Что такое электронное строение атома. Основное и возбужденное состояния атома

Химическими веществами называют то, из чего состоит окружающий нас мир.

Свойства каждого химического вещества делятся на два типа: это химические, которые характеризуют его способность образовывать другие вещества, и физические, которые объективно наблюдаются и могут быть рассмотрены в отрыве от химических превращений. Так, например, физическими свойствами вещества являются его агрегатное состояние (твердое, жидкое или газообразное), теплопроводность, теплоемкость, растворимость в различных средах (вода, спирт и др.), плотность, цвет, вкус и т.д.

Превращения одних химических веществ в другие вещества называют химическими явлениями или химическими реакциями. Следует отметить, что существуют также и физические явления, которые, очевидно, сопровождаются изменением каких-либо физических свойств вещества без его превращения в другие вещества. К физическим явлениям, например, относятся плавление льда, замерзание или испарение воды и др.

О том, что в ходе какого-либо процесса имеет место химическое явление, можно сделать вывод, наблюдая характерные признаки химических реакций, такие как изменение цвета, образование осадка, выделение газа, выделение теплоты и (или) света.

Так, например, вывод о протекании химических реакций можно сделать, наблюдая:

Образование осадка при кипячении воды, называемого в быту накипью;

Выделение тепла и света при горении костра;

Изменение цвета среза свежего яблока на воздухе;

Образование газовых пузырьков при брожении теста и т.д.

Мельчайшие частицы вещества, которые в процессе химических реакций практически не претерпевают изменений, а лишь по-новому соединяются между собой, называются атомами.

Сама идея о существовании таких единиц материи возникла еще в древней Греции в умах античных философов, что собственно и объясняет происхождение термина «атом», поскольку «атомос» в буквальном переводе с греческого означает «неделимый».

Тем не менее, вопреки идее древнегреческих философов, атомы не являются абсолютным минимумом материи, т.е. сами имеют сложное строение.

Каждый атом состоит из так называемых субатомных частиц – протонов, нейтронов и электронов, обозначаемых соответственно символами p + , n o и e − . Надстрочный индекс в используемых обозначениях указывает на то, что протон имеет единичный положительный заряд, электрон – единичный отрицательный заряд, а нейтрон заряда не имеет.

Что касается качественного устройства атома, то у каждого атома все протоны и нейтроны сосредоточены в так называемом ядре, вокруг которого электроны образуют электронную оболочку.

Протон и нейтрон обладают практически одинаковыми массами, т.е. m p ≈ m n , а масса электрона почти в 2000 раз меньше массы каждого из них, т.е. m p /m e ≈ m n /m e ≈ 2000.

Поскольку фундаментальным свойством атома является его электронейтральность, а заряд одного электрона равен заряду одного протона, из этого можно сделать вывод о том, что количество электронов в любом атоме равно количеству протонов.

Так, например, в таблице ниже представлен возможный состав атомов:

Вид атомов с одинаковым зарядом ядер, т.е. с одинаковым числом протонов в их ядрах, называют химическим элементом. Таким образом, из таблицы выше можно сделать вывод о том, что атом1 и атом2 относятся в одному химическому элементу, а атом3 и атом4 — к другому химическому элементу.

Каждый химический элемент имеет свое название и индивидуальный символ, который читается определенным образом. Так, например, самый простой химический элемент, атомы которого содержат в ядре только один протон, имеет название «водород» и обозначается символом «Н», что читается как «аш», а химический элемент с зарядом ядра +7 (т.е. содержащий 7 протонов) — «азот», имеет символ «N» , который читается как «эн».

Как можно заметить из представленной выше таблицы, атомы одного химического элемента могут отличаться количеством нейтронов в ядрах.

Атомы, относящиеся к одному химическому элементу, но имеющие разное количество нейтронов и, как следствие массу, называют изотопами.

Так, например, химический элемент водород имеет три изотопа – 1 Н, 2 Н и 3 Н. Индексы 1, 2 и 3 сверху от символа Н означают суммарное количество нейтронов и протонов. Т.е. зная, что водород – это химический элемент, который характеризуется тем, что в ядрах его атомов находится по одному протону, можно сделать вывод о том, что в изотопе 1 Н вообще нет нейтронов (1-1=0), в изотопе 2 Н – 1 нейтрон (2-1=1) и в изотопе 3 Н – два нейтрона (3-1=2). Поскольку, как уже было сказано, нейтрон и протон имеют одинаковые массы, а масса электрона по сравнению с ними пренебрежимо мала, это значит, что изотоп 2 Н практически в два раза тяжелее изотопа 1 Н, а изотоп 3 Н — и вовсе в три раза. В связи с таким большим разбросом масс изотопов водорода изотопам 2 Н и 3 Н даже были присвоены отдельные индивидуальные названия и символы, что не характерно больше ни для одного другого химического элемента. Изотопу 2 Н дали название дейтерий и присвоили символ D, а изотопу 3 Н дали название тритий и присвоили символ Т.

Если принять массу протона и нейтрона за единицу, а массой электрона пренебречь, фактически верхний левый индекс помимо суммарного количества протонов и нейтронов в атоме можно считать его массой, в связи с чем этот индекс называют массовым числом и обозначают символом А. Поскольку за заряд ядра любого атома отвечают протоны, а заряд каждого протона условно считается равным +1, количество протонов в ядре называют зарядовым числом (Z). Обозначив количество нейтронов в атоме буквой N, математически взаимосвязь между массовым числом, зарядовым числом и количеством нейтронов можно выразить как:

Согласно современным представлениям, электрон имеет двойственную (корпускулярно-волновую) природу. Он обладает свойствами как частицы, так и волны. Подобно частице, электрон имеет массу и заряд, но в то же время поток электронов, подобно волне, характеризуется способностью к дифракции.

Для описания состояния электрона в атоме используют представления квантовой механики, согласно которым электрон не имеет определенной траектории движения и может находиться в любой точке пространства, но с разной вероятностью.

Область пространства вокруг ядра, где наиболее вероятно нахождение электрона, называется атомной орбиталью.

Атомная орбиталь может обладать различной формой, размером и ориентацией. Также атомную орбиталь называют электронным облаком.

Графически одну атомную орбиталь принято обозначать в виде квадратной ячейки:

Квантовая механика имеет крайне сложный математический аппарат, поэтому в рамках школьного курса химии рассматриваются только лишь следствия квантово-механической теории.

Согласно этим следствиям, любую атомную орбиталь и находящийся на ней электрон полностью характеризуют 4 квантовых числа.

  • Главное квантовое число – n — определяет общую энергию электрона на данной орбитали. Диапазон значений главного квантового числа – все натуральные числа, т.е. n = 1,2,3,4, 5 и т.д.
  • Орбитальное квантовое число — l – характеризует форму атомной орбитали и может принимать любые целочисленные значения от 0 до n-1, где n, напомним, — это главное квантовое число.

Орбитали с l = 0 называют s -орбиталями . s-Орбитали имеют сферическую форму и не обладают направленностью в пространстве:

Орбитали с l = 1 называются p -орбиталями . Данные орбитали обладают формой трехмерной восьмерки, т.е. формой, полученной вращением восьмерки вокруг оси симметрии, и внешне напоминают гантель:

Орбитали с l = 2 называются d -орбиталями , а с l = 3 – f -орбиталями . Их строение намного более сложное.

