К реакциям матричного синтеза не относится.

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.

Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.

Нуклеиновые кислоты входят в состав важнейшего органа клетки - ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима помощь для доставки закодированного плана из ядра к месту синтеза. Такую помощь оказывают молекулы РНК.

Процесс начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается.

После дальнейших изменений этот вид закодированной РНК готов.

РНК выходит из ядра и направляется к месту синтеза белка, где буквы РНК расшифровываются. Каждый набор из трех букв РНК образует «слово», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. По мере прочтения и перевода сообщения РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка.
Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все возможности укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 10 27 лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды - и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства .

На Земле живет около 7 млрд людей. Если не считать 25-30 млн пар однояйцовых близнецов, то генетически все люди разные : каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах -наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках - следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает , что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип .

Кодирование наследственной информации происходит с помощью генетического кода , который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Аминокислот 20 , а возможностей для комбинаций четырех нуклеотидов в группы по три – 64 четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот

поэтому одна аминокислота может кодироваться несколькими триплетами .

Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК , т.к. она снимает информацию с ДНК (процесс транскрипции ) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции ).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами: триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код - единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода :

1. Генетический код триплетен. Триплет (кодон) - последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 4 3 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов - 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти : каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен , т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов ).

6. Генетический код универсален , т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и-РНК и построения цепочек белковых молекул.

Реакции матричного синтеза .

В живых системах встречается реакции, неизвестные в неживой природе - реакцииматричного синтеза .

Термином "матрица " в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки - на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.

Мономерные молекулы , из которых синтезируется полимер, - нуклеотиды или аминокислоты - в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит "сшивание" мономерных звеньев в полимерную цепь , и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти "сборка" только какого-то одного полимера.

Матричный тип реакций - специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого - его способности к воспроизведению себе подобного .

К реакциям матричного синтеза относят:

1. репликацию ДНК - процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.

Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться - процесс устранения ошибок называется репарацией . Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. транскрипцию – синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.

И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. трансляцию - синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.

4 . синтез РНК или ДНК на РНК вирусов

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:

нетранскрибируемая цепь ДНК

А Т Г

Г Г Ц

Т А Т

транскрибируемая цепь ДНК

Т А Ц

Ц Ц Г

А Т А

транскрипция ДНК

кодоны мРНК

А У Г

Г Г Ц

У А У

трансляция мРНК

антикодоны тРНК

У А Ц

Ц Ц Г

А У А

аминокислоты белка

метионин

глицин

тирозин

Таким образом, биосинтез белка – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки , составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться . Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК . Каждой аминокислоте соответствует строго специфическая т-РНК , которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК . Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника – матричной или информационной РНК (м-РНК или и-РНК), которая синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план - в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок .

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет ), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном ) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка.

А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому.

В процессе синтеза белка участвует одновременно не одна, а несколько рибосом - полирибосомы.

Основные этапы передачи генетической информации:

синтез на ДНК как на матрице и-РНК (транскрипция)

синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция).

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У эукариот транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка - рибосомам. Лишь после этого наступает следующий этап - трансляция.

У прокариот транскрипция и трансляция идут одновременно.

Таким образом,

местом синтеза белков и всех ферментов в клетке являются рибосомы - это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа синтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому , что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

Тематические задания

А1. Какое из утверждений неверно?

1) генетический код универсален

2) генетический код вырожден

3) генетический код индивидуален

4) генетический код триплетен

А2. Один триплет ДНК кодирует:

1) последовательность аминокислот в белке

2) один признак организма

3) одну аминокислоту

4) несколько аминокислот

А3. «Знаки препинания» генетического кода

1) запускают синтез белка

2) прекращают синтез белка

3) кодируют определенные белки

4) кодируют группу аминокислот

А4. Если у лягушки аминокислота ВАЛИН кодируется триплетом ГУУ, то у собаки эта аминокислота может кодироваться триплетами:

1) ГУА и ГУГ

2) УУЦ и УЦА

3) ЦУЦ и ЦУА

4) УАГ и УГА

А5. Синтез белка завершается в момент

1) узнавания кодона антикодоном

2) поступления и-РНК на рибосомы

3) появления на рибосоме «знака препинания»

4) присоединения аминокислоты к т-РНК

А6. Укажите пару клеток в которой у одного человека содержится разная генетическая информация?

