Генотип и фенотип примеры. Генетические факторы, оказывающие влияние на формирование фенотипа

Генотип - это совокупность всех генов организма, являющихся его наследственной основой.

Фенотип - совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.

Каждый биологический вид имеет свойственный только ему фенотип. Он формируется в соответствии с наследственной информацией, заложенной в генах. Однако в зависимости от изменений внешней среды состояние признаков варьирует от организма к организму, в результате чего возникают индивидуальные различия - изменчивость.

На основе изменчивости организмов появляется генетическое разнообразие форм. Различают изменчивость модификационную, или фенотипическую, и генетическую, или мутационную.

Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Модификационная изменчивость проявляется в количественных и качественных отклонениях от исходной нормы, которые не передаются по наследству, а носят лишь приспособительный характер, например, усиление пигментации кожи человека под действием ультрафиолетовых лучей или развития мышечной системы под действием физических упражнений и т. д.

Степень варьирования признака у организма, то есть пределы модификационной изменчивости называются нормой реакции. Таким образом, фенотип формируется в результате взаимодействия генотипа и факторов среды, Фенотипические признаки не передаются от родителей к потомкам, наследуется лишь норма реакции, то есть характер реагирования на изменение окружающих условий.

Генетическая изменчивость бывает комбинативной и мутационной.

Комбинативная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, что приводит к образованию новых объединений генов в генотипе. Возникает в результате трех процессов: 1) независимого расхождения хромосом в процессе мейоза; 2) случайного соединения их при оплодотворении; 3) обмена участками гомологичных хромосом или конъюгации. .

Мутационная изменчивость (мутации). Мутациями называют скачкообразные и устойчивые изменения единиц наследственности - генов, влекущие за собой изменения наследственных признаков. Они обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.

Существуют хромосомные и генные мутации. Хромосомные мутации связаны с изменением структуры хромосом. Это может быть изменение числа хромосом кратное или не кратное гаплоидному набору (у растений - полиплоидия, у человека - гетероплоидия). Примером гетероплоидии у человека может быть синдром Дауна (одна лишняя хромосома и в кариотипе 47 хромосом), синдром Шерешевского — Тернера (отсутствует одна Х-хромосома, 45). Такие отклонения в кариотипе человека сопровождаются расстройством здоровья, нарушение психики и телосложения, снижением жизнеспособности и др.

Генные мутации - затрагивают структуру самого гена и влекут за собой изменение свойств организма (гемофилия, дальтонизм, альбинизм и др.). Генные мутации возникают как в соматических, так и в половых клетках.

Мутации, возникающие в половых клетках, передаются по наследству. Их называют генеративными мутациями. Изменения в соматических клетках вызывают соматические мутации, распространяющиеся на ту часть тела, которая развивается из изменившейся клетки. Для видов, размножающихся половым путем, они не имеют существенного значения, для вегетативного размножения растений они важны.

Организмов в фенотипе проявляются доминантные гены .

Фенотип - совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).

Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределённости. Во-первых, большинство молекул и структур, ируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека . Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретённое поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу , плотину бобров также как и их резцы можно считать фенотипом генов бобра .

Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, - мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа , тем он богаче. Если сравнить вирус , бактерию , аскариду , лягушку и человека , то богатство фенотипа в этом ряду растет.

Генетические факторы, оказывающие влияние на формирование фенотипа [ | ]

История любого фенотипа, сохраненного длительным отбором, - это цепь последовательных испытаний его носителей на способность воспроизводить самих себя в условиях непрерывного изменения пространства вариаций их геномов. ...
... Не изменения генотипа определяют эволюцию и её направление. Наоборот, эволюция организма определяет изменение его генотипа.

- Шмальгаузен И. И. Организм как целое в индивидуальном и историческом развитии. Избранные труды.. - М. : Наука, 1982.

К этим факторам относятся взаимодействие генов из одной (доминирование , рецессивность , неполное доминирование , оминирование) и разных (доминантный и рецессивный эпистаз , гипостаз , комплементарность) аллелей, множественные аллели , плейотропное действие гена, доза гена.

Историческая справка [ | ]

Термин фенотип предложил датский учёный Вильгельм Иогансен в 1909 году вместе с концепцией генотипа , чтобы различать наследственность организма от того, что получается в результате её реализации . Идею о различии носителей наследственности от результата их действия можно проследить уже в работах Грегора Менделя (1865) и Августа Вейсмана . Последний различал (в многоклеточных организмах) репродуктивные и соматические клетки.

Фенотипическая дисперсия [ | ]

Фенотипическая дисперсия (определяемая генотипической дисперсией) является основной предпосылкой для естественного отбора и эволюции . Организм как целое оставляет (или не оставляет) потомство, поэтому естественный отбор влияет на генетическую структуру популяции опосредованно через вклады фенотипов. Без различных фенотипов нет эволюции. При этом рецессивные аллели не всегда отражаются в признаках фенотипа, но сохраняются и могут быть переданы потомству.

