис. 6. Призма Николя. Схема прохождения обыкновенного

и необыкновенного лучей.

Дихроизм. Существуют кристаллы, которые по-разному поглощают обыкновенный и необыкновенный лучи. Так, если на кристалл турмалина направить пучок естественного света перпендикулярно направлению оптической оси, то при толщине пластинки всего лишь в несколько миллиметров обыкновенный луч полностью поглотится, а из кристалла выйдет только необыкновенный луч (рис.7).

Рис. 7. Прохождение света через кристалл турмалина.

Различный характер поглощения обыкновенного и необыкновенного лучей называется анизотропией поглощения, или дихроизмом. Таким образом, кристаллы турмалина также могут быть использованы в качестве поляризаторов.

Поляроиды. В настоящее время в качестве поляризаторов широко применяют поляроиды. Для изготовления поляроида между двумя пластинками стекла или оргстекла заклеивается прозрачная пленка, которая содержит кристаллы поляризующего свет дихроичного вещества (например, сернокислый иодхинон). В процессе изготовления пленки кристаллы ориентируются так, чтобы их оптические оси были параллельны. Вся эта система закрепляется в оправе.

Дешевизна поляроидов и возможность изготовления пластин с большой площадью обеспечили их широкое применение на практике.

Анализ поляризованного света. Для исследования характера и степени поляризации света применяют устройства, называемые анализаторами. В качестве анализаторов используются те же устройства, которые служат для получения линейно-поляризованного света – поляризаторы, но приспособленные для вращения вокруг продольной оси. Анализатор пропускает только колебания, совпадающие с его главной плоскостью. В противном случае через анализатор проходит только составляющая колебаний, совпадающая с этой плоскостью.

Если световая волна, входящая в анализатор, линейно поляризована, то для интенсивности волны, выходящей из анализатора, справедлив закон Малюса:

,

где I 0 – интенсивность входящего света, φ – угол между плоскостями входящего света и света, пропускаемого анализатором.

Прохождение света через систему поляризатор – анализатор показано схематически на рис. 8.

Рис. 8. Схема прохождения света через систему поляризатор-анализатор(П – поляризатор,

А – анализатор, Э – экран):

а) главные плоскости поляризатора и анализатора совпадают;

б) главные плоскости поляризатора и анализатора расположены под некоторым углом;

в) главные плоскости поляризатора и анализатора взаимно перпендикулярны.

Если главные плоскости поляризатора и анализатора совпадают, то свет полностью проходит через анализатор и освещает экран (рис. 7а). Если они расположены под некоторым углом, свет проходит через анализатор, но ослабляется (рис.7б) тем больше, чем ближе этот угол к 90 0 . Если эти плоскости взаимно перпендикулярны, то свет полностью гасится анализатором (рис.7в)

Вращение плоскости колебания поляризованного света. Поляриметрия. Некоторые кристаллы, а также растворы органических веществ обладают свойством вращать плоскость колебаний проходящего через них поляризованного света. Эти вещества называются оптически активными . К ним относятся сахара, кислоты, алкалоиды и др.

Для большинства оптически активных веществ обнаружено существование двух модификаций, осуществляющих вращение плоскости поляризации соответственно по и против часовой стрелки (для наблюдателя, смотрящего навстречу лучу). Первая модификация называется правовращающей, или положительной, вторая – левовращающей, или отрицательной.

Естественная оптическая активность вещества в некристаллическом состоянии обусловлена асимметрией молекул. В кристаллических веществах оптическая активность может быть также обусловлена особенностями расположения молекул в решетке.

В твердых телах угол φ поворота плоскости поляризации прямо пропорционален длине d пути светового луча в теле:

где α – вращательная способность (удельное вращение), зависящая от рода вещества, температуры и длины волны. Для лево- и правовращающих модификаций вращательные способности одинаковы по величине.

Для растворов угол поворота плоскости поляризации

,

где α – удельное вращение, с – концентрация оптически активного вещества в растворе. Величина α зависит от природы оптически активного вещества и растворителя, температуры и длины волны света. Удельное вращение – это увеличенный в 100 раз угол вращения для раствора толщиной 1 дм при концентрации вещества 1 грамм на 100 см 3 раствора при температуре 20 0 С и при длине волны света λ=589 нм. Весьма чувствительный метод определения концентрации с, основанный на этом соотношении, называется поляриметрией (сахариметрией).

