Все слабые электролиты. Как определить сильные и слабые электролиты

Сильные электролиты при растворении в воде практически полностью диссоциируют на ионы независимо от их концентрации в растворе.

Поэтому в уравнениях диссоциации сильных электролитов ставят знак равенства (=).

К сильным электролитам относятся:

Растворимые соли;

Многие неорганические кислоты: HNO3, H2SO4, HCl, HBr, HI;

Основания, образованные щелочными металлами (LiOH, NaOH, KOH и т.д.) и щелочно-земельными металлами (Ca(OH)2, Sr(OH)2, Ba(OH)2).

Слабые электролиты в водных растворах лишь частично (обратимо) диссоциируют на ионы.

Поэтому в уравнениях диссоциации слабых электролитов ставят знак обратимости (⇄).

К слабым электролитам относятся:

Почти все органические кислоты и вода;

Некоторые неорганические кислоты: H2S, H3PO4, H2CO3, HNO2, H2SiO3 и др.;

Нерастворимые гидроксиды металлов: Mg(OH)2, Fe(OH)2, Zn(OH)2 и др.

Ионные уравнения реакций

Ионные уравнения реакций
Химические реакции в растворах электролитов (кислот, оснований и солей) протекают при участии ионов. Конечный раствор может остаться прозрачным (продукты хорошо растворимы в воде) , но один из продуктом окажется слабым электролитом; в других случаях будет наблюдаться выпадение осадка или выделение газа.

Для реакций в растворах при участии ионов составляют не только молекулярное уравнение, но также полное ионное и краткое ионное.
В ионных уравнениях по предложению французского химика К. -Л. Бертолле (1801 г.) все сильные хорошо растворимые электролиты записывают в виде формул ионов, а осадки, газы и слабые электролиты - в виде молекулярных формул. Образование осадков отмечают знаком "стрелка вниз" (↓), образование газов - знаком "стрелка вверх" (). Пример записи уравнения реакции по правилу Бертолле:

а) молекулярное уравнение
Na2CO3 + H2SO4 = Na2SO4 + CO2 + H2O
б) полное ионное уравнение
2Na+ + CO32− + 2H+ + SO42− = 2Na+ + SO42− + CO2 + H2O
(CO2 - газ, H2O - слабый электролит)
в) краткое ионное уравнение
CO32− + 2H+ = CO2 + H2O

Обычно при записи ограничиваются кратким ионным уравнением, причем твердые вещества-реагенты обозначают индексом (т) , газобразные реагенты - индексом (г) . Примеры:

1) Cu(OH)2(т) + 2HNO3 = Cu(NO3)2 + 2H2O
Cu(OH)2(т) + 2H+ = Cu2+ + 2H2O
Cu(OH)2 практически нерастворим в воде
2) BaS + H2SO4 = BaSO4↓ + H2S
Ba2+ + S2− + 2H+ + SO42− = BaSO4↓ + H2S
(полное и краткое ионное уравнения совпадают)
3) CaCO3(т) + CO2(г) + H2O = Ca(HCO3)2
CaCO3(т) + CO2(г) + H2O = Ca2+ + 2HCO3−
(большинство кислых солей хорошо растворимы в воде) .


Если в реакции не участвуют сильные электролиты, ионный вид уравнения отсутствует:

Mg(OH)2(т) + 2HF(р) = MgF2↓ + 2H2O

БИЛЕТ №23

Гидролиз солей

Гидролиз солей – это взаимодействие ионов соли с водой с образованием малодиссоциирующих частиц.

Гидролиз, дословно, - это разложение водой. Давая такое определение реакции гидролиза солей, мы подчеркиваем, что соли в растворе находятся в виде ионов, и что движущей силой реакции является образование малодиссоциирующих частиц (общее правило для многих реакций в растворах).

Гидролиз происходит лишь в тех случаях, когда ионы, образующиеся в результате электролитической диссоциации соли - катион, анион, или оба вместе, - способны образовывать с ионами воды слабодиссоциирующие соединения, а это, в свою очередь, происходит тогда, когда катион - сильно поляризующий (катион слабого основания) , а анион - легко поляризуется (анион слабой кислоты). При этом изменяется рН среды. Если же катион образует сильное основание, а анион - сильную кислоту, то они гидролизу не подвергаются.

1.Гидролиз соли слабого основания и сильной кислоты проходит по катиону, при этом может образоваться слабое основание или основная соль и рН раствора уменьшится

2.Гидролиз соли слабой кислоты и сильного основания проходит по аниону, при этом может образоваться слабая кислота или кислая соль и рН раствора увеличится

3.Гидролиз соли слабого основания и слабой кислоты обычно проходит нацело с образованием слабой кислоты и слабого основания; рН раствора при этом незначительно отличается от 7 и определяется относительной силой кислоты и основания

4.Гидролиз соли сильного основания и сильной кислоты не протекает

Вопрос 24 Классификация оксидов

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

Оксиды могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Солеобразующие оксиды Например,

CuO + 2HCl → CuCl 2 + H 2 O.

CuO + SO 3 → CuSO 4 .

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

РАСТВОРЫ
ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ
ЭЛЕКТРОЛИТЫ И НЕЭЛЕКТРОЛИТЫ

Теория электролитической диссоциации

(С. Аррениус, 1887г.)

1. При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).

2. Под действием электрического тока катионы (+) двигаются к катоду (-), а анионы (-) – к аноду (+).

3. Электролитическая диссоциация - процесс обратимый (обратная реакция называется моляризацией).

4. Степень электролитической диссоциации (a ) зависит от природы электролита и растворителя, температуры и концентрации. Она показывает отношение числа молекул, распавшихся на ионы (n ) к общему числу молекул, введенных в раствор (N ).

a = n / N 0< a <1

Механизм электролитической диссоциации ионных веществ

При растворении соединений с ионными связями (например , NaCl ) процесс гидратации начинается с ориентации диполей воды вокруг всех выступов и граней кристаллов соли.