Фенотип и онтогенез [ | ]

Факторы, от которых зависит фенотипическое разнообразие, генетическая программа (генотип), условия среды и частота случайных изменений (мутации), обобщены в следующей зависимости:

генотип + внешняя среда + случайные изменения → фенотип

Способность генотипа формировать в онтогенезе , в зависимости от условий среды, разные фенотипы называют нормой реакции . Она характеризует долю участия среды в реализации признака. Чем шире норма реакции , тем больше влияние среды и тем меньше влияние генотипа в онтогенезе . Обычно чем разнообразнее условия обитания вида, тем шире у него норма реакции .

Примеры [ | ]

Иногда фенотипы в разных условиях сильно отличаются друг от друга. Так, сосны в лесу высокие и стройные, а на открытом пространстве - развесистые. Форма листьев водяного лютика зависит от того, в воде или на воздухе оказался лист. У людей все клинически определяемые признаки - рост, масса тела, цвет глаз, форма волос, группа крови и т. д. являются фенотипическими.



Добавить свою цену в базу

Комментарий

Понятия «генотип» и «фенотип» интимным образом связаны с понятиями «наследственность» и «среда», но не идентичны им. Эти понятия ввел В. Иоганнсен в 1909 г. Понятием «генотип» обозначается сумма всех генов организма, наследственная конституция организма, совокупность всех наследственных задатков данной клетки или организма, т.е. набор генов, состоящих из молекул дезоксирибонуклеино-вой кислоты (ДНК) и организованных в хромосомный ряд. Генотип организма будет результатом слияния двух гамет (яйцеклетки и оплодотворяющего ее спермия). Понятием «фенотип» обозначаются любые проявления живущего организма – его морфологические, физиологические, психологические и поведенческие особенности. Фенотипы не наследуются, а формируются в течение жизни; они – продукт чрезвычайно сложного взаимодействия генотипа и среды.

Отметим, что существуют единичные признаки, фенотип кᴏᴛᴏᴩых полностью определяется их генетическими механизмами. Примеры таких признаков – полидактилия (наличие добавочного пальца) или группа крови человека. При этом подобных признаков совсем немного, и за очень редким исключением фенотип признака определяется совместным влиянием генотипа и среды, в кᴏᴛᴏᴩой ϶ᴛᴏт генотип существует.

Для любого генотипа существует диапазон сред, в кᴏᴛᴏᴩом он может проявить себя «максимально»; среду, одинаково благоприятную для всех генотипов, найти нельзя. Дело не в «обогащённости» сред, а в их качественном разнообразии. Сред должно быть много, ᴛᴏбы у каждого генотипа была возможность найти «сʙᴏю» среду и реализоваться. Важно заметить, что однообразная среда, какой бы обогащенной она ни была, будет благоприятствовать развитию только определенных, а не всех генотипов.

Концепция нормы реакции и развитие

Популяционный подход к оценке наследуемости особенностей поведения не позволяет описывать процессы взаимодействия генотипа и среды в индивидуальном развитии. Когда в результате психогенетических исследований, проведенных, скажем, на близнецах или на приемных детях, признак относят к наследуемому, это не значит, что он наследственно детерминирован в общепринятом смысле этого слова.

Психогенетические исследования ведутся в основном на популяционном уровне. Когда на основании коррелирующего поведения у родственников популяционные генетики делают вывод о наследуемости признака, это не означает, что индивидуальное развитие данного поведения обусловлено исключительно генетическими причинами.

Высокая наследуемость свидетельствует лишь о том, что разнообразие индивидов в популяции в значительной степени связано с генотипическими различиями между ними. Имеется в виду, что процент индивидов, обладающих данным признаком в популяции потомков, может быть предсказан, исходя из знаний о родительской популяции. Однако значение показателя наследуемости ничего не говорит о последовательности событий в индивидуальном развитии признака и о том, какой конечный фенотип будет результатом развития конкретного индивида. В этом смысле признак с высокой оценкой наследуемости не является детерминированным генотипом, хотя такие интерпретации часто встречаются даже в публикациях специалистов. Это совсем разные вещи – разделить источники вариативности в популяции на генетические и средовые или искать генетические и средовые причины, лежащие в основе онтогенетического формирования конкретных фенотипов.

Даже при 100%-ной наследуемости, как она понимается в генетике поведения, есть возможность для влияния среды на формирование признака в индивидуальном развитии. Такой подход и соответствует генетическим представлениям о норме реакции. Вспомним, что наследуется не признак, а именно норма реакции.