3) Магнитное квантовое число – m l – определяет пространственную ориентацию конкретной атомной орбитали и выражает проекцию орбитального момента импульса на направление магнитного поля. Магнитное квантовое число m l соответствует ориентации орбитали относительно направления вектора напряженности внешнего магнитного поля и может принимать любые целочисленные значения от –l до +l, включая 0, т.е. общее количество возможных значений равно (2l+1). Так, например, при l = 0 m l = 0 (одно значение), при l = 1 m l = -1, 0, +1 (три значения), при l = 2 m l = -2, -1, 0, +1, +2 (пять значений магнитного квантового числа) и т.д.

Так, например, p-орбитали, т.е. орбитали с орбитальным квантовым числом l = 1, имеющие форму «трехмерной восьмерки», соответствуют трем значениям магнитного квантового числа (-1, 0, +1), что, в свою очередь, соответствует трем перпендикулярным друг другу направлениям в пространстве.

4) Спиновое квантовое число (или просто спин) — m s — условно можно считать отвечающим за направление вращения электрона в атоме, оно может принимать значения. Электроны с разными спинами обозначают вертикальными стрелками, направленными в разные стороны: ↓ и .

Совокупность всех орбиталей в атоме, имеющих одно и то же значение главного квантового числа, называют энергетическим уровнем или электронной оболочкой. Любой произвольный энергетический уровень с некоторым номером n состоит из n 2 орбиталей.

Множество орбиталей с одинаковыми значениями главного квантового числа и орбитального квантового числа представляет собой энергетический подуровень.

Каждый энергетический уровень, которому соответствует главное квантовое число n, содержит n подуровней. В свою очередь, каждый энергетический подуровень с орбитальным квантовым числом l, состоит из (2l+1) орбиталей. Таким образом, s-подуровень состоит из одной s-орбитали, p-подуровень – трех p-орбиталей, d-подуровень – пяти d-орбиталей, а f-подуровень — из семи f-орбиталей. Поскольку, как уже было сказано, одна атомная орбиталь часто обозначается одной квадратной ячейкой, то s-, p-, d- и f-подуровни можно графически изобразить следующим образом:

Каждой орбитали соответствует индивидуальный строго определенный набор трех квантовых чисел n, l и m l .

Распределение электронов по орбиталям называют электронной конфигурацией.

Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями:

  • Принцип минимума энергии : электроны заполняют орбитали, начиная с подуровня с наименьшей энергией. Последовательность подуровней в порядке увеличения их энергий выглядит следующим образом: 1s<2s<2p<3s<3p<4s≤3d<4p<5s≤4d<5p<6s…;

Для того чтобы проще запомнить данную последовательность заполнения электронных подуровней, весьма удобна следующая графическая иллюстрация:

  • Принцип Паули : на каждой орбитали может находиться не более двух электронов.

Если на орбитали находится один электрон, то он называется неспаренным, а если два, то их называют электронной парой.

  • Правило Хунда : наиболее устойчивое состояние атома является такое, при котором в пределах одного подуровня атом обладает максимально возможным числом неспаренных электронов. Такое наиболее устойчивое состояние атома называется основным состоянием.

Фактически вышесказанное означает то, что, например, размещение 1-го, 2-х, 3-х и 4-х электронов на трех орбиталях p-подуровня будет осуществляться следующим образом:

Заполнение атомных орбиталей от водорода, имеющего зарядовое число равное 1, до криптона (Kr) с зарядовым числом 36 будет осуществляться следующим образом:

Подобное изображение порядка заполнения атомных орбиталей называется энергетической диаграммой. Исходя из электронных диаграмм отдельных элементов, можно записать их так называемые электронные формулы (конфигурации). Так, например, элемент с 15ю протонами и, как следствие, 15ю электронами, т.е. фосфор (P), будет иметь следующий вид энергетической диаграммы:

При переводе в электронную формулу атома фосфора примет вид:

15 P = 1s 2 2s 2 2p 6 3s 2 3p 3

Цифрами нормального размера слева от символа подуровня показан номер энергетического уровня, а верхними индексами справа от символа подуровня показано количество электронов на соответствующем подуровне.

Ниже приведены электронные формул первых 36 элементов периодической системы Д.И. Менделеева.

период № элемента символ название электронная формула
I 1 H водород 1s 1
2 He гелий 1s 2
II 3 Li литий 1s 2 2s 1
4 Be бериллий 1s 2 2s 2
5 B бор 1s 2 2s 2 2p 1
6 C углерод 1s 2 2s 2 2p 2
7 N азот 1s 2 2s 2 2p 3
8 O кислород 1s 2 2s 2 2p 4
9 F фтор 1s 2 2s 2 2p 5
10 Ne неон 1s 2 2s 2 2p 6
III 11 Na натрий 1s 2 2s 2 2p 6 3s 1
12 Mg магний 1s 2 2s 2 2p 6 3s 2
13 Al алюминий 1s 2 2s 2 2p 6 3s 2 3p 1
14 Si кремний 1s 2 2s 2 2p 6 3s 2 3p 2
15 P фосфор 1s 2 2s 2 2p 6 3s 2 3p 3
16 S сера 1s 2 2s 2 2p 6 3s 2 3p 4
17 Cl хлор 1s 2 2s 2 2p 6 3s 2 3p 5
18 Ar аргон 1s 2 2s 2 2p 6 3s 2 3p 6
IV 19 K калий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1
20 Ca кальций 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2
21 Sc скандий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1
22 Ti титан 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2
23 V ванадий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3
24 Cr хром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 здесь наблюдается проскок одного электрона с s на d подуровень
25 Mn марганец 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5
26 Fe железо 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6
27 Co кобальт 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7
28 Ni никель 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 8
29 Cu медь 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 здесь наблюдается проскок одного электрона с s на d подуровень
30 Zn цинк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10
31 Ga галлий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1
32 Ge германий 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 2
33 As мышьяк 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 3
34 Se селен 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4
35 Br бром 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5
36 Kr криптон 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Как уже было сказано, в основном своем состоянии электроны в атомных орбиталях расположены согласно принципу наименьшей энергии. Тем не менее, при наличии пустых p-орбиталей в основном состоянии атома, нередко, при сообщении ему избыточной энергии атом можно перевести в так называемое возбужденное состояние. Так, например, атом бора в основном своем состоянии имеет электронную конфигурацию и энергетическую диаграмму следующего вида:

5 B = 1s 2 2s 2 2p 1

А в возбужденном состояниии (*), т.е. при сообщении некоторой энергии атому бора, его электронная конфигурация и энергетическая диаграмма будут выглядеть так:

5 B* = 1s 2 2s 1 2p 2

В зависимости от того, какой подуровень в атоме заполняется последним, химические элементы делят на s, p, d или f.

Нахождение s, p, d и f-элементов в таблице Д.И. Менделеева:

  • У s-элементов последний заполняемый s-подуровень. К данным элементам относятся элементы главных (слева в ячейке таблицы) подгрупп I и II групп.
  • У p-элементов заполняется p-подуровень. К p-элементам относят последние шесть элементов каждого периода, кроме первого и седьмого, а также элементы главных подгрупп III-VIII групп.
  • d-Элементы расположены между s – и p-элементами в больших периодах.
  • f-Элементы называют лантаноидами и актиноидами. Они вынесены вниз таблицы Д.И. Менделеева.