Ориентируясь вокруг ионов кристаллической решетки, молекулы воды образуют с ними либо водородные, либо донорно-акцепторные связи. При этом процессе выделяется большое количество энергии, которая называется энергией гидратации.

Энергия гидратации, величина которой сравнима с энергией кристаллической решетки, идет на разрушение кристаллической решетки. При этом гидратированные ионы слой за слоем переходят в растворитель и, перемешиваясь с его молекулами, образуют раствор.

Механизм электролитической диссоциации полярных веществ

Аналогично диссоциируют и вещества, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества (например , HCl ), определенным образом ориентируются диполи воды. В результате взаимодействия с диполями воды полярная молекула еще больше поляризуется и превращается в ионную, далее уже легко образуются свободные гидратированные ионы.

Электролиты и неэлектролиты

Электролитическая диссоциация веществ, идущая с образованием свободных ионов объясняет электрическую проводимость растворов.

Процесс электролитической диссоциации принято записывать в виде схемы, не раскрывая его механизма и опуская растворитель (H 2 O ), хотя он является основным участником.

CaCl 2 « Ca 2+ + 2Cl -

KAl(SO 4) 2 « K + + Al 3+ + 2SO 4 2-

HNO 3 « H + + NO 3 -

Ba(OH) 2 « Ba 2+ + 2OH -

Из электронейтральности молекул вытекает, что суммарный заряд катионов и анионов должен быть равен нулю.

Например , для

Al 2 (SO 4) 3 ––2 (+3) + 3 (-2) = +6 - 6 = 0

KCr(SO 4) 2 ––1 (+1) + 3 (+3) + 2 (-2) = +1 + 3 - 4 = 0

Сильные электролиты

Это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl , HBr , HI , HClO 4 , H 2 SO 4 , HNO 3 ) и сильные основания (LiOH , NaOH , KOH , RbOH , CsOH , Ba (OH ) 2 , Sr (OH ) 2 , Ca (OH ) 2 ).

В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

Слабые электролиты

Вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе.

К слабым электролитам относятся:

1) почти все органические кислоты (CH 3 COOH , C 2 H 5 COOH и др.);

2) некоторые неорганические кислоты (H 2 CO 3 , H 2 S и др.);

3) почти все малорастворимые в воде соли, основания и гидроксид аммония (Ca 3 (PO 4 ) 2 ; Cu (OH ) 2 ; Al (OH ) 3 ; NH 4 OH ) ;

4) вода.

Они плохо (или почти не проводят) электрический ток.

СH 3 COOH « CH 3 COO - + H +

Cu (OH ) 2 « [ CuOH ] + + OH - (первая ступень)

[ CuOH ] + « Cu 2+ + OH - (вторая ступень)

H 2 CO 3 « H + + HCO - (первая ступень)

HCO 3 - « H + + CO 3 2- (вторая ступень)

Неэлектролиты

Вещества, водные растворы и расплавы которых не проводят электрический ток. Они содержат ковалентные неполярные или малополярные связи, которые не распадаются на ионы.

Электрический ток не проводят газы, твердые вещества (неметаллы), органические соединения (сахароза, бензин, спирт).

Степень диссоциации. Константа диссоциации

Концентрация ионов в растворах зависит от того, насколько полно данный электролит диссоциирует на ионы. В растворах сильных электролитов, диссоциацию которых можно считать полной, концентрацию ионов легко определить по концентрации (c ) и составу молекулы электролита (стехиометрическим индексам), например :

Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.

Степень диссоциации (a ) - отношение числа распавшихся на ионы молекул (n ) к общему числу растворенных молекул (N ):

a = n / N

и выражается в долях единицы или в % (a = 0,3 – условная граница деления на сильные и слабые электролиты).

Пример

Определите мольную концентрацию катионов и анионов в 0,01 М растворах KBr , NH 4 OH , Ba (OH ) 2 , H 2 SO 4 и CH 3 COOH .

Степень диссоциации слабых электролитов a = 0,3.

Решение

KBr , Ba (OH ) 2 и H 2 SO 4 - сильные электролиты, диссоциирующие полностью (a = 1).

KBr « K + + Br -

0,01 M

Ba(OH) 2 « Ba 2+ + 2OH -

0,01 M

0,02 M

H 2 SO 4 « 2H + + SO 4

0,02 M

[ SO 4 2- ] = 0,01 M

NH 4 OH и CH 3 COOH – слабые электролиты (a = 0,3)

NH 4 OH + 4 + OH -

0,3 0,01 = 0,003 M

CH 3 COOH « CH 3 COO - + H +

[ H + ] = [ CH 3 COO - ] = 0,3 0,01 = 0,003 M

Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H 2 O ) на одну молекулу растворенного вещества. По принципу Ле Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов.

Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации a и исходную концентрацию вещества c в растворе.

Пример

Определите концентрацию недиссоциированных молекул и ионов в 0,1 М раствора NH 4 OH , если степень диссоциации равна 0,01.

Решение

Концентрации молекул NH 4 OH , которые к моменту равновесия распадутся на ионы, будет равна a c . Концентрация ионов NH 4 - и OH - - будет равна концентрации продиссоциированных молекул и равна a c (в соответствии с уравнением электролитической диссоциации)

NH 4 OH

NH 4 +

OH -

c - a c

A c = 0,01 0,1 = 0,001 моль/л

[ NH 4 OH ] = c - a c = 0,1 – 0,001 = 0,099 моль/л

Константа диссоциации (K D ) - отношение произведения равновесных концентраций ионов в степени соответствующих стехиометрических коэффициентов к концентрации недиссоциированных молекул.

Она является константой равновесия процесса электролитической диссоциации; характеризует способность вещества распадаться на ионы: чем выше K D , тем больше концентрация ионов в растворе.