Зависимость вращения плоскости поляризации от длины волны света называется вращательной дисперсией. В первом приближении имеет местозакон Био:

где А – коэффициент, зависящий от природы вещества и температуры.

В клинических условиях метод поляриметрии применяется для определения концентрации сахара в моче. Используемый при этом прибор называется сахариметром (рис.9).

Рис. 9. Оптическая схема сахариметра:

И – источник естественного света;

С – светофильтр (монохроматор), обеспечивающий согласование работы прибора

с законом Био;

Л – собирающая линза, дающая на выходе параллельный пучок света;

П – поляризатор;

К – трубка с исследуемым раствором;

А – анализатор, укрепленный на вращающемся диске Д с делениями.

При проведении исследования сначала анализатор устанавливают на максимальное затемнение поля зрения без исследуемого раствора. Затем помещают в прибор трубку с раствором и, вращая анализатор, снова добиваются затемнения поля зрения. Наименьший из двух углов, на который при этом необходимо повернуть анализатор, и является углом вращения для исследуемого вещества. По величине угла вычисляется концентрация сахара в растворе.

Для упрощения расчетов трубку с раствором делают такой длины, чтобы угол поворота анализатора (в градусах) численно равнялся концентрации с раствора (в граммах на 100 см 3). При этом длина трубки для глюкозы составляет 19 см.

Поляризационная микроскопия. Метод основан на анизотропии некоторых компонентов клеток и тканей, появляющейся при наблюдении их в поляризованном свете. Структуры, состоящие из молекул, расположенных параллельно, или дисков, расположенных в виде стопки, при введении в среду с показателем преломления, отличающимся от показателя преломления частиц структуры, обнаруживают способность к двойному лучепреломлению. Это означает, что структура будет пропускать поляризованный свет только в том случае, когда плоскость поляризации параллельна длинным осям частиц. Это остается в силе даже тогда, когда частицы не обладают собственным двойным лучепреломлением. Оптическая анизотропия наблюдается в мышечных, соединительнотканных (коллагеновых) и нервных волокнах.

Само название скелетных мышц «поперечнополосатые» связано с различием оптических свойств отдельных участков мышечного волокна. Оно состоит из чередующихся более темных и более светлых участков вещества ткани. Это придает волокну поперечную исчерченность. Исследование мышечного волокна в поляризованном свете обнаруживает, что более темные участки являются анизотропными и обладают свойствами двойного лучепреломления , тогда как более темные участки являются изотропными . Коллагеновые волокна анизотропны, оптическая ось их расположена вдоль оси волокна. Мицеллы в мякотной оболочке нейрофибрилл также анизотропны, но оптические оси их расположены в радиальных направлениях. Для гистологического исследования этих структур применяется поляризационный микроскоп.

Важнейшим компонентом поляризационного микроскопа служит поляризатор, который располагается между источником света и конденсатором. Кроме того, в микроскопе имеются вращающийся столик или держатель образца, анализатор, находящийся между объективом и окуляром, который можно установить так, чтобы его ось была перпендикулярна оси поляризатора, и компенсатор.

Когда поляризатор и анализатор скрещены, а объект отсутствует или является изотропным, поле выглядит равномерно темным. Если же присутствует объект, обладающий двойным лучепреломлением, и он расположен так, что его ось находится под углом к плоскости поляризации, отличным от 0 0 или от 90 0 , он будет разделять поляризованный свет на два компонента – параллельный и перпендикулярный относительно плоскости анализатора. Следовательно, часть света будет проходить через анализатор, в результате чего появится яркое изображение объекта на темном фоне. При вращении объекта яркость его изображения будет изменяться, достигая максимума при угле 45 0 относительно поляризатора или анализатора.

Поляризационная микроскопия используется при изучении ориентации молекул в биологических структурах (например, мышечных клетках), а также во время наблюдения структур, невидимых при применении других методов (например, митотического веретена при делении клеток), идентификации спиральной структуры.

Поляризованный свет используют в модельных условиях для оценки механических напряжений, возникающих в костных тканях. Этот метод основан на явлении фотоупругости, которое заключается в возникновении оптической анизотропии в первоначально изотропных твердых телах под действием механических нагрузок.

ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ

Интерференция света. Интерференцией света называется явление, возникающее при наложении световых волн и сопровождаемое их усилением или ослаблением. Устойчивая интерференционная картина возникает при наложении когерентных волн. Когерентными волнами называются волны с равными частотами и одинаковыми фазами или имеющими постоянный сдвиг фаз. Усиление световых волн при интерференции (условие максимума) происходит в том случае, Δ укладывается четное число длин полуволн:

где k – порядок максимума, k=0,±1,±2,±,…±n;

λ – длина световой волны.

Ослабление световых волн при интерференции (условие минимума) наблюдается в том случае, если в оптической разности хода Δ укладывается нечетное число длин полуволн:

где k – порядок минимума.

Оптической разностью хода двух лучей называется разность расстояний от источников до точки наблюдения интерференционной картины.


Интерференция в тонких пленках. Интерференцию в тонких пленках можно наблюдать в мыльных пузырях, в пятне керосина на поверхности воды при освещении их солнечным светом.

Пусть на поверхность тонкой пленки падает луч 1 (см рис.2). Луч, преломившись на границе воздух - пленка, проходит через пленку, отражается от её внутренней поверхности, подходит к внешней поверхности пленки, преломляется на границе пленка – воздух и выходит луч . В точку выхода луча направляем луч 2, который проходит параллельно лучу 1. Луч 2 отражается от поверхности пленки , накладывается на луч , и оба луча интерферируют.

При освещении пленки полихроматическим светом получаем радужную картину. Это объясняется тем, что пленка неоднородна по толщине. Следовательно, возникают различные по величине разности хода, которым соответствуют разные длины волн (окрашенные мыльные пленки, переливчатые цвета крыльев некоторых насомых и птиц, пленки нефти или масел на поверхности воды и т.д.).

Интерференция света используется в приборах – интерферометрах. Интерферометрами называются оптические устройства, при помощи которых можно пространственно разделить два луча и создать между ними определенную разность хода. Применяются интерферометры для определения длины волн с высокой степенью точности небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.

В санитарно–гигиенических целях интерферометр применяется для определения содержания вредных газов.

Сочетание интерферометра и микроскопа (интерференционный микроскоп) используется в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов.

Принцип Гюйгенса – Френеля. Согласно Гюйгенсу, каждая точка среды, до которой доходит первичная волна в данной момент, является источником вторичных волн. Френель уточнил это положение Гюйгенса, добавив, что вторичные волны являются когерентными, т.е. при наложении они будут давать устойчивую интерференционную картину.

Дифракция света. Дифракцией света называются явления отклонения света от прямолинейного распространения.

Дифракция в параллельных лучах от одной щели. Пусть на цель шириной в падает параллельный пучок монохроматического света (см. рис. 3):

На пути лучей установлена линза L , в фокальной плоскости которой находится экран Э . Большинство лучей не дифрагируют, т.е. не меняют своего направления, и они фокусируются линзой L в центре экрана, образуя центральный максимум или максимум нулевого порядка. Лучи, дифрагирующие под равными углами дифракции φ , будут на экране образовывать максимумы 1,2,3,…, n – порядков.

Таким образом, дифракционная картина, полученная от одной щели в параллельных лучах при освещении монохроматическим светом, представляет собой светлую полосу с максимальной освещенностью в центре экрана, затем идет темная полоса (минимум I – го порядка), потом идет светлая полоса (максимум 1 – го порядка), темная полоса (минимум 2 – го порядка), максимум 2 – го порядка и т.д. Дифракционная картина симметрична относительно центрального максимума. При освещении щели белым светом на экране образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света.

Условия max и min дифракции. Если в оптической разности хода Δ укладывается нечетное число отрезков, равных , то наблюдается усиление интенсивности света (max дифракции):

где k – порядок максимума; k =±1,±2,±…,±n;

λ – длина волны.

Если в оптической разности хода Δ укладывается четное число отрезков, равных , то наблюдается ослабление интенсивности света (min дифракции):

где k – порядок минимума.

Дифракционная решетка. Дифракционная решетка представляет собой чередующиеся непрозрачные для прохождения света полосы с прозрачными для света полосами (щелями) равной ширины.