1) клетки печени и желудка

2) нейрон и лейкоцит

3) мышечная и костная клетки

4) клетка языка и яйцеклетка

А7. Функция и-РНК в процессе биосинтеза

1) хранение наследственной информации

2) транспорт аминокислот на рибосомы

3) передача информации на рибосомы

4) ускорение процесса биосинтеза

А8. Антикодон т-РНК состоит из нуклеотидов УЦГ. Какой триплет ДНК ему комплементарен?

Репликация

Процесс редупликации ДНК идет в ядре под действием ферментов и специальных белковых комплексов. Принципы удвоения ДНК:

  • * Антипараллельность : дочерняя цепь синтезируется в направлении от 5" к 3" концу.
  • * Комплиментарность : строение дочерней нити ДНК определяется последовательностью нуклеотидов материнской нити, подбираются по принципу комплиментарности.
  • * Полунепрерывность : одна из двух цепей ДНК - лидирующая , синтезируется непрерывно, а другая - запаздывающая , прерывисто с образованием коротких фрагментов Оказаки . Это происходит из-за свойства антипараллельности.
  • * Полуконсервативность : молекулы ДНК, полученные в ходе редупликации, содержат одну консервативную материнскую нить и одну синтезированную дочернюю.
  • 1) Инициация

Начинается с репликативной точки , к которой присоединяются белки, инициирующие репликацию. Под действием ферментов ДНК-топоизомеразы и ДНК-геликазы цепь раскручивается, и разрываются водородные связи. Далее идет фрагментарное разъединение двойной цепи ДНК с образованием репликационной вилки . Ферменты предотвращают повторное соединение цепей ДНК.

2) Элонгация

Синтез дочерней цепи ДНК идет за счет фермента ДНК-полимеразы , который движется в направлении 5" 3" , подбирая нуклеотиды по принципу комплиментарности. Лидирующая цепь синтезируется непрерывно, а запаздывающая - прерывисто. Фермент ДНК-лигаза соединяет между собой фрагменты Оказаки . Специальные корректирующие белки распознают ошибки и устраняют неправильные нуклеотиды.

3) Терминация

Окончание репликации происходит, если встречаются две репликационные вилки. Белковые компоненты снимаются, молекулы ДНК спирализуются.

Свойства генетического кода

  • * Триплетен - каждую аминокислоту кодирует код из 3 нуклеотидов.
  • * Однозначен - каждый триплет кодирует лишь определенную кислоту.
  • * Вырожден - каждая аминокислота кодируется несколькими триплетами (2-6). Лишь две из них кодируются одним триплетом: триптофан и метионин.
  • * Неперекрываем - каждый кодон является самостоятельной единицей, а генетическая инф считывается только одним способом в одном направлении
  • * Универсален - един для всех организмов. Одни и те же триплеты кодируют одни и те же аминокислоты у разных организмов.

Генетический код

Реализация наследственной информации идет по схеме ген-белок-признак.

Ген - участок молекулы ДНК, который несет информацию о первичной структуре одной молекулы белка и отвечает за ее синтез.

Генетический код - принцип кодирования наследственной инф в клетке. Представляет собой последовательность триплетов нуклеотидов в НК, которая задает определенный порядок аминокислот в белках. Инфа, заключенная в линейной последовательности нуклеотидов, используется для создания другой последовательности.

Из 4 нуклеотидов можно составить 64 триплета , 61 из которых кодируют аминокислоты. Стоп-кодоны - триплеты УАА, УАГ, УГА прекращают синтез полипептидной цепи.

Старт-кодон - триплет АУГ определяет начало синтеза полипептидной цепи.

Биосинтез белка

Один из основных процессов пластического обмена веществ. Часть реакций протекает в ядре, другая - в цитоплазме. Необходимые компоненты: АТФ, ДНК, и-РНК, т-РНК, р-РНК, Mg 2+ , аминокислоты, ферменты. Состоит из 3 х процессов:

  • - транскрипция : синтез иРНК
  • - процессинг : превращение иРНК в мРНК
  • - трансляция : синтез белка

ДНК содержит информацию о структуре белка в виде последовательности аминокислот, но поскольку гены не покидают ядра, то непосредственного участия в биосинтезе белковой молекулы не принимают. И-РНК синтезируется в ядре клетки по ДНК и переносит инф от ДНК к месту синтеза белка (рибосомам). Затем, с помощью т-РНК из цитоплазмы выбираются комплиментарные и-РНК аминокслоты. Таким образом синтезируются полипептидые цепи.