О норме реакции в данном разделе следует поговорить особо. Во многих учебниках генетики, в школьном курсе биологии и других книгах часто под нормой реакции понимают пределы, которые генотип кладет формированию фенотипа. Такое понимание нормы реакции, на наш взгляд, менее продуктивно, чем то, которого придерживаемся мы в ходе изложения материала. Норма реакции – специфический характер реакции генотипа на изменения среды. Введение в определение нормы реакции понятия предела вполне объяснимо, поскольку в обычных стандартных условиях развития, действительно, генотипы ограничивают возможности развития фенотипов. Например, люди с хорошими генетическими задатками для развития интеллекта при прочих равных всегда будут опережать людей с плохими задатками. Считается, что среда может сдвигать конечный результат развития, но в пределах диапазона, который генетически детерминирован. Но, в действительности, это ложная посылка, поскольку мы никогда не можем быть уверены, что признак достиг максимального развития, возможного для данного генотипа.

Характер фенотипических проявлений генотипа не может быть протестирован для всех возможных сред, поскольку они неопределенно. В отношении человека мы не имеем возможности не только произвольно контролировать параметры среды, в которой происходит развитие, но часто, анализируя средовые влияния на признак, затрудняемся даже в выборе тех параметров, сведения о которых необходимо получить, особенно если речь идет о поведенческих характеристиках.

Современная психобиология развития поставляет все больше данных о значительных возможностях среды, в частости раннего опыта, в том числе эмбрионального, влиять на активность генов и структурное и функциональное формирование нервной системы. Таким образом, если в традиционной среде создается иллюзия того, что существуют пределы для формирования фенотипа, то мы не можем быть уверены, что развитие, в процессе которого генотип будет подвергаться необычным, нетрадиционным воздействиям, не приведет к возникновению таких особенностей поведения, которые в обычных условиях при данном генотипе были бы невозможны. Таким образом, более правильно считать, что пределы фенотипа непознаваемы.

Многие с интересом следят за публикациями о нетрадиционных методах воспитания младенцев, а некоторые родители испытывают их на своих детях. Кто-то пытается вырастить музыканта, начиная с внутриутробного периода, когда мать, вынашивающая ребенка, с помощью нехитрых приспособлений обеспечивает своему плоду прослушивание музыкальных произведений или сама поет колыбельные еще не родившемуся ребенку. Кто-то рожает в воде и затем плавает с новорожденным в ванне или бассейне. Кто-то увлекается динамической гимнастикой и закаливанием. Все чаще в роддомах младенца в первые минуты жизни не отлучают от матери, как это традиционно делалось раньше, а еще до перерезания пуповины кладут к ней на живот, обеспечивая столь естественный контакт матери и новорожденного.

Все эти «эксперименты» есть не что иное, как воздействие нетрадиционного (для данного периода развития общества) раннего опыта на плод и новорожденного, и эти воздействия не лишены смысла, поскольку интенсивно формирующаяся нервная система, от которой, в конечном счете, и будет зависеть наше поведение и все высшие психические функции, очень податлива к воздействиям именно в ранний период онтогенеза. Что же известно на сегодняшний день о влиянии раннего опыта, то есть среды, на развитие нервной системы и может ли эта среда влиять непосредственно на работу генетического аппарата? Иными словами, это вопрос о том, какими знаниями о процессе взаимодействия генотипа и среды в индивидуальном развитии мы располагаем.

Как среда может взаимодействовать с генотипом в процессе развития?

Понятно, что результат развития – фенотип зависит от совместного действия генов и среды. Гены и признаки связаны сложной сетью путей развития. Все индивидуальные различия, которыми занимаются дифференциальные психологи и психогенетики, являются результатом обстоятельств развития конкретных индивидов в конкретных средах. Часто индивиды, воспитанные в явно различающихся средах, имеют много общего. И наоборот, сиблинги, воспитывающиеся в одной семье, казалось бы при сходных обстоятельствах, за счет тонких различий в условиях воспитания и развития реально будут испытывать весьма различные воздействия как физической, так и социальной среды.

Таким образом, процесс взаимодействия со средой сложен и неоднозначен. Отметим также, что психологи и другие исследователи часто пользуются термином «взаимодействие» в статистическом смысле, когда исследуется взаимодействие отдельных факторов в продуцировании какого-либо измеряемого эффекта. Подчеркнем, что статистическое взаимодействие факторов и взаимодействие генов и среды в индивидуальном развитии – это совершенно разные вещи. Их не следует путать.

Для нас вполне привычной является формулировка, в которой утверждается, что проявление фенотипа является результатом взаимодействия генотипа со средой в процессе развития. Однако если вдуматься в это утверждение, оно не покажется столь очевидным. Ведь взаимодействие предполагает, что его участники вступают в контакт, соприкасаются. На самом деле наш генотип, то есть генетический аппарат, спрятан глубоко внутри клетки и отделен от внешней среды не только покровами тела, но и клеточной и ядерной оболочками. Как же внешняя среда может взаимодействовать с генетическими структурами?