Атом (от греческого atomos - неделимый) - одноядерная, неделимая химическим путем частица химического элемента, носитель свойств вещества. Вещества состоят из атомов. Сам атом состоит из положительно заряженного ядра и отрицательно заряженного электронного облака. В целом атом электронейтрален. Размер атома полностью определяется размером его электронного облака, поскольку размер ядра ничтожно мал по сравнению с размером электронного облака. Ядро состоит из Z положительно заряженных протонов (заряд протона соответствует +1 в условных единицах) и N нейтронов, которые не несут на себе заряда (количество нейтронов может быть равно или чуть больше или меньше, чем протонов). Протоны и нейтроны называют нуклонами, то есть частицами ядра. Таким образом, заряд ядра определятся только количеством протонов и равен порядковому номеру элемента в таблице Менделеева. Положительный заряд ядра компенсируется отрицательно заряженными электронами (заряд электрона -1 в условных единицах), которые формируют электронное облако. Количество электронов равно количеству протонов. Массы протонов и нейтронов равны (соответственно 1 и 1 а.е.м.). Масса атома в основном определяется массой его ядра, поскольку масса электрона примерно в 1836 раз меньше массы протона и нейтрона и в расчётах редко учитывается. Точное количество нейтронов можно узнать по разности между массой атома и количеством протонов (N =A -Z ). Вид атомов какого-либо химического элемента с ядром, состоящим из строго определённого числа протонов (Z) и нейтронов (N), называется нуклидом (это могут быть как разные элементы с одинаковым общим количеством нуклонов (изобары) или нейтронов (изотоны), так и один химический элемент - одно количество протонов, но разное количество нейтронов (изомеры)).

Поскольку в ядре атома сосредоточена практически вся масса, но его размеры ничтожно малы по сравнению с общим объёмом атома, то ядро условно принимается материальной точкой, покоящейся в центре атома, а сам атом рассматривается как система электронов. При химической реакции ядро атома не затрагивается (кроме ядерных реакций), как и внутренние электронные уровни, а участвуют только электроны внешней электронной оболочки. По этой причине необходимо знать свойства электрона и правила формирования электронных оболочек атомов.

Свойства электрона

Перед изучением свойств электрона и правил формирования электронных уровней необходимо затронуть историю формирования представлений о строении атома. Мы не будем рассматривать полную историю становления атомарного строения, а остановимся лишь на самых актуальных и наиболее "верных" представлениях, способных наиболее наглядно показать как располагаются электроны в атоме. Первыми наличие атомов как элементарных составляющих вещества предположили еще древнегреческие философы (если какое-либо тело начать делить пополам, половинку ещё пополам и так далее, то этот процесс не сможет происходить до бесконечности; мы остановимся на частичке, которую уже не сможем поделить, - это и будет атом). После чего история строения атома прошла сложный путь и разные представления, такие как неделимость атома, Томсоновская модель атома и другие. Наиболее близкой оказалась модель атома, предложенная Эрнестом Резерфордом в 1911 году. Он сравнил атом с солнечной системой, где в роли солнца выступало ядро атома, а электроны двигались вокруг него подобно планетам. Размещение электронов на стационарных орбитах было очень важным шагом в понимании строения атома. Однако такая планетарная модель строения атома шла в противоречие с классической механикой. Дело в том, что при движении электрона по орбите он должен был терять потенциальную энергию и в конце концов "упасть" на ядро, и атом должен был прекратить свое существование. Такой парадокс был устранен введением постулатов Нильсом Бором . Согласно этим постулатам, электрон двигался по стационарным орбитам вокруг ядра и при нормальных условиях не поглощал и не испускал энергию. Постулаты показывают, что для описания атома законы классической механики не подходят. Такая модель атома называется моделью Бора-Резерфорда. Продолжением планетарного строения атома является квантово-механическая модель атома, согласно которой мы и будем рассматривать электрон.

Электрон является квазичастицей, проявляя корпускулярно-волновой дуализм: он одновременно является и частицей (корпускула), и волной. К свойствам частицы можно отнести массу электрона и его заряд, а к волновым свойствам - способность к дифракции и интерференции. Связь между волновыми и корпускулярными свойствами электрона отражены в уравнении де Бройля:

λ = h m v , {\displaystyle \lambda ={\frac {h}{mv}},}

где λ {\displaystyle \lambda } - длина волны, - масса частицы, - скорость частицы, - постоянная Планка = 6,63·10 -34 Дж·с .

Для электрона невозможно рассчитать траекторию его движения, можно говорить только о вероятности нахождения электрона в том или ином месте вокруг ядра. По этой причине говорят не об орбитах движения электрона вокруг ядра, а об орбиталях - пространстве вокруг ядра, в котором вероятность нахождения электрона превышает 95%. Для электрона невозможно одновременно точно измерить и координату, и скорость (принцип неопределённости Гейзенберга).

Δ x ∗ m ∗ Δ v > ℏ 2 {\displaystyle \Delta x*m*\Delta v>{\frac {\hbar }{2}}}

где Δ x {\displaystyle \Delta x} - неопределённость координаты электрона, Δ v {\displaystyle \Delta v} -погрешность измерения скорости, ħ=h/2π=1.05·10 -34 Дж·с
Чем точнее мы измеряем координату электрона, тем больше погрешность в измерении его скорости, и наоборот: чем точнее мы знаем скорость электрона, тем больше неопределённость в его координате.
Наличие волновых свойств у электрона позволяет применить к нему волновое уравнение Шредингера.

∂ 2 Ψ ∂ x 2 + ∂ 2 Ψ ∂ y 2 + ∂ 2 Ψ ∂ z 2 + 8 π 2 m h (E − V) Ψ = 0 {\displaystyle {\frac {{\partial }^{2}\Psi }{\partial x^{2}}}+{\frac {{\partial }^{2}\Psi }{\partial y^{2}}}+{\frac {{\partial }^{2}\Psi }{\partial z^{2}}}+{\frac {8{\pi ^{2}}m}{h}}\left(E-V\right)\Psi =0}

где - полная энергия электрона, потенциальная энергия электрона, физический смысл функции Ψ {\displaystyle \Psi } - квадратный корень от вероятности нахождения электрона в пространстве с координатами x , y и z (ядро считается началом координат).
Представленное уравнение написано для одноэлектронной системы. Для систем, содержащих более одного электрона, принцип описания остаётся прежним, но уравнение принимает более сложный вид. Графическим решением уравнения Шредингера является геометрия атомных орбиталей. Так, s-орбиталь имеет форму шара, p-орбиталь - форму восьмерки с "узлом" в начале координат (на ядре, где вероятность обнаружения электрона стремится к нулю).

В рамках современной квантово-механической теории электрон описывается набором квантовых чисел: n , l , m l , s и m s . Согласно принципу Паули в одном атоме не может быть двух электронов с полностью идентичным набором всех квантовых чисел.
Главное квантовое число n определяет энергетический уровень электрона, то есть на каком электронном уровне расположен данный электрон. Главное квантовое число может принимать только целочисленные значения больше 0: n =1;2;3... Максимальное значение n для конкретного атома элемента соответствует номеру периода, в котором расположен элемент в периодической таблице Д. И. Менделеева.
Орбитальное (дополнительное) квантовое число l определяет геометрию электронного облака. Может принимать целочисленные значения от 0 до n -1. Для значений дополнительного квантового числа l применяют буквенное обозначение:

значение l 0 1 2 3 4
буквенное обозначение s p d f g

S-орбиталь имеет форму шара, p-орбиталь - форму восьмерки. Остальные орбитали имеют очень сложную структуру, как, например, представленная на рисунке d-орбиталь.

Электроны по уровням и орбиталям располагаются не хаотично, а по правилу Клечковского , согласно которому заполнение электронов происходит по принципу наименьшей энергии, то есть в порядке возрастания суммы главного и орбитального квантовых чисел n +l . В случае, когда сумма для двух вариантов заполнения одинакова, первоначально заполняется наименьший энергетический уровень (например: при n =3 а l =2 и n =4 а l =1 первоначально заполняться будет уровень 3). Магнитное квантовое число m l определяет расположение орбитали в пространстве и может принимать целочисленное значение от -l до +l , включая 0. Для s-орбитали возможно только одно значение m l =0. Для p-орбитали - уже три значения -1, 0 и +1, то есть p-орбиталь может располагаться по трём осям координат x, y и z.