Транскрипция

1) Инициация

Синтез молекул иРНК по ДНК может протекать в ядре, митохондриях и пластидах. Под действием ферментов ДНК-геликазы и ДНК-топоизомеразы участок молекулы ДНК раскручивается , разрываются водородные связи. Считывание информации идет только с одной нити ДНК, которая называется кодирующей кодогенной . Фермент РНК-полимераза соединяется с промотером - зоной ДНК, которая содержит старт-сигнал ТАТА.

2) Элонгация

Процесс выстраивания нуклеотидов по принципу комплиментарности . РНК-полимераза продвигается по кодирующей цепи и соединяет между собой нуклеотиды, образуя полинуклеотидную цепь. Процесс продолжается до стоп-кодона .

3) Терминация

Окончание синтеза: фермент и синтезированная молекула РНК отделяеются от ДНК, двойная спираль ДНК восстанавливается.

Процессинг

Превращение молекулы иРНК в мРНК в ходе сплайсинга в ядре под действием ферментов. Идет удаление интронов -участков, не несущих инф об аминокислотной последовательности и сшивание экзонов - участков, кодирующих последовательность аминокислот. Далее идет присоединение стоп-кодона АУГ, кэпирование для 5" конца и полиаденилирование для защиты 3" конца. Образуется зрелая м-РНК, она короче и идет к рибосомам.

Трансляция

Процесс перевода нуклеотидной последовательности триплетов м-РНК в аминокислотную последовательность полипептидной цепи. Идет в цитоплазме на рибосомах.

1) Инициация

Синтезированная мРНК через ядерные поры идет в цитоплазму, где с помощью ферментов и энергии АТФ соединяется с малой субъединицей рибосом. Затем инициаторная тРНК с аминокислотой метианин соединяется с пептидильным центром. Далее в присутствии Mg 2+ идет присоединение большой субъединицы.

2) Элонгация

Удлинение белковой цепи. Аминокислоты с помощью собственной тРНК доставляются к рибосомам. По форме молекулы т-РНК напоминают трилистник, на среднем из которых имеется антикодон , комплиментарный нуклеотидам кодона м-РНК. К противоположному основанию молекулы тРНК присоединяется соответствующая аминокислота.

Первая т-РНК закрепляется в пептидильном центре, а вторая - в аминоациальном . Затем аминокислоты сближаются и между ними образуется пептидная связь, возникает дипептид, первая т-РНК уходит в цитоплазму. После этого, рибосома делает 1 трехнуклеотидный шаг по м-РНК. В результате чего, вторая т-РНК оказывается в пептидильном центре, освобождая аминоацильный. Процесс присоединения аминокислокты идет с затратой энергии АТФ и требует наличия фермента аминоацил-т-РНК-синтетаза .

3) Терминация

Когда в аминоациальный центр попадает стоп-кодон, синтез завершается, и к последней аминокислоте присоединяется вода. Рибосома снимается с м-РНК и распадается на 2 субъединицы, т-РНК возвращается в цитоплазму.

Какие реакции, происходящие в клетке, относят к реак­циям матричного синтеза? Что служит матрицами таких реакций?

Матричный синтез - специфическая особенность живых организмов. Матрица - образец, по которому форми­руется копия. Матричный синтез - синтез по матрице. Благодаря реакциям матричного синтеза обеспечивается точная последовательность мономеров для создания полимеров.

К реакциям матричного синтеза, происходящим в клетке, относят реакции удвоения ДНК, синтез РНК, син­тез белка. Матрицей является ДНК в синтезе иРНК и ДНК или РНК в синтезе белка. Мономерами матричного синте­за являются нуклеотиды и аминокислоты. Мономеры фик­сируются на матрице по принципу комплементарности, сшиваются и затем сбрасываются с матрицы. Реакции мат­ричного синтеза являются основой для воспроизведения себе подобных.

Какие реакции, происходящие в клетке, относят к реак­циям матричного синтеза? Что служит матрицами таких реакций?


На этой странице искали:

  • мономерами реакций матричного синтеза в клетке служат
  • к реакциям матричного синтеза относится
  • какие реакции относятся к реакциям матричного синтеза

1. Объясните последовательность передачи генетической информации: ген - белок - признак.

2. Вспомните, какая структура белка определяет его строение и свойства. Как закодирована эта структура в молекуле ДНК?

3. Что представляет собой генетический код?

4. Охарактеризуйте свойства генетического кода.