Основной характеристикой дифракционной решетки является её период d . периодом дифракционной решетки называется суммарная ширина прозрачной и непрозрачной полосы:

Дифракционная решетка используется в оптических приборах для усиления разрешающей способности прибора. Разрешающая способность дифракционной решетки зависит от порядка спектра k и от числа штрихов N :

где R – разрешающая способность.

Вывод формулы дифракционной решетки. Направим на дифракционную решетку два параллельных луча: 1 и 2 так, чтобы расстояние между ними было равно периоду решетки d .


В точках А и В лучи 1 и 2 дифрагируют, отклоняясь от прямолинейного направления на угол φ – угол дифракции.

Лучи и фокусируются линзой L на экран, расположенный в фокальной плоскости линзы (рис. 5). Каждую щель решетки можно рассматривать как источник вторичных волн (принцип Гюйгенса – Френеля). На экране в точке Д наблюдаем максимум интерференционной картины.

Из точки А на ход луча опускаем перпендикуляр и получаем точку С. рассмотрим треугольник АВС : треугольник прямоугольный, ÐВАС=Ðφ как углы с взаимно перпендикулярными сторонам. Из Δ АВС:

где АВ=d (по построению),

СВ = Δ – оптическая разность хода.

Так как в точке Д наблюдаем max интерференции, то

где k – порядок максимума,

λ – длина световой волны.

Подставляем значения АВ=d, в формулу для sinφ :

Отсюда получаем:

В общем виде формула дифракционной решетки имеет вид:

Знаки ± показывают, что интерференционная картина на экране симметрична относительно центрального максимума.

Физические основы голографии. Голографией называется метод записи и восстановления волнового поля, который основан на явлениях дифракции и интерференции волн. Если на обычной фотографии фиксируется только интенсивность отраженных от предмета волн, то на голограмме дополнительно фиксируются и фазы волн, что дает дополнительную информацию о предмете и позволяет получить объемное изображение предмета.

В одном из древнегреческих трактатов описан опыт: «Надо встать так, чтобы плоское кольцо, расположенное на дне сосуда, спряталось за его краем. Затем, не меняя положения глаз, налить в сосуд воду. Свет преломится на поверхности воды, и кольцо станет видимым». Такой «фокус» вы можете показать своим друзьям и сейчас (см. рис. 12.1), а вот объяснить его сможете только после изучения данного параграфа.

Рис. 12.1. «Фокус» с монетой. Если в чашке нет воды, мы не видим монету, лежащую на ее дне (а); если же налить воду, дно чашки будто поднимется и монета станет видимой (б)

Устанавливаем законы преломления света

Направим узкий пучок света на плоскую поверхность прозрачного стеклянного полуцилиндра, закрепленного на оптической шайбе.

Свет не только отразится от поверхности полуцилиндра, но и частично пройдет сквозь стекло. Это означает, что при переходе из воздуха в стекло направление распространения света изменяется (рис. 12.2).

Изменение направления распространения света на границе раздела двух сред называют преломлением света.

Угол γ (гамма), который образован преломленным лучом и перпендикуляром к границе раздела двух сред, проведенным через точку падения луча, называют углом преломления.

Проведя ряд опытов с оптической шайбой, заметим, что с увеличением угла падения угол преломления тоже увеличивается, а с уменьшением угла падения угол преломления уменьшается (рис. 12.3). Если же свет падает перпендикулярно границе раздела двух сред (угол падения α = 0), направление распространения света не изменяется.

Первое упоминание о преломлении света можно найти в трудах древнегреческого философа Аристотеля (IV в. до н. э.), который задавался вопросом: «Почему палка в воде кажется сломанной?» А вот закон, количественно описывающий преломление света, был установлен только в 1621 г. голландским ученым Виллебрордом Снеллиусом (1580-1626).

Законы преломления света:

2. Отношение синуса угла падения к синусу угла преломления для двух данных сред является неизменной величиной:

где n 2 1 — физическая величина, которую называют относительным показателем преломления среды. 2 (среды, в которой свет распространяется после преломления) относительно среды 1 (среды, из которой свет падает).

Узнаём о причине преломления света

Так почему свет, переходя из одной среды в другую, изменяет свое направление?