расположение орбиталей в зависимости от значения m l

Электрон обладает собственным моментом импульса - спином, обозначающимся квантовым числом s . Спин электрона - величина постоянная и равная 1/2. Явление спина можно условно представить как движение вокруг собственной оси. Первоначально спин электрона приравнивали к движению планеты вокруг собственной оси, однако такое сравнение ошибочно. Спин - чисто квантовое явление, не имеющее аналогов в классической механике.

Атом - наименьшая частица вещества, неделимая химическим путем. В XX веке было выяснено сложное строение атома. Атомы состоят из положительно заряженного ядра и оболочки, образованной отрицательно заряженными электронами. Общий заряд свободного атома равен нулю, так как заряды ядра и электронной оболочки уравновешивают друг друга. При этом величина заряда ядра равна номеру элемента в периодической таблице (атомному номеру ) и равна общему числу электронов (заряд электрона равен −1).

Атомное ядро состоит из положительно заряженных протонов и нейтральных частиц - нейтронов , не имеющих заряда. Обобщенные характеристики элементарных частиц в составе атома можно представить в виде таблицы:

Число протонов равно заряду ядра, следовательно, равно атомному номеру. Чтобы найти число нейтронов в атоме, нужно от атомной массы (складывающейся из масс протонов и нейтронов) отнять заряд ядра (число протонов).

Например, в атоме натрия 23 Na число протонов p = 11, а число нейтронов n = 23 − 11 = 12

Число нейтронов в атомах одного и того же элемента может быть различным. Такие атомы называют изотопами .

Электронная оболочка атома также имеет сложное строение. Электроны располагаются на энергетических уровнях (электронных слоях).

Номер уровня характеризует энергию электрона. Связано это с тем, что элементарные частицы могут передавать и принимать энергию не сколь угодно малыми величинами, а определенными порциями - ква́нтами. Чем выше уровень, тем большей энергией обладает электрон. Поскольку чем ниже энергия системы, тем она устойчивее (сравните низкую устойчивость камня на вершине горы, обладающего большой потенциальной энергией, и устойчивое положение того же камня внизу на равнине, когда его энергия значительно ниже), вначале заполняются уровни с низкой энергией электрона и только затем - высокие.

Максимальное число электронов, которое может вместить уровень, можно рассчитать по формуле:
N = 2n 2 , где N - максимальное число электронов на уровне,
n - номер уровня.

Тогда для первого уровня N = 2 · 1 2 = 2,

для второго N = 2 · 2 2 = 8 и т. д.

Число электронов на внешнем уровне для элементов главных (А) подгрупп равно номеру группы.

В большинстве современных периодических таблиц расположение электронов по уровням указано в клеточке с элементом. Очень важно понимать, что уровни читаются снизу вверх , что соответствует их энергии. Поэтому столбик цифр в клеточке с натрием:
1
8
2

на 1-м уровне - 2 электрона,

на 2-м уровне - 8 электронов,

на 3-м уровне - 1 электрон
Будьте внимательны, очень распространенная ошибка!

Распределение электронов по уровням можно представить в виде схемы:
11 Na)))
2 8 1

Если в периодической таблице не указано распределение электронов по уровням, можно руководствоваться:

  • максимальным количеством электронов: на 1-м уровне не больше 2 e − ,
    на 2-м - 8 e − ,
    на внешнем уровне - 8 e − ;
  • числом электронов на внешнем уровне (для первых 20 элементов совпадает с номером группы)

Тогда для натрия ход рассуждений будет следующий:

  1. Общее число электронов равно 11, следовательно, первый уровень заполнен и содержит 2 e − ;
  2. Третий, наружный уровень содержит 1 e − (I группа)
  3. Второй уровень содержит остальные электроны: 11 − (2 + 1) = 8 (заполнен полностью)

* Ряд авторов для более четкого разграничения свободного атома и атома в составе соединения предлагают использовать термин «атом» только для обозначения свободного (нейтрального) атома, а для обозначения всех атомов, в том числе и в составе соединений, предлагают термин «атомные частицы». Время покажет, как сложится судьба этих терминов. С нашей точки зрения, атом по определению является частицей, следовательно, выражение «атомные частицы» можно рассматривать как тавтологию («масло масляное»).

2. Задача. Вычисление количества вещества одного из продуктов реакции, если известна масса исходного вещества.
Пример:

Какое количество вещества водорода выделится при взаимодействии цинка с соляной кислотой массой 146 г?

Решение:

  1. Записываем уравнение реакции: Zn + 2HCl = ZnCl 2 + H 2
  2. Находим молярную массу соляной кислоты: M (HCl) = 1 + 35,5 = 36,5 (г/моль)
    (молярную массу каждого элемента, численно равную относительной атомной массе, смотрим в периодической таблице под знаком элемента и округляем до целых, кроме хлора, который берется 35,5)
  3. Находим количество вещества соляной кислоты: n (HCl) = m / M = 146 г / 36,5 г/моль = 4 моль
  4. Записываем над уравнением реакции имеющиеся данные, а под уравнением - число моль согласно уравнению (равно коэффициенту перед веществом):
    4 моль x моль
    Zn + 2HCl = ZnCl 2 + H 2
    2 моль 1 моль
  5. Составляем пропорцию:
    4 моль - x моль
    2 моль - 1 моль
    (или с пояснением:
    из 4 моль соляной кислоты получится x моль водорода,
    а из 2 моль - 1 моль)
  6. Находим x:
    x = 4 моль 1 моль / 2 моль = 2 моль

Ответ: 2 моль.

Понятие атом возникло еще в античном мире для обо значения частиц вещества. В переводе с греческого атом означает «неделимый».

Электроны

Ирландский физик Стони на основании опытов пришел к выводу, что электричество переносится мельчайшими частицами, существующими в атомах всех химических элементов. В $1891$ г. Стони предложил эти частицы назвать электронами , что по-гречески означает «янтарь».

Через несколько лет после того, как электрон получил свое название, английский физик Джозеф Томсон и французский физик Жан Перрен доказали, что электроны несут на себе отрицательный заряд. Это наименьший отрицательный заряд, который в химии принят за единицу $(–1)$. Томсон даже сумел определить скорость движения электрона (она равна скорости света - $300 000$ км/с) и массу электрона (она в $1836$ раз меньше массы атома водорода).

Томсон и Перрен соединяли полюса источника тока с двумя металлическими пластинами - катодом и анодом, впаянными в стеклянную трубку, из которой был откачан воздух. При подаче на пластины-электроды напряжения около 10 тысяч вольт в трубке вспыхивал светящийся разряд, а от катода (отрицательного полюса) к аноду (положительному полюсу) летели частицы, которые ученые сначала назвали катодными лучами , а затем выяснили, что это был поток электронов. Электроны, ударяясь об особые вещества, нанесенные, например, на экран телевизора, вызывают свечение.

Был сделан вывод: электроны вырываются из атомов материала, из которого сделан катод.

Свободные электроны или поток их можно получить и другими способами, например, при накаливании металлической проволоки или при падении света на металлы, образованные элементами главной подгруппы I группы таблицы Менделеева (например, цезий).