7. Реакции матричного синтеза. Транскрипция

Информация о белке записана в виде нуклеотидной последовательности в ДНК и находится в ядре. Собственно синтез белка происходит в цитоплазме на рибосомах. Следовательно, для синтеза белка необходима структура, которая переносила бы информацию от ДНК к месту синтеза белка. Таким посредником является информационная, или матричная, РНК, которая передает информацию с определенного гена молекулы ДНК к месту синтеза белка на рибосомы.

Кроме переносчика информации необходимы вещества, которые обеспечивали бы доставку аминокислот к месту синтеза и определение их места в полипептидной цепи. Такими веществами являются транспортные РНК, которые обеспечивают кодирование и доставку аминокислот к месту синтеза. Синтез белка протекает на рибосомах, тело которых построено из рибосомальных РНК. Значит, необходим еще один вид РНК - рибосомальные.

Генетическая информация реализуется в трех типах реакций: синтезе РНК, синтезе белка, репликации ДНК. В каждом из них информация, заключенная в линейной последовательности нуклеотидов, используется для создания другой линейной последовательности: либо нуклеотидов (в молекулах РНК или ДНК), либо аминокислот (в молекулах белка). Экспериментально было доказано, что именно ДНК служит матрицей для синтеза всех нуклеиновых кислот. Эти реакции биосинтеза носят название матричного синтеза. Достаточная простота матричных реакций и их одномерность позволили подробно изучить и понять их механизм, в отличие от других процессов, протекающих в клетке.

Транскрипция

Процесс биосинтеза РНК на ДНК называется транскрипцией. Этот процесс протекает в ядре. На матрице ДНК синтезируются все виды РНК - информационная, транспортная и рибосомальная, которые впоследствии участвуют в синтезе белка. Генетический код на ДНК в процессе транскрипции переписывается на информационную РНК. В основе реакции лежит принцип комплементарности.

Синтез РНК имеет ряд особенностей. Молекула РНК значительно короче и является копией только небольшого участка ДНК. Поэтому матрицей служит только определенный участок ДНК, где находится информация о данной нуклеиновой кислоте. Вновь синтезированная РНК никогда не остается связанной с исходной ДНК-матрицей, а освобождается после окончания реакции. Процесс транскрипции протекает в три этапа.

Первый этап - инициация - начало процесса. Синтез РНК-копий начинается с определенной зоны на ДНК, которая называется промотором. Эта зона содержит определенный набор нуклеотидов, которые являются старт-сигналами. Процесс катализируется ферментами РНК-полимеразами. Фермент РНК-полимераза соединяется с промотором, раскручивает двойную спираль и разрушает водородные связи между двумя цепями ДНК. Но только одна из них служит матрицей для синтеза РНК.

Второй этап - элонгация. В эту стадию происходит основной процесс. На одной цепи ДНК, как на матрице, по принципу комплементарности выстраиваются нуклеотиды (рис. 19). Фермент РНК-полимераза, шаг за шагом продвигаясь по цепи ДНК, соединяет нуклеотиды между собой, одновременно постоянно раскручивая дальше двойную спираль ДНК. В результате такого движения синтезируется РНК-копия.

Третий этап - терминация. Это завершающая стадия. Синтез РНК продолжается до стоп-сигнала - определенной последовательности нуклеотидов, которая прекращает движение фермента и синтез РНК. Полимераза отделяется от ДНК и синтезированной РНК-копии. Одновременно с матрицы снимается и молекула РНК. ДНК восстанавливает двойную спираль. Синтез завершен. В зависимости от участка ДНК таким способом синтезируются рибосомальные, транспортные, информационные РНК.

Матрицей для транскрипции молекулы РНК служит только одна из цепей ДНК. Однако матрицей двух соседних генов могут служить разные цепи ДНК. Какая из двух цепей будет использоваться для синтеза, определяется промотором, который направляет фермент РНК-полимеразу в том или ином направлении.

После транскрипции молекула информационной РНК эукариотических клеток подвергается перестройке. В ней вырезаются нуклеотидные последовательности, которые не несут информацию о данном белке. Этот процесс называется сплайсингом. В зависимости от типа клетки и стадии развития могут быть убраны разные участки молекулы РНК. Следовательно, на одном участке ДНК синтезируются разные РНК, которые несут информацию о различных белках. Это обеспечивает передачу значительной генетической информации с одного гена, а также облегчает генетическую рекомбинацию.