Дело в том, что в разных средах свет распространяется с разной скоростью, но всегда медленнее, чем в вакууме. Например, в воде скорость света в 1,33 раза меньше, чем в вакууме; когда свет переходит из воды в стекло, его скорость уменьшается еще в 1,3 раза; в воздухе скорость распространения света в 1,7 раза больше, чем в стекле, и лишь немного меньше (примерно в 1,0003 раза), чем в вакууме.

Именно изменение скорости распространения света при переходе из одной прозрачной среды в другую является причиной преломления света.

Принято говорить об оптической плотности среды: чем меньше скорость распространения света в среде (чем больше показатель преломления), тем больше оптическая плотность среды.

Как вы считаете, оптическая плотность какой среды больше — воды или стекла? оптическая плотность какой среды меньше — стекла или воздуха?

Выясняем физический смысл показателя преломления

Относительный показатель преломления (n 2 1) показывает, во сколько раз скорость распространения света в среде 1 больше (или меньше) скорости распространения света в среде 2:

Вспомнив второй закон преломления света:

Проанализировав последнюю формулу, делаем выводы:

1) чем больше на границе раздела двух сред изменяется скорость распространения света, тем больше свет преломляется;

2) если луч света переходит в среду с большей оптической плотностью (то есть скорость света уменьшается: v 2 < v 1), то угол преломления меньше угла падения: γ<α (см., например, рис. 12.2, 12.3);

3) если луч света переходит в среду с меньшей оптической плотностью (то есть скорость света увеличивается: v 2 > v 1), то угол преломления больше угла падения: γ > а (рис. 12.4).


Обычно скорость распространения света в среде сравнивают со скоростью его распространения в вакууме. Когда свет попадает в среду из вакуума, показатель преломления n называют абсолютным показателем преломления.

Абсолютный показатель преломления показывает, во сколько раз скорость распространения света в среде меньше, чем в вакууме:

где c — скорость распространения света в вакууме (c=3 · 10 8 м/с); v — скорость распространения света в среде.

рис. 12.4. При переходе света из среды с большей оптической плотностью в среду с меньшей оптической плотностью угол преломления больше угла падения (γ>α)

Скорость распространения света в вакууме больше, чем в любой среде, поэтому абсолютный показатель преломления всегда больше единицы (см. таблицу).

Рис. 12.5. Если свет попадает из стекла в воздух, то при увеличении угла падения угол преломления приближается к 90°, а яркость преломленного пучка уменьшается

рассматривая переход света из воздуха в среду, будем считать, что относительный показатель преломления среды равен абсолютному.

Явление преломления света используется в работе многих оптических устройств. О некоторых из них вы узнаете позже.

Применяем явление полного внутреннего отражения света

Рассмотрим случай, когда свет переходит из среды с большей оптической плотностью в среду с меньшей оптической плотностью (рис. 12.5). Видим, что при увеличении угла падения (α 2 >«ι) угол преломления γ приближается к 90°, яркость преломленного пучка уменьшается, а яркость отраженного, наоборот, увеличивается. Понятно, что если и дальше увеличивать угол падения, то угол преломления достигнет 90°, преломленный пучок исчезнет, а падающий пучок полностью (без потерь энергии) вернется в первую среду — свет полностью отразится.

Явление, при котором преломление света отсутствует (свет полностью отражается от среды с меньшей оптической плотностью), называют полным внутренним отражением света.

Явление полного внутреннего отражения света хорошо знакомо тем, кто плавал под водой с открытыми глазами (рис. 12.6).

рис. 12.6. Наблюдателю, находящемуся под водой, часть поверхности воды кажется блестящей, будто зеркало

Ювелиры много веков используют явление полного внутреннего отражения, чтобы повысить привлекательность драгоценных камней. Естественные камни огранивают — придают им форму многогранников: грани камня выполняют роль «внутренних зеркал», и камень «играет» в лучах падающего на него света.

Полное внутреннее отражение широко используют в оптической технике (рис. 12.7). Но главное применение этого явления связано с волоконной оптикой. Если в торец сплошной тонкой «стеклянной» трубки направить пучок света, после многократного отражения свет выйдет на ее противоположном конце независимо от того, какой будет трубка — изогнутой или прямой. Такую трубку называют световодом (рис. 12.8).