Состояние электронов в атоме

Под состоянием электрона в атоме понимают совокупность информации об энергии определенного электрона в пространстве , в котором он находится. Мы уже знаем, что электрон в атоме не имеет траектории движения, т.е. можно говорить лишь о вероятности нахождения его в пространстве вокруг ядра. Он может находиться в любой части этого пространства, окружающего ядро, и совокупность различных положений его рассматривают как электронное облако с определенной плотностью отрицательного заряда. Образно это можно представить себе так: если бы удалось через сотые или миллионные доли секунды сфотографировать положение электрона в атоме, как при фотофинише, то электрон на таких фотографиях был бы представлен в виде точки. При наложении бесчисленного множества таких фотографий получилась бы картина электронного облака с наибольшей плотностью там, где этих точек больше всего.

На рисунке показан «разрез» такой электронной плотности в атоме водорода, проходящей через ядро, а штриховой линией ограничена сфера, внутри которой вероятность обнаружения электрона составляет $90%$. Ближайший к ядру контур охватывает область пространства, в которой вероятность обнаружения электрона - $10%$, вероятность обнаружения электрона внутри второго от ядра контура составляет $20%$, внутри третьего - $≈30%$ и т.д. В состоянии электрона есть некая неопределенность. Чтобы охарактеризовать это особое состояние, немецкий физик В. Гейзенберг ввел понятие о принципе неопределенности , т.е. показал, что невозможно определить одновременно и точно энергию и местоположение электрона. Чем точнее определена энергия электрона, тем неопределеннее его положение, и наоборот, определив положение, нельзя определить энергию электрона. Область вероятности обнаружения электрона не имеет четких границ. Однако можно выделить пространство, где вероятность нахождения электрона максимальна.

Пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью.

В нем заключено приблизительно $90%$ электронного облака, и это означает, что около $90%$ времени электрон находится в этой части пространства. По форме различают $4$ известных ныне типа орбиталей, которые обозначаются латинскими буквами $s, p, d$ и $f$. Графическое изображение некоторых форм электронных орбиталей представлено на рисунке.

Важнейшей характеристикой движения электрона на определенной орбитали является энергия его связи с ядром. Электроны, обладающие близкими значениями энергии, образуют единый электронный слой , или энергетический уровень . Энергетические уровни нумеруют, начиная от ядра: $1, 2, 3, 4, 5, 6$ и $7$.

Целое число $n$, обозначающее номер энергетического уровня, называют главным квантовым числом.

Оно характеризует энергию электронов, занимающих данный энергетический уровень. Наименьшей энергией обладают электроны первого энергетического уровня, наиболее близкого к ядру. По сравнению с электронами первого уровня электроны последующих уровней характеризуются большим запасом энергии. Следовательно, наименее прочно связаны с ядром атома электроны внеш него уровня.

Число энергетических уровней (электронных слоев) в атоме равно номеру периода в системе Д. И. Менделеева, к которому принадлежит химический элемент: у атомов элементов первого периода один энергетический уровень; второго периода - два; седьмого периода - семь.

Наибольшее число электронов на энергетическом уровне определяется по формуле:

где $N$ - максимальное число электронов; $n$ - номер уровня, или главное квантовое число. Следовательно: на первом, ближайшем к ядру энергетическом уровне может находиться не более двух электронов; на втором - не более $8$; на третьем - не более $18$; на четвертом - не более $32$. А как, в свою очередь, устроены энергетические уровни (электронные слои)?

Начиная со второго энергетического уровня $(n = 2)$, каждый из уровней подразделяется на подуровни (подслои), несколько отличающиеся друг от друга энергией связи с ядром.

Число подуровней равно значению главного квантового числа: первый энергетический уровень имеет один под уровень; второй - два; третий - три; четвертый - четыре. Подуровни, в свою очередь, образованы орбиталями.

Каждому значению $n$ соответствует число орбиталей, равное $n^2$. По данным, представленным в таблице, можно проследить связь главного квантового числа $n$ с числом подуровней, типом и числом орбиталей и максимальным числом электронов на подуровне и уровне.

Главное квантовое число, типы и число орбиталей, максимальное число электронов на подуровнях и уровнях.

Энергетический уровень $(n)$ Число подуровней, равное $n$ Тип орбитали Число орбиталей Максимальное число электронов
в подуровне в уровне, равное $n^2$ в подуровне на уровне, равное $n^2$
$K(n=1)$ $1$ $1s$ $1$ $1$ $2$ $2$
$L(n=2)$ $2$ $2s$ $1$ $4$ $2$ $8$
$2p$ $3$ $6$
$M(n=3)$ $3$ $3s$ $1$ $9$ $2$ $18$
$3p$ $3$ $6$
$3d$ $5$ $10$
$N(n=4)$ $4$ $4s$ $1$ $16$ $2$ $32$
$4p$ $3$ $6$
$4d$ $5$ $10$
$4f$ $7$ $14$

Подуровни принято обозначать латинскими буквами, равно как и форму орбиталей, из которых они состоят: $s, p, d, f$. Так:

  • $s$-подуровень - первый, ближайший к ядру атома подуровень каждого энергетического уровня, состоит из одной $s$-орбитали;
  • $р$-подуровень - второй подуровень каждого, кроме первого, энергетического уровня, состоит из трех $р$-орбиталей;
  • $d$-подуровень - третий подуровень каждого, начиная с третьего, энергетического уровня, состоит из пяти $d$-орбиталей;
  • $f$-подуровень каждого, начиная с четвертого, энергетического уровня, состоит из семи $f$-орбиталей.

Ядро атома

Но не только электроны входят в состав атомов. Физик Анри Беккерель обнаружил, что природный минерал, содержащий соль урана, тоже испускает неведомое излучение, засвечивая фотопленки, закрытые от света. Это явление было названо радиоактивностью .

Различают три вида радиоактивных лучей:

  1. $α$-лучи, которые состоят из $α$-частиц, имеющих заряд в $2$ раза больше заряда электрона, но с положительным знаком, и массу в $4$ раза больше массы атома водорода;
  2. $β$-лучи представляют собой поток электронов;
  3. $γ$-лучи - электромагнитные волны с ничтожно малой массой, не несущие электрического заряда.

Следовательно, атом имеет сложное строение - состоит из положительно заряженного ядра и электронов.

Как же устроен атом?

В 1910 г. в Кембридже, близ Лондона, Эрнест Резерфорд со своими учениками и коллегами изучал рассеяние $α$-частиц, проходящих через тоненькую золотую фольгу и падаюших на экран. Альфа-частицы обычно отклонялись от первоначального направления всего на один градус, подтверждая, казалось бы, равномерность и однородность свойств атомов золота. И вдруг исследователи заметили, что некоторые $α$-частицы резко меняли направление своего пути, будто наталкиваясь на какую-то преграду.

Разместив экран перед фольгой, Резерфорд сумел обнаружить даже те редчайшие случаи, когда $α$-частицы, отразившись от атомов золота, летели в противоположном направлении.

Расчеты показали, что наблюдаемые явления могли произойти, если бы вся масса атома и весь его положительный заряд были сосредоточены в крохотном центральном ядре. Радиус ядра, как выяснилось, в 100 000 раз меньше радиуса всего атома, той его области, в которой находятся электроны, имеющие отрицательный заряд. Если применить образное сравнение, то весь объем атома можно уподобить стадиону в Лужниках, а ядро - футбольному мячу, расположенному в центре поля.

Атом любого химического элемента сравним с крохотной Солнечной системой. Поэтому такую модель атома, предложенную Резерфордом, называют планетарной.

Протоны и нейтроны

Оказывается, и крошечное атомное ядро, в котором сосредоточена вся масса атома, состоит из частиц двух видов - протонов и нейтронов.