Диссоциации слабых многоосновных кислот или многокислотных оснований протекают по ступеням, соответственно для каждой ступени существует своя константа диссоциации:

Первая ступень:

H 3 PO 4 « H + + H 2 PO 4 -

K D 1 = () / = 7,1 10 -3

Вторая ступень:

H 2 PO 4 - « H + + HPO 4 2-

K D 2 = () / = 6,2 10 -8

Третья ступень:

HPO 4 2- « H + + PO 4 3-

K D 3 = () / = 5,0 10 -13

K D 1 > K D 2 > K D 3

Пример

Получите уравнение, связывающее степень электролитической диссоциации слабого электролита (a ) с константой диссоциации (закон разбавления Оствальда) для слабой одноосновной кислоты НА .

HA « H + + A +

K D = () /

Если общую концентрацию слабого электролита обозначить c , то равновесные концентрации Н + и A - равны a c , а концентрация недиссоциированных молекул НА - (c - a c ) = c (1 - a )

K D = (a c a c) / c(1 - a ) = a 2 c / (1 - a )

В случае очень слабых электролитов (a £ 0,01 )

K D = c a 2 или a = \ é (K D / c )

Пример

Вычислите степень диссоциации уксусной кислоты и концентрацию ионов H + в 0,1 M растворе, если K D (CH 3 COOH ) = 1,85 10 -5

Решение

Воспользуемся законом разбавления Оствальда

\ é (K D / c ) = \ é((1,85 10 -5) / 0,1 )) = 0,0136 или a = 1,36%

[ H + ] = a c = 0,0136 0,1 моль/л

Произведение растворимости

Определение

Поместим в химический стакан какую-либо труднорастворимую соль, например , AgCl и добавим к осадку дистиллированной воды. При этом ионы Ag + и Cl - , испытывая притяжение со стороны окружающих диполей воды, постепенно отрываются от кристаллов и переходят в раствор. Сталкиваясь в растворе, ионы Ag + и Cl - образуют молекулы AgCl и осаждаются на поверхности кристаллов. Таким образом, в системе происходят два взаимно противоположных процесса, что приводит к динамическому равновесию, когда в единицу времени в раствор переходит столько же ионов Ag + и Cl - , сколько их осаждается. Накопление ионов Ag + и Cl - в растворе прекращается, получается насыщенный раствор . Следовательно, мы будем рассматривать систему, в которой имеется осадок труднорастворимой соли в соприкосновении с насыщенным раствором этой соли. При этом происходят два взаимно противоположных процесса:

1) Переход ионов из осадка в раствор. Скорость этого процесса можно считать постоянной при неизменной температуре: V 1 = K 1 ;

2) Осаждение ионов из раствора. Скорость этого процесса V 2 зависит от концентрации ионов Ag + и Cl - . По закону действия масс:

V 2 = k 2

Так как данная система находится в состоянии равновесия, то

V 1 = V 2

k 2 = k 1

K 2 / k 1 = const (при T = const)

Таким образом, произведение концентраций ионов в насыщенном растворе труднорастворимого электролита при постоянной температуре является постоянной величиной . Эта величина называется произведением растворимости (ПР ).

В приведенном примереПР AgCl = [ Ag + ] [ Cl - ] . В тех случаях, когда электролит содержит два или несколько одинаковых ионов, концентрация этих ионов, при вычислении произведения растворимости должна быть возведена в соответствующую степень.

Например , ПР Ag 2 S = 2 ; ПР PbI 2 = 2

В общем случае выражение произведения растворимости для электролита A m B n

ПР A m B n = [A] m [B] n .

Значения произведения растворимости для разных веществ различны.

Например , ПР CaCO 3 = 4,8 10 -9 ; ПР AgCl = 1,56 10 -10 .

ПР легко вычислить, зная ра c творимость соединения при данной t ° .

Пример 1

Растворимость CaCO 3 равна 0,0069 или 6,9 10 -3 г/л. Найти ПР CaCO 3 .

Решение

Выразим растворимость в молях:

S CaCO 3 = ( 6,9 10 -3 ) / 100,09 = 6,9 10 -5 моль/л

M CaCO 3

Так как каждая молекула CaCO 3 дает при растворении по одному иону Ca 2+ и CO 3 2- , то
[ Ca 2+ ] = [ CO 3 2- ] = 6,9 10 -5 моль/л ,
следовательно,
ПР CaCO 3 = [ Ca 2+ ] [ CO 3 2- ] = 6,9 10 –5 6,9 10 -5 = 4,8 10 -9

Зная величину ПР , можно в свою очередь вычислить растворимость вещества в моль/л или г/л.

Пример 2

Произведение растворимости ПР PbSO 4 = 2,2 10 -8 г/л.

Чему равна растворимость PbSO 4 ?

Решение

Обозначим растворимость PbSO 4 через X моль/л. Перейдя в раствор, X молей PbSO 4 дадут X ионов Pb 2+ и X ионов SO 4 2- , т.е.:

= = X

ПР PbSO 4 = = = X X = X 2

X = \ é(ПР PbSO 4 ) = \ é(2,2 10 -8 ) = 1,5 10 -4 моль/л.

Чтобы перейти к растворимости, выраженной в г/л, найденную величину умножим на молекулярную массу, после чего получим:

1,5 10 -4 303,2 = 4,5 10 -2 г/л .

Образование осадков

Если

[ Ag + ] [ Cl - ] < ПР AgCl - ненасыщенный раствор

[ Ag + ] [ Cl - ] = ПР AgCl - насыщенный раствор

[ Ag + ] [ Cl - ] > ПР AgCl - перенасыщенный раствор

Осадок образуется в том случае, когда произведение концентраций ионов малорастворимого электролита превысит величину его произведения растворимости при данной температуре. Когда ионное произведение станет равным величине ПР , выпадение осадка прекращается. Зная объем и концентрацию смешиваемых растворов, можно рассчитать, будет ли выпадать осадок образующейся соли.

Пример 3

Выпадает ли осадок при смешении равных объемов 0,2 M растворов Pb (NO 3 ) 2 и NaCl .
ПР
PbCl 2 = 2,4 10 -4 .