Ясно, что гены и окружающий мир непосредственно не соприкасаются. С внешней средой взаимодействует организм в целом; гены же взаимодействуют с различными биохимическими субстанциями внутри клетки. А вот различные клеточные субстанции могут испытывать влияние внешнего мира. Рассмотрим, что известно об этих процессах сегодняшней науке. Для этого снова придется обратиться к молекулярной генетике и более подробно рассмотреть, как функционируют гены, поскольку в предыдущем изложении мы лишь констатировали, что главной функцией гена является кодирование информации, необходимой для синтеза специфического белка.

Случайности развития

Вариабельность феноменов развития зависит от многих причин. Наследственность имеет тенденцию уменьшать вариабельность развития, тогда как условия, не связанные с наследственностью, имеют тенденцию ее повышать. Некоторые исследователи развития выделяют четыре типа случайных факторов, которые влияют на вариабельность развития:

  • случайности в подборе родительских пар, гены которых слагают генотип индивида;
  • случайности эпигенетических (то есть внешних по отношению к генотипу) процессов в пределах индивидуального онтогенеза;
  • случайности материнской среды, в которой развивается индивид;
  • случайности нематеринской среды, в которой развивается индивид.

Хотя это и случайные события, однако, все они имеют элемент наследственности. Генотип наследуется от родителей, и у потомка с родителями имеются общие гены, которые влияют на ход индивидуального развития. Эпигенетические процессы внутри организма представляют собой влияния других клеток или их продуктов на активность генотипа данной клетки. Поскольку все клетки организма имеют один и тот же генотип, естественно, что эпигенетические влияния связаны с наследственностью. Однако эпигенетические процессы являются стохастическими, открытыми влиянию факторов среды организма и, следовательно, любым историческим случайностям.

Материнская среда млекопитающих является очень важным элементом внешней среды. Матери обеспечивают внутриутробную и постнатальную (уход за младенцем и воспитание) среду ребенка. Понятно, что на эти условия действует генотип матери. Частично же гены матери являются общими с потомком, поэтому материнская среда может наследоваться. Материнская среда также чувствительна к историческим случайностям.

Нематеринские средовые эффекты также влияют на вариабельность развития. Сюда входят факторы, которые выбираются самим индивидом или формируются окружающими людьми, в том числе родственниками, с которыми у него имеются общие гены. Поэтому и эти средовые эффекты в какой-то мере также находятся не только под влиянием случайных средовых событий, но и под влиянием генов, и также наследуются (генотип-средовая ковариация).

Таким образом, в соответствии с приведенной классификацией во всех описанных элементах внешней по отношению к данному индивиду среды имеются механизмы для наследования как генетического, так и негенетического (различные традиции и т.п.).

Естественно, на развитие действуют и ненаследуемые факторы. Это те особенности среды, которые не связаны с изменениями, вызываемыми самим развивающимся индивидом или его родственным окружением. Они могут быть как случайными, так и закономерными. К закономерным можно отнести циклические изменения (смена дня и ночи, смена времен года и т.п.), повсеместные воздействия (гравитация) или предсказуемые факторы (температура, давление). Ненаследуемые факторы присутствуют также в материнской и другой социальной среде (качество питания матери, уровень стресса матери, число и пол сиблингов и др.). Случайно или систематически изменяющиеся средовые события способствуют вариативности развития.

Все внешние по отношению к генам события, которые имеют место в процессе онтогенеза, в совокупности с генетическими факторами создают тот фон, на котором протекает развитие. Благодаря воздействию огромного разнообразия закономерных и случайных событий в онтогенезе, развивающиеся системы могут организовываться и реорганизовываться. Гены делают развитие возможным, но и другие компоненты, влияющие на развитие системы, являются не менее важными участниками процесса развития.

В начале изложения, определяя понятие фенотипа, мы подчеркивали, что фенотип является результатом взаимодействия генотипа и среды, однако в свете того, что было сказано о процессе индивидуального развития, мы должны внести некоторое уточнение в эту формулировку и, наряду с факторами среды, упомянуть о случайностях развития, которые не могут быть сведены к чисто средовым влияниям. Если бы мы попытались графически изобразить зависимость фенотипа от различных факторов, то нам понадобилось бы по крайней мере четырехмерное пространство, в котором, помимо осей для генотипа и среды, обязательно должна была бы присутствовать и ось для случайностей развития.