Протоны имеют заряд, равный заряду электронов, но противоположный по знаку $(+1)$, и массу, равную массе атома водорода (она принята в химии за единицу). Обо значаются протоны знаком $↙{1}↖{1}p$ (или $р+$). Нейтроны не несут заряда, они нейтральны и имеют массу, равную массе протона, т.е. $1$. Обозначают нейтроны знаком $↙{0}↖{1}n$ (или $n^0$).

Протоны и нейтроны вместе называют нуклонами (от лат. nucleus - ядро).

Сумма числа протонов и нейтронов в атоме называется массовым числом . Например, массовое число атома алюминия:

Так как массой электрона, ничтожно малой, можно пренебречь, то очевидно, что в ядре сосредоточена вся масса атома. Электроны обозначают так: $e↖{-}$.

Поскольку атом электронейтрален, также очевидно, что число протонов и электронов в атоме одинаково. Оно равно порядковому номеру химического элемента , присвоенному ему в Периодической системе. Например, в ядре атома железа содержится $26$ протонов, а вокруг ядра вращается $26$ электронов. А как определить число ней тронов?

Как известно, масса атома складывается из массы протонов и нейтронов. Зная порядковый номер элемента $(Z)$, т.е. число протонов, и массовое число $(А)$, равное сумме чисел протонов и нейтронов, можно найти число нейтронов $(N)$ по формуле:

Например, число нейтронов в атоме железа равно:

$56 – 26 = 30$.

В таблице представлены основные характеристики элементарных частиц.

Основные характеристики элементарных частиц.

Изотопы

Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядра, но разное массовое число, называются изотопами.

Слово изотоп состоит из двух греческих слов: isos - одинаковый и topos - место, обозначает «занимающий одно место» (клетку) в Периодической системе элементов.

Химические элементы, встречающиеся в природе, являются смесью изотопов. Так, углерод имеет три изотопа с массой $12, 13, 14$; кислород - три изотопа с массой $16, 17, 18$ и т. д.

Обычно приводимая в Периодической системе относительная атомная масса химического элемента является средним значением атомных масс природной смеси изотопов данного элемента с учетом их относительного содержания в природе, поэтому значения атомных масс довольно часто являются дробными. Например, атомы природного хлора представляют собой смесь двух изотопов - $35$ (их в природе $75%$) и $37$ (их $25%$); следовательно, относительная атомная масса хлора равна $35.5$. Изотопы хлора записываются так:

$↖{35}↙{17}{Cl}$ и $↖{37}↙{17}{Cl}$

Химические свойства изотопов хлора совершенно одинаковы, как и изотопов большинства химических элементов, например калия, аргона:

$↖{39}↙{19}{K}$ и $↖{40}↙{19}{K}$, $↖{39}↙{18}{Ar}$ и $↖{40}↙{18}{Ar}$

Однако изотопы водорода сильно различаются по свойствам из-за резкого кратного увеличения их относительной атомной массы; им даже присвоены индивидуальные названия и химические знаки: протий - $↖{1}↙{1}{H}$; дейтерий - $↖{2}↙{1}{H}$, или $↖{2}↙{1}{D}$; тритий - $↖{3}↙{1}{H}$, или $↖{3}↙{1}{T}$.

Теперь можно дать современное, более строгое и научное определение химическому элементу.

Химический элемент - это совокупность атомов с одинаковым зарядом ядра.

Строение электронных оболочек атомов элементов первых четырех периодов

Рассмотрим отображение электронных конфигураций атомов элементов по периодам системы Д. И. Менделеева.

Элементы первого периода.

Схемы электронного строения атомов показывают распределение электронов по электронным слоям (энергетическим уровням).

Электронные формулы атомов показывают распределение электронов по энергетическим уровням и под уровням.

Графические электронные формулы атомов показывают распределение электронов не только по уровням и под уровням, но и по орбиталям.

В атоме гелия первый электронный слой завершен - в нем $2$ электрона.

Водород и гелий - $s$-элементы, у этих атомов заполняется электронами $s$-орбиталь.

Элементы второго периода.

У всех элементов второго периода первый электронный слой заполнен, и электроны заполняют $s-$ и $р$-орбитали второго электронного слоя в соответствии с принципом наименьшей энергии (сначала $s$, а затем $р$) и правилами Паули и Хунда.

В атоме неона второй электронный слой завершен - в нем $8$ электронов.

Элементы третьего периода.

У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать 3s-, 3р- и 3d-под уровни.

Строение электронных оболочек атомов элементов третьего периода.

У атома магния достраивается $3,5$-электронная орбиталь. $Na$ и $Mg$ - $s$-элементы.

У алюминия и последующих элементов заполняется электронами $3d$-подуровень.

$↙{18}{Ar}$ Аргон $1s^2{2}s^2{2}p^6{3}s^2{3}p^6$

В атоме аргона на внешнем слое (третьем электронном слое) $8$ электронов. Как внешний слой завершен, но всего в третьем электронном слое, как вы уже знаете, может быть 18 электронов, а это значит, что у элементов третьего периода остаются незаполненными $3d$-орбитали.

Все элементы от $Al$ до $Ar$ - $р$-элементы.

$s-$ и $р$-элементы образуют главные подгруппы в Периодической системе.

Элементы четвертого периода.

У атомов калия и кальция появляется четвертый электронный слой, заполняется $4s$-подуровень, т.к. он имеет меньшую энергию, чем $3d$-подуровень. Для упрощения графических электронных формул атомов элементов четвертого периода:

  1. обозначим условно графическую электронную формулу аргона так: $Ar$;
  2. не будем изображать подуровни, которые у этих атомов не заполняются.

$К, Са$ - $s$-элементы, входящие в главные подгруппы. У атомов от $Sc$ до $Zn$ заполняется электронами 3d-подуровень. Это $3d$-элементы. Они входят в побочные подгруппы, у них заполняется предвнешний электронный слой, их относят к переходным элементам.

Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с $4s-$ на $3d$-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций $3d^5$ и $3d^{10}$:

$↙{24}{Cr}$ $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{4} 4s^{2}…$

$↙{29}{Cu}$ $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{9}4s^{2}…$

Символ элемента, порядковый номер, название Схема электронного строения Электронная формула Графическая электронная формула
$↙{19}{K}$ Калий $1s^2{2}s^2{2}p^6{3}p^6{4}s^1$
$↙{20}{C}$ Кальций $1s^2{2}s^2{2}p^6{3}p^6{4}s^2$
$↙{21}{Sc}$ Скандий $1s^2{2}s^2{2}p^6{3}p^6{4}s^1{3}d^1$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^1{4}s^1$
$↙{22}{Ti}$ Титан $1s^2{2}s^2{2}p^6{3}p^6{4}s^2{3}d^2$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^2{4}s^2$
$↙{23}{V}$ Ванадий $1s^2{2}s^2{2}p^6{3}p^6{4}s^2{3}d^3$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^3{4}s^2$
$↙{24}{Сr}$ Хром $1s^2{2}s^2{2}p^6{3}p^6{4}s^1{3}d^5$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^5{4}s^1$
$↙{29}{Сu}$ Хром $1s^2{2}s^2{2}p^6{3}p^6{4}s^1{3}d^{10}$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^{10}{4}s^1$
$↙{30}{Zn}$ Цинк $1s^2{2}s^2{2}p^6{3}p^6{4}s^2{3}d^{10}$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^{10}{4}s^2$
$↙{31}{Ga}$ Галлий $1s^2{2}s^2{2}p^6{3}p^6{4}s^2{3}d^{10}4p^{1}$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^{10}{4}s^{2}4p^{1}$
$↙{36}{Kr}$ Криптон $1s^2{2}s^2{2}p^6{3}p^6{4}s^2{3}d^{10}4p^6$ или $1s^2{2}s^2{2}p^6{3}p^6{3}d^{10}{4}s^{2}4p^6$

В атоме цинка третий электронный слой завершен - в нем заполнены все подуровни $3s, 3р$ и $3d$, всего на них $18$ электронов.