Решение

При смешении объем раствора возрастает вдвое и концетрация каждого из веществ уменьшится вдвое, т.е. станет 0,1 M или 1,0 10 -1 моль/л. Таковы же будут концентрации Pb 2+ и Cl - . Следовательно, [ Pb 2+ ] [ Cl - ] 2 = 1 10 -1 (1 10 -1 ) 2 = 1 10 -3 . Полученная величина превышает ПР PbCl 2 (2,4 10 -4 ) . Поэтому часть соли PbCl 2 выпадает в осадок. Из всего сказанного выше можно сделать вывод о влиянии различных факторов на образование осадков.

Влияние концентрации растворов

Труднорастворимый электролит с достаточно большой величиной ПР нельзя осадить из разбавленных растворов. Например , осадок PbCl 2 не будет выпадать при смешении равных объемов 0,1 M растворов Pb (NO 3 ) 2 и NaCl . При смешивании равных объемов концентрации каждого из веществ станут 0,1 / 2 = 0,05 M или 5 10 -2 моль/л . Ионное произведение [ Pb 2+ ] [ Cl 1- ] 2 = 5 10 -2 (5 10 -2 ) 2 = 12,5 10 -5 . Полученная величина меньше ПР PbCl 2 , следовательно выпадения осадка не произойдет.

Влияние количества осадителя

Для возможно более полного осаждения употребляют избыток осадителя.

Например , осаждаем соль BaCO 3 : BaCl 2 + Na 2 CO 3 ® BaCO 3 ¯ + 2 NaCl . После прибавления эквивалентного количества Na 2 CO 3 в растворе остаются ионы Ba 2+ , концентрация которых обусловлена величиной ПР .

Повышение концентрации ионов CO 3 2- , вызванное прибавлением избытка осадителя (Na 2 CO 3 ) , повлечет за собой соответственное уменьшение концентрации ионов Ba 2+ в растворе, т.е. увеличит полноту осаждения этого иона.

Влияние одноименного иона

Растворимость труднорастворимых электролитов понижается в присутствии других сильных электролитов, имеющих одноименные ионы. Если к ненасыщенному раствору BaSO 4 понемногу прибавлять раствор Na 2 SO 4 , то ионное произведение, которое было сначала меньше ПР BaSO 4 (1,1 10 -10 ) , постепенно достигнет ПР и превысит его. Начнется выпадение осадка.

Влияние температуры

ПР является постоянной величиной при постоянной температуре. С увеличением температуры ПР возрастает, поэтому осаждение лучше проводить из охлажденных растворов.

Растворение осадков

Правило произведения растворимости важно для переведения труднорастворимых осадков в раствор. Предположим, что надо растворить осадок Ba С O 3 . Раствор, соприкасающийся с этим осадком, насыщен относительно Ba С O 3 .
Это означает, что
[ Ba 2+ ] [ CO 3 2- ] = ПР BaCO 3 .

Если добавить в раствор кислоту, то ионы H + свяжут имеющиеся в растворе ионы CO 3 2- в молекулы непрочной угольной кислоты:

2H + + CO 3 2- ® H 2 CO 3 ® H 2 O + CO 2 ­

Вследствие этого резко снизится концентрация иона CO 3 2- , ионное произведение станет меньше величины ПР BaCO 3 . Раствор окажется ненасыщенным относительно Ba С O 3 и часть осадка Ba С O 3 перейдет в раствор. При добавлении достаточного количества кислоты можно весь осадок перевести в раствор. Следовательно, растворение осадка начинается тогда, когда по какой-либо причине ионное произведение малорастворимого электролита становится меньше величины ПР . Для того, чтобы растворить осадок, в раствор вводят такой электролит, ионы которого могут образовывать малодиссоциированное соединение с одним из ионов труднорастворимого электролита. Этим объясняется растворение труднорастворимых гидроксидов в кислотах

Fe(OH) 3 + 3HCl ® FeCl 3 + 3H 2 O

Ионы OH - связываются в малодиссоциированные молекулы H 2 O .

Таблица. Произведение растворимости (ПР) и растворимость при 25 AgCl

1,25 10 -5

1,56 10 -10

AgI

1,23 10 -8

1,5 10 -16

Ag 2 CrO 4

1,0 10 -4

4,05 10 -12

BaSO 4

7,94 10 -7

6,3 10 -13

CaCO 3

6,9 10 -5

4,8 10 -9

PbCl 2

1,02 10 -2

1,7 10 -5

PbSO 4

1,5 10 -4

2,2 10 -8

Гидролиз солей

Гидролизом называют реакции взаимодействия вещества с водой, приводящие к образованию слабых электролитов (кислот, оснований, кислых или основных солей). Результат гидролиза можно расценивать как нарушение равновесия диссоциации воды. Гидролизу подвержены соединения различных классов, но наиболее важным случаем является гидролиз солей. Соли, как правило, - сильные электролиты, которые подвергаются полной диссоциации на ионы и могут взаимодействовать с ионами воды.

Важнейшие случаи гидролиза солей :

1. Соль образована сильным основанием и сильной кислотой. Например: NaCl – соль образованная сильным основанием NaOH и сильной кислотой HCl;

NaCl + HOH ↔ NaOH + HCl – молекулярное уравнение;

Na + + Cl - + HOH ↔ Na + + OH - + H + + Cl - – полное ионное уравнение;

HOH ↔ OH - + H + – сокращенное ионное уравнение.

Как видно из сокращенного ионного уравнения соль образованная сильным основанием и сильной кислотой, с водой не взаимодействует, т. е. не подвергается гидролизу, и среда при этом остается нейтральной.

2. Соль образована сильным основанием и слабой кислотой. Например: NaNO 2 – соль, образованная сильным основанием NaOH и слабой кислотой HNO 2 , которая практически не диссоциирует на ионы.

NaNO 2 + HOH ↔ NaOH + HNO 2 ;

Na + + NO 2 - + HOH ↔ Na + + OH - + HNO 2 ;

NO 2 - + HOH ↔ OH - + HNO 2 .

В этом случае соль подвергается гидролизу, причем гидролиз идет по аниону, а катион в процессе гидролиза практически не участвует. Так как в результате гидролиза образуется щелочь, то в растворе находится избыток анионов OH - . Раствор такой соли приобретает щелочную среду, т.е. рН > 7.