Эндофенотип как промежуточный уровень между генотипом и фенотипом

Большой разброс КН разных способностей вызывает необходимость обращения к промежуточному уровню между генотипом и фенотипом. Если генотип – это сумма всех генов организма, то фенотип – это любые проявления живущего организма, «продукт реализации данного генотипа в данной среде». Между геном (генотипом) и поведением (фенотипом) нет прямого соответствия, а есть только неоднократно опосредованная связь. Фенотипически одинаковые признаки, измеренные по одной и той же методике, могут иметь разную психологическую структуру в зависимости от возраста и индивидуальных особенностей индивида и соответственно могут быть связанными с разными генами. Наличие, отсутствие, степень выраженности одного фенотипического признака определяются многими генами, результат действия которых зависит не только от имеющихся вариантов генов, но и от множества других факторов. «Непосредственное биохимическое проявление гена и его влияние на психологические особенности разделены «горным хребтом» промежуточных биомолекулярных событий». Поэтому одним из способов, облегчающих прослеживание пути от генов к поведению, стало нахождение эндофенотипов – промежу- точных звеньев, опосредующих влияние генотипа на фенотипические переменные.

Понятие эндофенотипа, введенное И. Готтесманом в 1972 г. при изучении психических расстройств, получило широкое распространение и при анализе психологических и психофизиологических характеристик.

Признак, или показатель, может быть признан эндофенотипом когнитивных способностей, если он удовлетворяет следующим критериям:

  1. он устойчив и надежно определяется;
  2. выявлена его генетическая обусловленность;
  3. он коррелирует с изучаемой когнитивной способностью (фенотипическая корреляция);
  4. связь между ним и когнитивной способностью частично выводится из общих генетических источников (генетическая корреляция). А если ставится задача прослеживания биологического пути от генов к когнитивной способности, то важно выполнение еще одного критерия;
  5. наличие теоретически осмысленной (в том числе причинной) связи между показателем и когнитивной способностью.

В качестве эндофенотипов интеллекта принято рассматривать частные когнитивные характеристики или индивидуальные особенности функционирования мозга, его анатомии и физиологии.

Из частных когнитивных характеристик используется время реакции выбора. Известно, что индивидуальные различия во времени реакции выбора объясняют около 20% дисперсии значений интеллекта. Было установлено, что связи между временем реакции выбора и значениями вербального и невербального интеллекта объясняются генетическими факторами: обнаружено 22 и 10% общих генов соответственно. Предполагается, что среди общих генов есть отвечающие за миелинизацию аксонов ЦНС (как известно, покрытый миелиновой оболочкой аксон проводит нервный импульс быстрее). К частным когнитивным характеристикам, рассматриваемым в качестве эндофенотипов интеллекта, относится и рабочая память. Однако отметим, что ни время реакции выбора, ни рабочая память, ни другие психологические параметры, важные для понимания природы интеллектуальных различий, все же не раскрывают путь от генотипа к интеллекту через устройство и функционирование мозга, поскольку не являются непосредственными показателями работы мозга. Кроме того, при использовании этих показателей мы вновь сталкиваемся с упомянутой выше высокой чувствительностью КН к изменению условий эксперимента.

Возможными эндофенотипами считают также параметры функционирования мозга на разных уровнях физиологии, морфологии и биохимии мозга, включая структурные белки, ферменты, гормоны, метаболиты и т.п. Исследуются ЭЭГ, скорость проведения нервных импульсов, степень миелинизации нервных волокон и т.д. Было показано, что с интеллектом коррелирует скорость периферической нервной проводимости (СПНП), размеры мозга. В качестве промежуточных фенотипов интеллекта исследовались амплитудно-временные и топографические характеристики вызванных потенциалов. Однако теоретические обоснования связей этих характеристик с интеллектом, как правило, не вскрывают специфики интеллектуальных способностей. Так, размер мозга соотносится с толщиной миелиновой оболочки, которая может хуже или лучше защищать клетки от влияния соседних нейронов, что, как утверждается, влияет на интеллект. СПНП определяет количественные характеристики трансмиссии белков, а ее ограничение приводит к ограничению скорости переработки информации, что ведет к снижению показателей интеллекта.

Установлена связь общего фактора интеллекта (g фактора) с количеством серого вещества. Еще один возможный эндофенотип когнитивных способностей – специфическое расположение структур мозга. Выявляется, что КН структурных характеристик мозга очень высок, особенно во фронтальных, ассоциативных и традиционно речевых зонах (Вернике и Брока). Так, в области срединных лобных структур можно достоверно говорить о КН порядка 0.90–0.95.

Однако эндофенотипы, непосредственно отражающие морфофункциональные характеристики мозга, не учитывают способность к планированию деятельности, применяемые стратегии и другие особенности, существенно влияющие на успешность и скорость решения задач, т.е. не учитывают психологическую организацию исследуемого фенотипа (когнитивных способностей). Между эндофенотипами такого рода и интеллектом существует опосредованная связь: эндофенотипы отражают далекий от интеллекта уровень анализа и поэтому не дают целостного представления о пути формирования интеллектуальных функций.