Световоды применяют в медицине для исследования внутренних органов (эндоскопия); в технике, в частности для выявления неисправностей внутри двигателей без их разборки; для освещения солнечным светом закрытых помещений и т. п. (рис. 12.9).

Но чаще всего световоды используют в качестве кабелей для передачи информации (рис. 12.10). «Стеклянный кабель» намного дешевле и легче медного, он практически не изменяет свои свойства под воздействием окружающей среды, позволяет передавать сигналы на большие расстояния без усиления. Сегодня волоконно-оптические линии связи стремительно вытесняют традиционные. Когда вы будете смотреть телевизор или пользоваться Интернетом, вспомните, что значительную часть своего пути сигнал проходит по «стеклянной дороге».

Учимся решать задачи Задача. Световой луч переходит из среды 1 в среду 2 (рис. 12.11, а). Скорость распространения света в среде 1 равна 2,4 · 10 8 м/с. Определите абсолютный показатель преломления среды 2 и скорость распространения света в среде 2.

Анализ физической проблемы

Из рис. 12.11, а видим, что на границе раздела двух сред свет преломляется, значит, скорость его распространения изменяется.

Выполним пояснительный рисунок (рис. 12.11, б), на котором:

1) изобразим лучи, приведенные в условии задачи;

2) проведем через точку падения луча перпендикуляр к границе раздела двух сред;

3) обозначим α угол падения и γ — угол преломления.

Абсолютный показатель преломления — это показатель преломления относительно вакуума. Поэтому для решения задачи следует вспомнить значение скорости распространения света в вакууме и найти скорость распространения света в среде 2 (v 2).

Чтобы найти v 2 , определим синус угла падения и синус угла преломления.

Анализ решения. По условию задачи угол падения больше угла преломления, и это значит, что скорость света в среде 2 меньше скорости света в среде 1. Следовательно, полученные результаты реальны.

Подводим итоги

Световой пучок, падая на границу раздела двух сред, разделяется на два пучка. Один из них — отраженный — отражается от поверхности, подчиняясь законам отражения света. Второй — преломленный — проходит во вторую среду, изменяя свое направление.

Законы преломления света:

1. Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред, проведенный через точку падения луча, лежат в одной плоскости.

2. Для двух данных сред отношение синуса угла падения α к синусу угла преломления γ является неизменной величиной:

Причина преломления света — изменение скорости его распространения при переходе из одной среды в другую. Относительный показатель преломления n 2 i показывает, во сколько раз скорость распространения света в среде 1 больше (или меньше), чем скорость распространения света

в среде 2:

Когда свет попадает в среду из вакуума, показатель преломления n называют абсолютным показателем преломления: n = c / v .

Если при переходе света из среды 1 в среду 2 скорость распространения света уменьшилась (то есть показатель преломления среды 2 больше показателя преломления среды 1: n 2 > n 1), то говорят, что свет перешел из среды с меньшей оптической плотностью в среду с большей оптической плотностью (и наоборот).

Контрольные вопросы

1. Какие опыты подтверждают явление преломления света на границе раздела двух сред? 2. Сформулируйте законы преломления света. 3. В чем причина преломления света? 4. Что показывает показатель преломления света? 5. Как скорость распространения света связана с оптической плотностью среды? 6. Дайте определение абсолютного показателя преломления.

Упражнение № 12

1. Перенесите рис. 1 в тетрадь. Считая, что среда 1 имеет бо"льшую оптическую плотность, чем среда 2, для каждого случая схематически постройте падающий (или преломленный) луч, обозначьте угол падения и угол преломления.

2. Вычислите скорость распространения света в алмазе; воде; воздухе.

3. Луч света падает из воздуха в воду под углом 60°. Угол между отраженным и преломленным лучами равен 80°. Вычислите угол преломления луча.

4. Когда мы, стоя на берегу водоема, пытаемся на глаз определить его глубину, она всегда кажется меньше, чем на самом деле. Воспользовавшись рис. 2, объясните, почему это так.

5. За какое время свет доходит от дна озера глубиной 900 м до поверхности воды?

6. Объясните «фокус» с кольцом (монетой), описанный в начале § 12 (см. рис. 12.1).