I ступень Na 2 СO 3 + HOH ↔ NaOH + NaHCO 3 ;

CO 3 2- + HOH ↔ OH - + HCO 3 - ;

II ступень NaHСO 3 + HOH ↔ NaOH + H 2 CO 3 ;

HCO 3 - + HOH ↔ OH - + H 2 CO 3 .

При стандартных условиях и умеренном разбавлении раствора гидролиз солей протекает только по первой ступени. Вторая - подавляется продуктами, которые образуются на первой ступени. Накопление ионов OH - влечет за собой смещение равновесия влево.

3. Соль образована слабым основанием и сильной кислотой. Например: NH 4 NO 3 – соль, образованная слабым основанием NH 4 OH и сильной кислотой HNO 3 .

NH 4 NO 3 + HOH ↔ NH 4 OH + HNO 3 ;

NH 4 + + HOH ↔ H + + NH 4 OH.

В этом случае соль подвергается гидролизу, причем гидролиз идет по катиону, а анион в процессе гидролиза практически не участвует. Раствор такой соли приобретает кислую среду, т.е. рН < 7.

Как и в предыдущем случае, соли многозарядных ионов гидролизуются по стадиям, хотя вторая стадия также подавляется.

I ступень Mg(NO 3) 2 + HOH ↔ MgOHNO 3 + HNO 3 ;

Mg 2+ + HOH ↔ MgOH + + H + ;

II ступень MgOHNO 3 + HOH ↔ Mg(OH) 2 + HNO 3 ;

MgOH + + HOH ↔ Mg(OH) 2 + H + .

4. Соль образована слабым основанием и слабой кислотой. Например: NH 4 CN – соль, образованная слабым основанием NH 4 OH и слабой кислотой HCN.

NH 4 CN + HOH ↔ NH 4 OH + HCN ;

NH 4 + + CN - + HOH ↔ NH 4 OH + HCN.

В этом случае в гидролизе участвуют и катионы и анионы. Они связывают и водородные катионы, и гидроксо-анионы воды, образуя слабые электролиты (слабые кислоты и слабые основания). Реакция раствора таких солей может быть либо слабокислой (если основание, образовавшееся в результате гидролиза, является более слабым, чем кислота), либо слабощелочной (если основание окажется более сильным, чем кислота), либо будет нейтральной (если основание и кислота проявляют одинаковую силу).

При гидролизе соли многозарядных ионов I стадия не подавляет последующие, и гидролиз таких солей протекает полностью даже при комнатной температуре.

I ступень (NH 4) 2 S + HOH ↔ NH 4 OH + NH 4 HS ;

2NH 4 + + S 2- + HOH ↔ NH 4 OH + NH 4 + + HS - ;

II ступень NH 4 HS + HOH ↔ NH 4 OH + H 2 S ;

NH 4 + + HS - + HOH ↔ NH 4 OH + H 2 S.

Электролиты как химические вещества известны с древних времён. Однако большинство областей своего применения они завоевали относительно недавно. Мы обсудим самые приоритетные для промышленности области использования этих веществ и разберёмся, что же последние собой представляют и чем отличаются друг от друга. Но начнём с экскурса в историю.

История

Самые старые известные электролиты - это соли и кислоты, открытые ещё в Древнем мире. Однако представления о строении и свойствах электролитов развивались со временем. Теории этих процессов эволюционировали, начиная с 1880 годов, когда был сделан ряд открытий, связанный с теориями свойств электролитов. Наблюдались несколько качественных скачков в теориях, описывающих механизмы взаимодействия электролитов с водой (ведь только в растворе они приобретают те свойства, благодаря которым их используют в промышленности).

Сейчас мы подробно разберём несколько теорий, оказавших наибольшее влияние на развитие представлений об электролитах и их свойствах. И начнём с самой распространённой и простой теории, которую каждый из нас проходил в школе.

Теория электролитической диссоциации Аррениуса

в 1887 году шведский химик и Вильгельм Оствальд создали теорию электролитической диссоциации. Однако тут тоже не всё так просто. Сам Аррениус был сторонником так называемой физической теории растворов, которая не учитывала взаимодействие составляющих вещества с водой и утверждала, что в растворе существуют свободные заряженные частицы (ионы). Кстати, именно с таких позиций сегодня рассматривают электролитическую диссоциацию в школе.

Поговорим всё-таки о том, что даёт эта теория и как она объясняет нам механизм взаимодействия веществ с водой. Как и у любой другой, у неё есть несколько постулатов, которые она использует:

1. При взаимодействии с водой вещество распадается на ионы (положительный - катион и отрицательный - анион). Эти частицы подвергаются гидратации: они притягивают молекулы воды, которые, кстати, заряжены с одной стороны положительно, а с другой - отрицательно (образуют диполь), в результате формируются в аквакомплексы (сольваты).

2. Процесс диссоциации обратим - то есть если вещество распалось на ионы, то под действием каких-либо факторов оно вновь может превратиться в исходное.

3. Если подключить к раствору электроды и пустить ток, то катионы начнут движение к отрицательному электроду - катоду, а анионы к положительно заряженному - аноду. Именно поэтому вещества, хорошо растворимые в воде, проводят электрический ток лучше, чем сама вода. По той же причине их назвали электролитами.

4. электролита характеризует процент вещества, подвергшегося растворению. Этот показатель зависит от свойств растворителя и самого растворённого вещества, от концентрации последнего и от внешней температуры.

Вот, по сути, и все основные постулаты этой несложной теории. Ими мы будем пользоваться в этой статье для описания того, что же происходит в растворе электролита. Примеры этих соединений разберём чуть позже, а сейчас рассмотрим другую теорию.