Е. Де Геус с соавторами считают весьма продуктивным использование в качестве эндофенотипов (помимо специальных когнитивных способностей) нейрофизиологических характеристик и результатов непосредственного измерения мозговых структур и их функционирования с помощью ЭЭГ, МРТ и др.

Однако использование нейрофизиологических показателей в исследованиях по генетике поведения приводит к необходимости адаптации методов нейронауки к требованиям психогенетики. Проблема заключается в том, как пишут Р. Пломин и С. Кослин, что нейронауку интересуют в первую очередь общие закономерности, вследствие чего данные, как правило, усредняются и анализируются только средние значения. Психогенетику, напротив, интересует разброс индивидуальных показателей, который в ряде методов нейронауки отражает не только индивидуальные особенности, но и недостаточную точность аппаратуры. Это создает существенные трудности в получении достоверных данных. Кроме того, техническая сложность этих методов не позволяет исследовать достаточно большие выборки, необходимые для психогенетического анализа.

Выводы

  1. Исследования развития в психогенетике ведутся на популяционном уровне; получаемые в результате количественные соотношения генетических и средовых компонент изменчивости неприложимы к развитию конкретного фенотипа. Необходимо помнить, что взаимовлияния генотипа и среды в индивидуальном развитии неразделимы.
  2. Формирование фенотипа в развитии происходит при непрерывном взаимодействии генотипа и среды. Факторы внешней среды (физические, социальные) могут влиять на генотип через факторы внутренней среды организма (различные биохимические субстанции внутри клетки).
  3. Основным механизмом взаимодействия генотипа и среды на уровне клетки является регуляция экспрессии гена, проявляющейся в разной активности синтеза специфического белка. Большая часть процессов регуляции происходит на уровне транскрипции, то есть касается процессов считывания генетической информации, необходимой для синтеза белка.
  4. Среди всех органов тела мозг занимает первое место по количеству активных генов. По некоторым оценкам почти каждый второй ген в геноме человека связан с обеспечением функций нервной системы.
  5. Ранний опыт имеет значительные возможности влиять на работу генетического аппарата. Особая роль здесь принадлежит так называемым ранним генам, которые способны к быстрой, но преходящей экспрессии в ответ на сигналы из внешней среды. По всей видимости, ранние гены играют значительную роль в процессах обучения. Значительные возможности регуляции экспрессии генов связаны также с действием различных гормонов.
  6. Развитие нервной системы и, в конечном счете, поведения представляет собой динамический иерархически организованный системный процесс, в котором в равной степени важны генетические и средовые факторы. Немаловажную роль играют также различные случайности развития, которые не могут быть сведены к чисто средовым.
  7. Развитие представляет собой эпигенетический процесс, приводящий к формированию значительной межиндивидуальной вариабельности даже у изогенных организмов. Основным принципом морфогенеза нервной системы является возникновение максимальной избыточности клеточных элементов и их связей на ранних этапах развития, с последующей элиминацией функционально нестабильных элементов в процессе реципрокного взаимодействия между всеми уровнями развивающейся системы, включая взаимодействия внутри клетки, между клетками и тканями, между организмом и средой.
  8. Процесс формирования фенотипа в развитии носит непрерывный диалектический и исторический характер. На любом этапе онтогенеза характер реакции организма на воздействие среды определяется как генотипом, так и историей всех обстоятельств развития.

Генетика не раз поражала нас своими достижениями в области изучения генома человека и других живых организмов. Простейшие манипуляции и вычисления не обходятся без общепринятых понятий и знаков, которыми не обделена и эта наука.

Что такое генотипы?

Под термином понимают совокупность генов одного организма, которые хранятся в хромосомах каждой его клетки. Понятие генотипа следует отличать от генома, т. к. оба слова несут различный лексический смысл. Так, геном представляет собой абсолютно все гены данного вида (геном человека, геном обезьяны, геном кролика).

Как формируется генотип человека?

Что такое генотип в биологии? Изначально предполагали, что набор генов каждой клетки организма отличается. Такая идея была опровергнута с того момента, как ученые раскрыли механизм образования зиготы из двух гамет: мужской и женской. Так как любой живой организм образуется из зиготы путем многочисленных делений, нетрудно догадаться, что все последующие клетки будут иметь абсолютно одинаковый набор генов.

Однако следует отличать генотип родителей от такового у ребенка. Зародыш в утробе матери имеет по половине набора генов от мамы и от папы, поэтому дети хоть и похожи на своих родителей, но в то же время не являются их 100% копиями.

Что такое генотип и фенотип? В чем их отличие?

Фенотип - это совокупность всех внешних и внутренних признаков организма. Примерами могут служить цвет волос, наличие веснушек, рост, группа крови, количество гемоглобина, синтез или отсутствие фермента.