У следующих за цинком элементов продолжает заполняться четвертый электронный слой, $4р$-подуровень. Элементы от $Ga$ до $Кr$ - $р$-элементы.

У атома криптона внешний (четвертый) слой завершен, имеет $8$ электронов. Но всего в четвертом электронном слое, как вы знаете, может быть $32$ электрона; у атома криптона пока остаются незаполненными $4d-$ и $4f$-подуровни.

У элементов пятого периода идет заполнение подуровней в следующем порядке: $5s → 4d → 5р$. И также встречаются исключения, связанные с «провалом» электронов, у $↙{41}Nb$, $↙{42}Мо$, $↙{44}Ru$, $↙{45}Rh$, $↙{46}Pd$, $↙{47}Ag$. В шестом и седьмом периодах появляются $f$-элементы , т.е. элементы, у которых идет заполнение соответственно $4f-$ и $5f$-подуровней третьего снаружи электронного слоя.

$4f$-элементы называют лантаноидами.

$5f$-элементы называют актиноидами.

Порядок заполнения электронных подуровней в атомах элементов шестого периода: $↙{55}Cs$ и $↙{56}Ва$ - $6s$-элементы; $↙{57}La ... 6s^{2}5d^{1}$ - $5d$-элемент; $↙{58}Се$ – $↙{71}Lu - 4f$-элементы; $↙{72}Hf$ – $↙{80}Hg - 5d$-элементы; $↙{81}Т1$ – $↙{86}Rn - 6d$-элементы. Но и здесь встречаются элементы, у которых нарушается порядок заполнения электронных орбиталей, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных $f$-подуровней, т.е. $nf^7$ и $nf^{14}$.

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы, как вы уже поняли, делят на четыре электронных семейства, или блока:

  1. $s$-элементы; электронами заполняется $s$-подуровень внешнего уровня атома; к $s$-элементам относятся водород, гелий и элементы главных подгрупп I и II групп;
  2. $р$-элементы; электронами заполняется $р$-подуровень внешнего уровня атома; к $р$-элементам относятся элементы главных подгрупп III–VIII групп;
  3. $d$-элементы; электронами заполняется $d$-подуровень предвнешнего уровня атома; к $d$-элементам относятся элементы побочных подгрупп I–VIII групп, т.е. элементы вставных декад больших периодов, расположенных между $s-$ и $р-$элементами. Их также называют переходными элементами;
  4. $f$-элементы; электронами заполняется $f-$подуровень третьего снаружи уровня атома; к ним относятся лантаноиды и актиноиды.

Электронная конфигурация атома. Основное и возбужденное состояние атомов

Швейцарский физик В. Паули в $1925$ г. установил, что в атоме на одной орбитали может находиться не более двух электронов , имеющих противоположные (антипараллельные) спины (в переводе с английского - веретено), т.е. обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемый оси по часовой стрелке или против. Этот принцип носит название принципа Паули.

Если на орбитали находится один электрон, то он называется неспаренным , если два, то это спаренные электроны , т.е. электроны с противоположными спинами.

На рисунке показана схема деления энергетических уровней на подуровни.

$s-$Орбиталь , как вы уже знаете, имеет сферическую форму. Электрон атома водорода $(n = 1)$ располагается на этой орбитали и неспарен. По этому его электронная формула , или электронная конфигурация , записывается так: $1s^1$. В электронных формулах номер энергетического уровня обозначается цифрой, стоящей перед буквой $(1…)$, латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа сверху от буквы (как показатель степени), показывает число электронов на подуровне.

Для атома гелия Не, имеющего два спаренных электрона на одной $s-$орбитали, эта формула: $1s^2$. Электронная оболочка атома гелия завершена и очень устойчива. Гелий - это благородный газ. На втором энергетическом уровне $(n = 2)$ имеются четыре орбитали, одна $s$ и три $р$. Электроны $s$-орбитали второго уровня ($2s$-орбитали) обладают более высокой энергией, т.к. находятся на большем расстоянии от ядра, чем электроны $1s$-орбитали $(n = 2)$. Вообще для каждого значения $n$ существует одна $s-$орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения $n$.$s-$Орбиталь, как вы уже знаете, имеет сферическую форму. Электрон атома водорода $(n = 1)$ располагается на этой орбитали и неспарен. По этому его электронная формула, или электронная конфигурация, записывается так: $1s^1$. В электронных формулах номер энергетического уровня обозначается цифрой, стоящей перед буквой $(1…)$, латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа сверху от буквы (как показатель степени), показывает число электронов на подуровне.

Для атома гелия $Не$, имеющего два спаренных электрона на одной $s-$орбитали, эта формула: $1s^2$. Электронная оболочка атома гелия завершена и очень устойчива. Гелий - это благородный газ. На втором энергетическом уровне $(n = 2)$ имеются четыре орбитали, одна $s$ и три $р$. Электроны $s-$орбитали второго уровня ($2s$-орбитали) обладают более высокой энергией, т.к. находятся на большем расстоянии от ядра, чем электроны $1s$-орбитали $(n = 2)$. Вообще для каждого значения $n$ существует одна $s-$орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения $n$.

$р-$Орбиталь имеет форму гантели, или объемной восьмерки. Все три $р$-орбитали расположены в атоме взаимно перпендикулярно вдоль пространственных координат, проведенных через ядро атома. Следует подчеркнуть еще раз, что каждый энергетический уровень (электронный слой), начиная с $n= 2$, имеет три $р$-орбитали. С увеличением значения $n$ электроны занимают $р$-орбитали, расположенные на больших расстояниях от ядра и направленные по осям $x, y, z$.

У элементов второго периода $(n = 2)$ заполняется сначала одна $s$-орбиталь, а затем три $р$-орбитали; электронная формула $Li: 1s^{2}2s^{1}$. Электрон $2s^1$ слабее связан с ядром атома, поэтому атом лития может легко отдавать его (как вы, очевидно, помните, этот процесс называется окислением), превращаясь в ион лития $Li^+$.

В атоме бериллия Be четвертый электрон также размещается на $2s$-орбитали: $1s^{2}2s^{2}$. Два внешних электрона атома бериллия легко отрываются - $В^0$ при этом окисляется в катион $Ве^{2+}$.

У атома бора пятый электрон занимает $2р$-орбиталь: $1s^{2}2s^{2}2p^{1}$. Далее у атомов $C, N, O, F$ идет заполнение $2р$-орбиталей, которое заканчивается у благородного газа неона: $1s^{2}2s^{2}2p^{6}$.

У элементов третьего периода заполняются соответственно $3s-$ и $3р$-орбитали. Пять $d$-орбиталей третьего уровня при этом остаются свободными:

$↙{11}Na 1s^{2}2s^{2}2p^{6}3s^{1}$,

$↙{17}Cl 1s^{2}2s^{2}2p^{6}3s^{2}3p^{5}$,

$↙{18}Ar 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}$.