Теория кислот и оснований Льюиса

По теории электролитической диссоциации, кислота - это вещество, в растворе которого присутствует катион водорода, а основание - соединение, распадающееся в растворе на гидроксид-анион. Существует другая теория, названная именем известного химика Гилберта Льюиса. Она позволяет несколько расширить понятие кислоты и основания. По теории Льюиса, кислоты - или молекулы вещества, которые имеют свободные электронные орбитали и способны принять электрон от другой молекулы. Несложно догадаться, что основаниями будут являться такие частицы, которые способны отдать один или несколько своих электронов в "пользование" кислоте. Очень интересно здесь то, что кислотой или основанием может быть не только электролит, но и любое вещество, даже нерастворимое в воде.

Протолитическая теория Брендстеда-Лоури

В 1923 году, независимо друг от друга, двое учёных - Й. Бренстед и Т. Лоури -предложили теорию, которая сейчас активно применяется учёными для описания химических процессов. Суть этой теории в том, что смысл диссоциации сводится к передаче протона от кислоты основанию. Таким образом, последнее понимается здесь как акцептор протонов. Тогда кислота является их донором. Теория также хорошо объясняет существование веществ, проявляющих свойства и кислоты и основания. Такие соединения называются амфотерными. В теории Бренстеда-Лоури для них также применяется термин амфолиты, тогда как кислота или основания принято называть протолитами.

Мы подошли к следующей части статьи. Здесь мы расскажем, чем отличаются друг от друга сильные и слабые электролиты и обсудим влияние внешних факторов на их свойства. А затем уже приступим к описанию их практического применения.

Сильные и слабые электролиты

Каждое вещество взаимодействует с водой индивидуально. Какие-то растворяются в ней хорошо (например, поваренная соль), а какие-то совсем не растворяются (например, мел). Таким образом, все вещества делятся на сильные и слабые электролиты. Последние представляют собой вещества, плохо взаимодействующие с водой и оседающие на дне раствора. Это означает, что они имеют очень низкую степень диссоциации и высокую энергию связей, которая не позволяет при нормальных условиях распадаться молекуле на составляющие её ионы. Диссоциация слабых электролитов происходит либо очень медленно, либо при повышении температуры и концентрации этого вещества в растворе.

Поговорим о сильных электролитах. К ним можно отнести все растворимые соли, а также сильные кислоты и щёлочи. Они легко распадаются на ионы и очень трудно собрать их в осадки. Ток в электролитах, кстати, проводится именно благодаря ионам, содержащимся в растворе. Поэтому лучше всех проводят ток сильные электролиты. Примеры последних: сильные кислоты, щёлочи, растворимые соли.

Факторы, влияющие на поведение электролитов

Теперь разберёмся, как влияет изменение внешней обстановки на Концентрация напрямую влияет на степень диссоциации электролита. Более того, это соотношение можно выразить математически. Закон, описывающий эту связь, называется законом разбавления Оствальда и записывается так: a = (K / c) 1/2 . Здесь a - это степень диссоциации (берётся в долях), К - константа диссоциации, разная для каждого вещества, а с - концентрация электролита в растворе. По этой формуле можно узнать много нового о веществе и его поведении в растворе.

Но мы отклонились от темы. Кроме концентрации, на степень диссоциации также влияет температура электролита. Для большинства веществ её увеличение повышает растворимость и химическую активность. Именно этим можно объяснить протекание некоторых реакций только при повышенной температуре. При нормальных условиях они идут либо очень медленно, либо в обе стороны (такой процесс называется обратимым).

Мы разобрали факторы, определяющие поведение такой системы, как раствор электролита. Сейчас перейдём к практическому применению этих, без сомнения, очень важных химических веществ.

Промышленное использование

Конечно, все слышали слово "электролит" применительно к аккумуляторам. В автомобиле используют свинцово-кислотные аккумуляторы, роль электролита в котором выполняет 40-процентная серная кислота. Чтобы понять, зачем там вообще нужно это вещество, стоит разобраться в особенностях работы аккумуляторов.

Так в чём принцип работы любого аккумулятора? В них происходит обратимая реакция превращения одного вещества в другое, в результате которой высвобождаются электроны. При заряде аккумулятора происходит взаимодействие веществ, которого не получается при нормальных условиях. Это можно представить как накопление электроэнергии в веществе в результате химической реакции. При разряде же начинается обратное превращение, приводящее систему к начальному состоянию. Эти два процесса вместе составляют один цикл заряда-разряда.

Рассмотрим вышеизложенный процесс на конкретном примере - свинцово-кислотном аккумуляторе. Как нетрудно догадаться, этот источник тока состоит из элемента, содержащего свинец (а также диокисд свинца PbO 2) и кислоты. Любой аккумулятор состоит из электродов и пространства между ними, заполненного как раз электролитом. В качестве последнего, как мы уже выяснили, в нашем примере используется серная кислота концентрацией 40 процентов. Катод такого аккумулятора делают из диоксида свинца, а анод состоит из чистого свинца. Всё это потому, что на этих двух электродах протекают разные обратимые реакции с участием ионов, на которые продиссоциировала кислота:

  1. PbO 2 + SO 4 2- + 4H + + 2e - = PbSO 4 + 2H 2 O (реакция, происходящая на отрицательном электроде - катоде).
  2. Pb + SO 4 2- - 2e - = PbSO 4 (Реакция, протекающая на положительном электроде - аноде).

Если читать реакции слева направо - получаем процессы, происходящие при разряде аккумулятора, а если справа налево - при заряде. В каждом эти реакции разные, но механизм их протекания в общем описывается одинаково: происходят два процесса, в одном из которых электроны "поглощаются", а в другом, наоборот, "выходят". Самое главное то, что число поглощённых электронов равно числу вышедших.

Собственно, кроме аккумуляторов, существует масса применений этих веществ. Вообще, электролиты, примеры которых мы привели, - это лишь крупинка того многообразия веществ, которые объединены под этим термином. Они окружают нас везде, повсюду. Вот, например, тело человека. Думаете, там нет этих веществ? Очень ошибаетесь. Они находятся везде в нас, а самое большое количество составляют электролиты крови. К ним относятся, например, ионы железа, которые входят в состав гемоглобина и помогают транспортировать кислород к тканям нашего организма. Электролиты крови также играют ключевую роль в регуляции водно-солевого баланса и работе сердца. Эту функцию выполняют ионы калия и натрия (существует даже процесс, происходящий в клетках, который назвается калий-натриевым насосом).