Однако фенотип не является чем-то определенным и постоянным. Если наблюдать за зайцами, то окраска их шерсти меняется в зависимости от сезона: летом они серые, а зимой белые.

Важно понимать, что набор генов всегда постоянный, а фенотип может варьироваться. Если принять во внимание жизнедеятельность каждой отдельной клетки организма, любая из них несет абсолютно одинаковый генотип. Однако в одной синтезируется инсулин, в другой кератин, в третьей актин. Каждая не похожа друг на друга по форме и размерам, функциям. Это и называется фенотипическим проявлением. Вот что такое генотипы и в чем проявляются их отличия от фенотипа.

Данный феномен объясняется тем, что при дифференцировке клеток зародыша одни гены включаются в работу, а другие находятся в “спящем режиме”. Последние либо всю жизнь остаются неактивными, либо вновь используются клеткой в стрессовых ситуациях.

Примеры записи генотипов

На практике изучение проводится с помощью условной шифровки генов. Например, ген карих глаз записывают большой буквой «А», а проявление голубых глаз - маленькой буквой «а». Так показывают, что признак кареглазости доминантный, а голубой цвет - это рецессив.

Так, по признаку люди могут быть:

  • доминантными гомозиготами (АА, кареглазые);
  • гетерозиготами (Аа, кареглазые);
  • рецессивными гомозиготами (аа, голубоглазые).

По такому принципу изучают взаимодействие генов между собой, причем обычно используют сразу несколько пар генов. Отсюда возникает вопрос: что такое 3 генотип (4/5/6 и т. д.)?

Такое словосочетание означает, что берутся сразу три пары генов. Запись будет, например, такой: АаВВСс. Здесь появляются новые гены, которые отвечают за совершенно другие признаки (например, прямые волосы и кудряшки, наличие белка или его отсутствие).

Почему типичная запись генотипа условна?

Любой ген, открытый учеными, носит определенное название. Чаще всего это английские термины или словосочетания, которые в длину могут достигать немалых размеров. Орфография названий сложна для представителей зарубежной науки, поэтому ученые ввели более простую запись генов.

Даже учащийся старшей школы иногда может знать, что такое генотип 3а. Такая запись означает, что за ген отвечают 3 аллели одного и того же гена. При использовании настоящего названия гена понимание принципов наследственности могло бы быть затруднено.

Если речь идет о лабораториях, где проводятся серьезные исследования кариотипа и изучение ДНК, то там прибегают к официальным названиям генов. Особенно это актуально для тех ученых, которые публикуют результаты своих исследований.

Где применяются генотипы

Еще одна положительная черта использования простых обозначений - это универсальность. Тысячи генов имеют свое уникальное название, однако каждый из них можно представить одной лишь буквой латинского алфавита. В подавляющем большинстве случаев при решении генетических задач на разные признаки буквы повторяются вновь и вновь, при этом каждый раз расшифровывается значение. Например, в одной задаче ген B - это черный цвет волос, а в другой - это наличие родинки.

Вопрос “что такое генотипы” поднимается не только на занятиях по биологии. На самом деле условность обозначений обусловливает нечеткость формулировок и терминов в науке. Грубо говоря, использование генотипов - это математическая модель. В реальной жизни все сложнее, несмотря на то, что общий принцип все-таки удалось перенести на бумагу.

По большому счету генотипы в таком виде, в котором мы их знаем, применяются в программе школьного и вузовского обучения при решении задач. Это упрощает понимание темы “что такое генотипы” и развивает у учащихся способность к анализированию. В будущем навык использования такой записи также пригодится, однако при реальных исследованиях настоящие термины и названия генов более уместны.

В настоящее время гены изучаются в различных биологических лабораториях. Шифрование и использование генотипов актуально для медицинских консультаций, когда один или несколько признаков прослеживаются в ряде поколений. На выходе специалисты могут прогнозировать фенотипическое проявление у детей с определенной долей вероятностью (например, появление в 25% случаев блондинов или рождение 5% детей с полидактилией).

Здравствуйте, уважаемые читатели блога репетитора биологии по Скайпу .

Вот такая получается «петрушка», если не сказать хуже. Очередной раз сталкиваюсь с тем, что основополагающие понятия генетики в учебниках преподносятся так, что разобраться в них бывает трудно.

Эту статью меня так и подмывало назвать сначала «Фенотип и генотип». Понятно, что фенотип вторичен от генотипа. Но если сам термин «генотип» учащиеся чаще всего могут истолковать правильно, то относительно понятия «фенотипа», как выясняется, нет четкого представления.

Да откуда же ему быть «четкому», если определения фенотипа в учебной литературе носят такой расплывчатый характер.