Иногда в схемах, изображающих распределение электронов в атомах, указывают только число электронов на каждом энергетическом уровне, т.е. записывают сокращенные электронные формулы атомов химических элементов, в отличие от приведенных выше полных электронных формул, например:

$↙{11}Na 2, 8, 1;$ $↙{17}Cl 2, 8, 7;$ $↙{18}Ar 2, 8, 8$.

У элементов больших периодов (четвертого и пятого) первые два электрона занимают соответственно $4s-$ и $5s$-орбитали: $↙{19}K 2, 8, 8, 1;$ $↙{38}Sr 2, 8, 18, 8, 2$. Начиная с третьего элемента каждого большого периода, последующие десять электронов поступят на предыдущие $3d-$ и $4d-$орбитали соответственно (у элементов побочных подгрупп): $↙{23}V 2, 8, 11, 2;$ $↙{26}Fr 2, 8, 14, 2;$ $↙{40}Zr 2, 8, 18, 10, 2;$ $↙{43}Tc 2, 8, 18, 13, 2$. Как правило, когда будет заполнен предыдущий $d$-подуровень, начнет заполняться внешний (соответственно $4р-$ и $5р-$) $р-$подуровень: $↙{33}As 2, 8, 18, 5;$ $↙{52}Te 2, 8, 18, 18, 6$.

У элементов больших периодов - шестого и незавершенного седьмого - электронные уровни и подуровни заполняются электронами, как правило, так: первые два электрона поступают на внешний $s-$подуровень: $↙{56}Ba 2, 8, 18, 18, 8, 2;$ $↙{87}Fr 2, 8, 18, 32, 18, 8, 1$; следующий один электрон (у $La$ и $Са$) на предыдущий $d$-подуровень: $↙{57}La 2, 8, 18, 18, 9, 2$ и $↙{89}Ac 2, 8, 18, 32, 18, 9, 2$.

Затем последующие $14$ электронов поступят на третий снаружи энергетический уровень, на $4f$ и $5f$-орбитали соответственно лантоноидов и актиноидов: $↙{64}Gd 2, 8, 18, 25, 9, 2;$ $↙{92}U 2, 8, 18, 32, 21, 9, 2$.

Затем снова начнет застраиваться второй снаружи энергетический уровень ($d$-подуровень) у элементов побочных подгрупп: $↙{73}Ta 2, 8, 18, 32, 11, 2;$ $↙{104}Rf 2, 8, 18, 32, 32, 10, 2$. И, наконец, только после полного заполнения десятью электронами $d$-подуровня будет снова заполняться $р$-под уровень: $↙{86}Rn 2, 8, 18, 32, 18, 8$.

Очень часто строение электронных оболочек атомов изображают с помощью энергетических, или квантовых ячеек - записывают так называемые графические электронные формулы . Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули , согласно которому в ячейке (орбитали) может быть не более двух электронов, но с антипараллельными спинами, и правило Ф. Хунда , согласно которому электроны занимают свободные ячейки сначала по одному и имеют при этом одинаковое значение спина, и лишь затем спариваются, но спины при этом, по принципу Паули, будут уже противоположно направленными.

Атом - это электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.
Строение атомных ядер
Ядра атомов состоят из элементарных частиц двух видов: протонов (p ) и нейтронов (n ). Сумма протонов и нейтронов в ядре одного атома называется нуклонним числом :
,
где А - нуклонне число, N - число нейтронов, Z - число протонов.
Протоны имеют положительный заряд (+1), нейтроны заряда не имеют (0), электроны имеют отрицательный заряд (-1). Массы протона и нейтрона примерно одинаковы, их принимают равными 1. Масса электрона намного меньше чем масса протона, поэтому в химии ею пренебрегают, считая, что вся масса атома сосредоточена в его ядре.
Число положительно заряженных протонов в ядре равно числу отрицательно заряженных электронов, то атом в целом електронейтральний .
Атомы с одинаковым зарядом ядра составляют химический элемент .
Атомы различных элементов называются нуклидами .
Изотопы - атомы одного и того же элемента, имеющие разное нуклонне число вследствие разного количества нейтронов в ядре.
Изотопы Водорода
Название A Z N
Протий Н 1 1 0
Дейтерий D 2 1 1
Тритий T 3 1 2
Радиоактивный распад
Ядра нуклидов могут распадаться с образованием ядер других элементов, а также , или других частиц.
Спонтанный распад атомов некоторых элементов называется радіоактивніст ю, а такие вещества - радиоактивным и. Радиоактивность сопровождается испусканием элементарных частиц и электромагнитных волн - излучение г.
Уравнение ядерного распада - ядерные реакции - записываются следующим образом:

Время, за которое распаду подвергается половина атомов данного нуклида, называется периодом полураспада .
Элементы, состоящие только из радиоактивных изотопов, называются радиоактивным ы. Это элементы 61 и 84-107.
Виды радиоактивного распада
1) -розпа д. Излучаются -частицы, т.е. ядра атома Гелия . При этом нуклонне число изотопа уменьшается на 4, а заряд ядра-на 2 единицы, например:

2) -розпа д.В неустойчивом ядре нейтрон превращается в протон, при этом ядро испускает электроны и антинейтрино. Во время -распада нуклонне число не изменяется, а заряд ядра увеличивается на 1, например:

3) -розпа д. Возбужденное ядро испускает лучи с очень малой длиной волны, при этом энергия ядра уменьшается, нуклонне число и заряд ядра не изменяются, например:
Строение электронных оболочек атомов элементов первых трех периодов
Электрон имеет двойственную природу: он может вести себя и как частица, и как волна. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части вокруг ядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятно нахождение электрона, называется орбіталл ю.
Каждый электрон в атоме находится на определенном расстоянии от ядра согласно запаса его энергии. Электроны с более-менее одинаковой энергией формируют энергетические рівн и, или электронные слой и.
Число заполненных электронами энергетических уровней в атоме данного элемента равно номеру периода, в котором он расположен.
Число электронов на внешнем энергетическом уровне равно номеру группы, в которой расположен данный элемент.
В пределах одного энергетического уровня электроны могут отличаться формой электронной облаков и, или орбитал и. Существуют такие формы орбиталей:
s -форма:
p -форма:
Существуют также d -, f -орбитали и другие, с более сложной формой.
Электроны с одинаковой формой электронного облака образуют одноименные энергетические підрівн и:s -, p -, d -, f -подуровни.
Количество подуровней на каждом энергетическом уровне равно номеру этого уровня.
В пределах одного энергетического подуровня возможен различный распределение орбиталей в пространстве. Так, в трехмерной системе координат для s -орбитали возможно только одно положение:

для р -орбитали - три:

для d -орбитали - пять, для f -орбитали - семь.
Орбитали изображают:
s -подуровень -
p -подуровень -
d -подуровень -
Электрон на схемах обозначается стрелкой, которая указывает его спин. Под спином понимают вращения электрона вокруг своей оси. Он обозначается стрелкой: или . Два электрона на одной орбитали записываются , но не .
Более двух электронов на одной орбитали находиться не может (принцип Паули ).
Принцип наименьшего энерги й: в атоме каждый электрон располагается так, чтобы его энергия была минимальной (что соответствует его крупнейшем связи с ядром) .
Например, распределение электронов в атоме Хлора в:

Один неспаренный электрон определяет валентность Хлора в таком состоянии - I.
Во время получения дополнительной энергии (облучение, нагревание) возможно розпарування электронов (промотирования). Такое состояние атома называется збуджени м. При этом количество неспаренных электронов увеличивается и, соответственно, меняется валентность атома.
Возбужденное состояние атома Хлор в:

Соответственно к числу неспаренных электронов Хлор может иметь валентность III, V и VII.