Любые вещества, которые вы в силах растворить хоть немного, - электролиты. И нет такой отрасли промышленности и нашей с вами жизни, где бы они ни применялись. Это не только аккумуляторы в автомобилях и батарейки. Это любое химическое и пищевое производство, военные заводы, швейные фабрики и так далее.

Состав электролита, кстати, бывает разным. Так, можно выделить кислотный и щелочной электролит. Они принципиально отличаются своими свойствами: как мы уже говорили, кислоты являются донорами протонов, а щёлочи - акцепторами. Но со времением состав электролита меняется вследствие потери части вещества концентрация либо уменьшается, либо увеличивается (всё зависит от того, что теряется, вода или электролит).

Мы каждый день сталкиваемся с ними, однако мало кто точно знает определение такого термина, как электролиты. Примеры конкретных веществ мы разобрали, поэтому перейдём к немного более сложным понятиям.

Физические свойства электролитов

Теперь о физике. Самое важное, что нужно понимать при изучении этой темы - как передаётся ток в электролитах. Определяющую роль в этом играют ионы. Эти заряженные частицы могут переносить заряд из одной части раствора в другую. Так, анионы стремятся всегда к положительному электроду, а катионы - к отрицательному. Таким образом, действуя на раствор электрическим током, мы разделяем заряды по разным сторонам системы.

Очень интересна такая физическая характеристика, как плотность. От неё зависят многие свойства обсуждаемых нами соединений. И зачастую всплывает вопрос: "Как поднять плотность электролита?" На самом деле ответ прост: необходимо понизить содержание воды в растворе. Так как плотность электролита большей частью определяется то она большей частью зависит от концентрации последней. Существует два способа осуществить задуманное. Первый достаточно простой: прокипятить электролит, содержащийся в аккумуляторе. Для этого нужно зарядить его так, чтобы температура внутри поднялась чуть выше ста градусов по цельсию. Если этот способ не помогает, не переживайте, существует ещё один: просто-напросто заменить старый электролит новым. Для этого нужно слить старый раствор, прочистить внутренности от остатков серной кислоты дистиллированной водой, а затем залить новую порцию. Как правило, качественные растворы электролита сразу имеют нужную величину концентрации. После замены можете надолго забыть о том, как поднять плотность электролита.

Состав электролита во многом определяет его свойства. Такие характеристики, как электропроводность и плотность, например, сильно зависят от природы растворённого вещества и его концентрации. Существует отдельный вопрос о том, сколько электролита в аккумуляторе может быть. На самом деле его объём напрямую связан с заявленной мощностью изделия. Чем больше серной кислоты внутри аккумулятора, тем он мощнее, т. е. тем большее напряжение способен выдавать.

Где это пригодится?

Если вы автолюбитель или просто увлекаетесь автомобилями, то вы и сами всё понимаете. Наверняка вы даже знаете, как определить, сколько электролита в аккумуляторе находится сейчас. А если вы далеки от автомобилей, то знание свойств этих веществ, их применения и того, как они взаимодействуют друг с другом будет совсем не лишним. Зная это, вы не растеряетесь, если вас попросят сказать, какой электролит в аккумуляторе. Хотя даже если вы не автолюбитель, но у вас есть машина, то знание устройства аккумулятора будет совсем не лишним и поможет вам в ремонте. Будет гораздо легче и дешевле сделать всё самому, нежели ехать в автоцентр.

А чтобы лучше изучить эту тему, мы рекомендуем почитать учебник химии для школы и вузов. Если вы хорошо знаете эту науку и прочитали достаточно учебников, лучшим вариантом будут "Химические источники тока" Варыпаева. Там изложены подробно вся теория работы аккумуляторов, различных батарей и водородных элементов.

Заключение

Мы подошли к концу. Подведём итоги. Выше мы разобрали всё, что касается такого понятия, как электролиты: примеры, теория строения и свойств, функции и применение. Ещё раз стоит сказать, что эти соединения составляют часть нашей жизни, без которой не могли бы существовать наши тела и все сферы промышленности. Вы помните про электролиты крови? Благодаря им мы живём. А что насчёт наших машин? С помощью этих знаний мы сможем исправить любую проблему, связанную с аккумулятором, так как теперь понимаем, как поднять плотность электролита в нём.

Всё рассказать невозможно, да мы и не ставили такой цели. Ведь это далеко не всё, что можно рассказать об этих удивительных веществах.

Сильные и слабые электролиты

Кислоты, основания и соли в водных растворах диссоциируют — распадаются на ионы. Этот процесс может быть обратимым или необратимым.

При необратимой диссоциации в растворах все вещество или почти все распадается на ионы. Это характерно для сильных электролитов (рис. 10.1, а, с. 56). К сильным электролитам относятся некоторые кислоты и все растворимые в воде соли и основания (гидроксиды щелочных и щелочноземельных элементов) (схема 5, с. 56).

Рис. 10.1. Сравнение числа ионов в растворах с одинаковым исходным количеством электролита: а — хлоридная кислота (сильный электролит); б — нитритная кислота

(слабый электролит)

Схема 5. Классификация электролитов по силе

При обратимой диссоциации протекает два противоположных процесса: одновременно с распадом вещества на ионы (диссоциацией) происходит обратный процесс объединения ионов в молекулы вещества (ассоциация). Благодаря этому часть вещества в растворе существует в виде ионов, а часть — в виде молекул (рис. 10.1, б). Электролиты,

которые при растворении в воде распадаются на ионы только частично, называют слабыми электролитами. К их числу относится вода, многие кислоты, а также нерастворимые гидроксиды и соли (схема 5).