7. Световой луч переходит из среды 1 в среду 2 (рис. 3). Скорость распространения света в среде 1 равна 2,5 · 10 8 м/с. Определите:

1) какая среда имеет большую оптическую плотность;

2) показатель преломления среды 2 относительно среды 1;

3) скорость распространения света в среде 2;

4) абсолютный показатель преломления каждой среды.

8. Следствием преломления света в атмосфере Земли является возникновение миражей, а также тот факт, что мы видим Солнце и звезды немного выше их реального положения. Воспользуйтесь дополнительными источниками информации и узнайте об этих природных явлениях подробнее.

Экспериментальные задания

1. «Фокус с монетой». Продемонстрируйте кому-нибудь из своих друзей или близких опыт с монетой (см. рис. 12.1) и объясните его.

2. «Водное зеркало». Понаблюдайте полное отражение света. Для этого заполните стакан примерно наполовину водой. Опустите в стакан какой-либо предмет, например корпус пластмассовой ручки, желательно с надписью. Держа стакан в руке, расположите его на расстоянии приблизительно 25—30 см от глаз (см. рисунок). В ходе опыта вы должны следить за корпусом ручки.

Сначала, подняв глаза, вы будете видеть весь корпус ручки (как подводную, так и надводную части). Медленно передвигайте от себя стакан, не изменяя высоты его расположения.

Когда стакан будет достаточно удален от ваших глаз, поверхность воды станет для вас зеркальной — вы увидите зеркальное отражение подводной части корпуса ручки.

Объясните наблюдаемое явление.

ЛАБОРАТОРНАЯ РАБОТА № 4

Тема. Исследование преломления света.

Цель: определить показатель преломления стекла относительно воздуха.

Оборудование: стеклянная пластинка с параллельными гранями, карандаш, угольник с миллиметровой шкалой, циркуль.

УКАЗАНИЯ К РАБОТЕ

Подготовка к эксперименту

1. Перед выполнением работы вспомните:

1) требования безопасности при работе со стеклянными предметами;

2) законы преломления света;

3) формулу для определения показателя преломления.

2. Подготовьте рисунки для выполнения работы (см. рис. 1). Для этого:

1) положите стеклянную пластинку на страницу тетради и остро заточенным карандашом очертите контур пластинки;

2) на отрезке, соответствующем положению верхней преломляющей грани пластинки:

Отметьте точку О;

Проведите через точку О прямую k, перпендикулярную данному отрезку;

С помощью циркуля постройте окружность радиусом 2,5 см с центром в точке О;

3) под углом примерно 45° начертите луч, который будет задавать направление пучка света, падающего в точку О; обозначьте точку пересечения луча и окружности буквой А;

4) повторите действия, описанные в пунктах 1-3, еще дважды (выполните еще два рисунка), сначала увеличив, а затем уменьшив заданный угол падения луча света.


Эксперимент

Строго соблюдайте инструкцию по безопасности (см. форзац учебника).

1. Наложите стеклянную пластинку на первый контур.

2. Глядя на луч АО сквозь стекло, у нижней грани пластинки поставьте точку М так, чтобы она казалась расположенной на продолжении луча АО (рис. 2).

3. Повторите действия, описанные в пунктах 1 и 2, еще для двух контуров.

Обработка результатов эксперимента

Результаты измерений и вычислений сразу заносите в таблицу.

Для каждого опыта (см. рис. 3):

1) проведите преломленный луч OM;

2) найдите точку пересечения луча OM с окружностью (точку Б);

3) из точек A и Б опустите перпендикуляры на прямую k, измерьте длины а и b полученных отрезков и радиус окружности г;

4) определите показатель преломления стекла относительно воздуха:


Анализ эксперимента и его результатов

Проанализируйте эксперимент и его результаты. Сформулируйте вывод, в котором укажите: 1) какую физическую величину вы определяли; 2) какой результат получили; 3) зависит ли значение полученной величины от угла падения света; 4) в чем причины возможной погрешности эксперимента.

Творческое задание

Воспользовавшись рис. 4, продумайте и запишите план проведения эксперимента по определению показателя преломления воды относительно воздуха. По возможности проведите эксперимент.

Задание «со звездочкой»

где п изм — полученное во время эксперимента значение показателя преломления стекла относительно воздуха; n — табличное значение абсолютного показателя преломления стекла, из которого изготовлена пластинка (выясните у учителя).

Это материал учебника