«Фенотип — совокупность всех внешних признаков организма, определяемых генотипом и условиями окружающей среды». Или «Фенотип — совокупность всех внешних и внутренних признаков и свойств организма, зависящих от генотипа и условий внешней среды».

А если действительно и «внешних», и «внутренних», а это на самом деле так, то в чем тогда отличие фенотипа от генотипа?

Всё же придется начинать не с «хвоста», а с «головы». Уверен, пройдет пара минут и вы, несколько уточнив для себя, что такое «генотип организма», сможете получить более четкое представление и о «фенотипе».

Часто термины «признак» и «ген» мы используем как синонимы

Говорят, «генотип — совокупность всех признаков организма». И вот тут то важно понять самое главное — именно к определению генотипа такое определение вносит дополнительную путаницу. Да, действительно, информация о любом признаке закодирована в каком-либо гене (или совокупности генов) организма.

Но всех генов очень много, весь генотип организма огромен, а в течение жизни данной особи или отдельной клетки реализуется (то есть служит образованию каких-либо определенных признаков) лишь незначительная часть генотипа.

Поэтому правильным будет запомнить, что «генотип — совокупность всех генов организма». А уж какие из этих генов реализуются в течение жизни организма в его фенотипе , то есть послужат образованию каких-либо признаков — это зависит как от взаимодействия множества этих генов, так и от конкретных условий окружающей среды.

Таким образом, если правильно понимать, что собой представляет генотип, то не остается и лазейки для путаницы в терминах, обозначающих, что такое «генотип», а что такое «фенотип».

Понятно, что «фенотип — это совокупность всех реализовавшихся в течение жизни организма генов, послуживших образованию конкретных признаков данного организма в определенных условиях среды».

Поэтому на протяжении жизни организма, под действием меняющихся условий среды, фенотип может изменяться, хотя он и базируется на том же самом неизменном генотипе. А в каких границах может меняться фенотип?

Норма реакции

Эти границы для фенотипа четко очерчены генотипом и носят название «нормы реакции». В фенотипе ведь не может проявиться ничего того, чего бы не было уже «записано» ранее в генотипе.

Чтобы лучше понять, что вкладывается в понятие «нормы реакции», разберем на конкретных примерах возможного проявления «широкой» или «узкой» нормы реакции.

Вес (масса) коровы и удойность коровы, какой признак имеет более широкую, а какой более узкую норму реакции?

Понятно, что вес взрослой коровы определенной породы как ее хорошо ни корми не может превысить, к примеру, 900 кг, а при плохом содержании — не может быть меньше 600 кг.

А удойность? При оптимальном содержании и кормлении удойность может меняться от каких-то максимально возможных для данной породы величин, она может упасть до 0, при неблагоприятных условиях содержания. Значит масса коровы имеет довольно узкую норму реакции, а удойность — очень широкую.

Пример с картофелем. Любому очевидно, что «вершки» имеют довольно узкую норму реакции, а масса клубней — очень широкую.

Думаю, теперь всё «устаканилось». Генотип — множество всех генов организма, это весь его потенциал на что он может быть способен в жизни. А фенотип — лишь проявление небольшой части этого потенциала, реализация лишь части генов организма в ряд конкретных признаков в течение его жизни.

Наглядным примером реализации в течение жизни организма части его генотипа в фенотип, являются однояйцевые близнецы. Имея абсолютно одинаковый генотип, в первые годы жизни они почти неотличимы друг от друга фенотипически. Но взрослея, имея сначала незначительные отличия в поведении, в каких-то привязанностях, отдавая предпочтение тому или иному роду деятельности, эти близнецы становятся довольно отличимыми и фенотипически: по выражению лица, строению тела.

В конце этой заметки, я бы хотел вот на что ещё обратить ваше внимание. Слово генотип для изучающих основы генетики имеет как бы два смысла. Выше мы разобрали значение «генотипа» в широком его понимании.

Но для уяснения законов генетики, при решении генетических задач, под словом генотип подразумевают лишь сочетание каких-то конкретных отдельных аллелей одной (моногибридное скрещивание) или двух (дигибридное скрещивание) пар определенных генов, контролирующих проявление конкретного одного или двух признаков.

То есть, и фенотип то у нас при этом какой-то усеченный, говорим «фенотип организма», а сами изучили механизм наследования лишь одного, двух его признаков. В широком же смысле термин «фенотип» относится к любым морфологическим, биохимическим, физиологическим и поведенческим характеристикам организмов.

P.S. В связи с характеристиками понятий «генотип» и «фенотип», уместным было бы здесь разобрать вопрос о наследственной и ненаследственной формах изменчивости организмов. Ну да ладно, об этом как раз и поговорим в .

***************************************************************

У кого есть вопросы по статье к репетитору биологии по Скайпу , замечания, пожелания — прошу в писать комментарии.