В уравнениях диссоциации слабых электролитов вместо обычной стрелки записывают двунаправленную стрелку (знак обратимости):

Силу электролитов можно объяснить полярностью химической связи, которая разрывается при диссоциации. Чем более полярна связь, тем легче под действием молекул воды она превращается в ионную, следовательно, тем сильнее электролит. В солях и гидроксидах полярность связи наибольшая, поскольку между ионами металлических элементов, кислотными остатками и гидроксид-ионами существует ионная связь, поэтому все растворимые соли и основания — сильные электролиты. В оксигенсодержащих кислотах при диссоциации разрывается связь O-H, полярность которой зависит от качественного и количественного состава кислотного остатка. Силу большинства оксигенсодержащих кислот можно определить, если обычную формулу кислоты записать в виде E(OH) m O n . Если в этой формуле будет n < 2 — кислота слабая, если n >2 — сильная.

Зависимость силы кислот от состава кислотного остатка


Степень диссоциации

Силу электролитов количественно характеризует степень электролитической диссоциации а, показывающая долю молекул вещества, которые распались в растворе на ионы.

Степень диссоциации а равна отношению числа молекул N или количества вещества n, распавшегося на ионы, к общему числу молекул N 0 или количеству растворенного вещества n 0:

Степень диссоциации можно выражать не только в долях единицы, но и в процентах:

Значение а может изменяться от 0 (диссоциация отсутствует) до 1, или 100 % (полная диссоциация). Чем лучше распадается электролит, тем больше значение степени диссоциации.

По значению степени электролитической диссоциации электролиты часто разделяют не на две, а на три группы: сильные, слабые и электролиты средней силы. Сильными электролитами считают те, степень диссоциации которых более 30 %, а слабыми — со степенью менее 3 %. Электролиты с промежуточными значениями а — от 3 % до 30 % — называют электролитами средней силы. По этой классификации таковыми считаются кислоты: HF, HNO 2 , H 3 PO 4 , H 2 SO 3 и некоторые другие. Две последние кислоты являются электролитами средней силы только по первой стадии диссоциации, а по другим — это слабые электролиты.


Степень диссоциации — величина переменная. Она зависит не только от природы электролита, но и от его концентрации в растворе. Эту зависимость впервые определил и исследовал Вильгельм Оствальд. Сегодня ее называют законом разведения Оствальда: при разбавлении раствора водой, а также при повышении температуры степень диссоциации увеличивается.

Вычисление степени диссоциации

Пример. В одном литре воды растворили гидроген флуорид количеством вещества 5 моль. Полученный раствор содержит 0,06 моль ионов Гидрогена. Определите степень диссоциации флуоридной кислоты (в процентах).

Запишем уравнение диссоциации флуоридной кислоты:

При диссоциации из одной молекулы кислоты образуется один ион Гидрогена. Если в растворе содержится 0,06 моль ионов H+, это означает, что продиссоцииро-вало 0,06 моль молекул гидроген флуорида. Следовательно, степень диссоциации равна:

Выдающийся немецкий физико-химик, лауреат Нобелевской премии по химии 1909 года. Родился в Риге, учился в Дерптском университете, где начал преподавательскую и научную деятельность. В 35 лет переехал в Лейпциг, где возглавил Физико-химический институт. Изучал законы химического равновесия, свойства растворов, открыл закон разведения, названный его именем, разработал основы теории кислотно-основного катализа, много времени уделял истории химии. Основал первую в мире кафедру физической химии и первый физико-химический журнал. В личной жизни обладал странными привычками: чувствовал отвращение к стрижке, а со своим секретарем общался исключительно при помощи велосипедного звонка.

Ключевая идея

Диссоциация слабых электролитов — обратимый процесс, а сильных —

необратимый.

Контрольные вопросы

116. Дайте определение сильных и слабых электролитов.

117. Приведите примеры сильных и слабых электролитов.

118. Какую величину используют для количественной характеристики силы электролита? Является ли она постоянной в любых растворах? Как можно увеличить степень диссоциации электролита?

Задания для усвоения материала

119. Приведите по одному примеру соли, кислоты и основания, которые являются: а) сильным электролитом; б) слабым электролитом.

120. Приведите пример вещества: а) двухосновная кислота, которая по первой стадии является электролитом средней силы, а по второй — слабым электролитом; б) двухосновная кислота, которая по обеим стадиями является слабым электролитом.

121. В некоторой кислоте по первой стадии степень диссоциации составляет 100 %, а по второй — 15 %. Какая кислота это может быть?

122. Каких частиц больше в растворе гидроген сульфида: молекул H 2 S, ионов H+, ионов S 2- или ионов HS - ?

123. Из приведенного перечня веществ отдельно выпишите формулы: а) сильных электролитов; б) слабых электролитов.

NaCl, HCl, NaOH, NaNO 3 , HNO 3 , HNO 2 , H 2 SO 4 , Ba(OH) 2 , H 2 S, K 2 S, Pb(NO 3) 2 .

124. Составьте уравнения диссоциации стронций нитрата, меркурий(11) хлорида, кальций карбоната, кальций гидроксида, сульфидной кислоты. В каких случаях диссоциация происходит обратимо?

125. В водном растворе натрий сульфата содержится 0,3 моль ионов. Какую массу этой соли использовали для приготовления такого раствора?

126. В растворе гидроген флуорида объемом 1 л содержится 2 г этой кислоты, а количество вещества ионов Гидрогена составляет 0,008 моль. Какое количество вещества флуорид-ионов в этом растворе?

127. В трех пробирках содержатся одинаковые объемы растворов хлорид-ной, флуоридной и сульфидной кислот. Во всех пробирках количества вещества кислот равны. Но в первой пробирке количество вещества ионов Гидрогена составляет 3 . 10 -7 моль, во второй — 8 . 10 -5 моль, а в третьей — 0,001 моль. В какой пробирке содержится каждая кислота?

128. В первой пробирке содержится раствор электролита, степень диссоциации которого составляет 89 %, во второй — электролит со степенью диссоциации 8 %о, а в третьей — 0,2 %о. Приведите по два примера электролитов разных классов соединений, которые могут содержаться в этих пробирках.

129*. В дополнительных источниках найдите информацию о зависимости силы электролитов от природы веществ. Установите зависимость между строением веществ, природой химических элементов, которые их образуют, и силой электролитов.

Это материал учебника