Рис. 19. Синтез информационной РНК. 1 - цепь ДНК; 2 - синтезируемая РНК

Вопросы и задания для самоконтроля

1. Какие реакции относятся к реакциям матричного синтеза?

2. Что является исходной матрицей для всех реакций матричного синтеза?

3. Как называется процесс биосинтеза иРНК?

4. Какие виды РНК синтезируются на ДНК?

5. Установите последовательность фрагмента иРНК, если соответствующий фрагмент на ДНК имеет последовательность: ААГЦТЦТГАТТЦТГАТЦГГАЦЦТААТГА.

8. Биосинтез белка

Белки являются необходимыми компонентами всех клеток, поэтому наиболее важным процессом пластического обмена является биосинтез белка. Он протекает во всех клетках организмов. Это единственные компоненты клетки (кроме нуклеиновых кислот), синтез которых осуществляется под прямым контролем генетического материала клетки. Весь генетический аппарат клетки - ДНК и разные виды РНК - настроен на синтез белков.

Ген - это участок молекулы ДНК, ответственный за синтез одной молекулы белка. Для синтеза белка необходимо, чтобы определенный ген с ДНК был скопирован в виде молекулы информационной РНК. Этот процесс был рассмотрен ранее. Синтез белка представляет собой сложный многоэтапный процесс и зависит от деятельности различных видов РНК. Для непосредственного биосинтеза белка необходимы следующие компоненты:

1. Информационная РНК - переносчик информации от ДНК к месту синтеза. Молекулы иРНК синтезируются в процессе транскрипции.

2. Рибосомы - органоиды, где происходит синтез белка.

3. Набор необходимых аминокислот в цитоплазме.

4. Транспортные РНК, кодирующие аминокислоты и переносящие их к месту синтеза на рибосомы.

5. АТФ - вещество, обеспечивающее энергией процессы кодирования аминокислот и синтеза полипептидной цепи.

Строение транспортной РНК и кодирование аминокислот

Транспортные РНК (тРНК) представляют собой небольшие молекулы с количеством нуклеотидов от 70 до 90. На долю тРНК приходится примерно 15 % всех РНК клетки. Функция тРНК зависит от ее строения. Изучение структуры молекул тРНК показало, что они свернуты определенным образом и имеют вид клеверного листа (рис. 20). В молекуле выделяются петли и двойные участки, соединенные за счет взаимодействия комплементарных оснований. Наиболее важной является центральная петля, в которой находится антикодон - нуклеотидный триплет, соответствующий коду определенной аминокислоты. Своим антикодоном тРНК способна соединяться с соответствующим кодоном на иРНК по принципу комплементарности.

Рис. 20. Строение молекулы тРНК: 1 - антикодон; 2 - место присоединения аминокислоты

Каждая тРНК может переносить только одну из 20 аминокислот. Значит, для каждой аминокислоты имеется по меньшей мере одна тРНК. Так как аминокислота может иметь несколько триплетов, то и количество видов тРНК равно числу триплетов аминокислоты. Таким образом, общее число видов тРНК соответствует числу кодонов и равно 61. Трем стоп-кодам не соответствует ни одна тРНК.

На одном конце молекулы тРНК всегда находится нуклеотид гуанин (5"-конец), а на другом (3"-конце) всегда три нуклеотида ЦЦА. Именно к этому концу идет присоединение аминокислоты (рис. 21). Каждая аминокислота присоединяется к своей специфической тРНК с соответствующим антикодоном. Механизм этого присоединения связан с работой специфических ферментов - аминоацил-тРНК-синтетазами, которые присоединяют каждую аминокислоту к соответствующей тРНК. Для каждой аминокислоты имеется своя синтетаза. Соединение аминокислоты с тРНК осуществляется за счет энергии АТФ, при этом макроэргическая связь переходит в связь между тРНК и аминокислотой. Так происходит активирование и кодирование аминокислот.

Этапы биосинтеза белка. Процесс синтеза полипептидной цепи, осуществляемый на рибосоме, называется трансляцией. Информационная РНК (иРНК) является посредником в передаче информации о первичной структуре белка, тРНК переносит закодированные аминокислоты к месту синтеза и обеспечивает последовательность их соединений. В рибосомах осуществляется сборка полипептидной цепи.

Матричный синтез представляет собой образование биополимера, последовательность звеньев в котором определяется первичной структурой другой молекулы. Последняя как бы выполняет роль матрицы, "диктующей" нужный порядок сборки цепи. В живых клетках известны три биосинтетических процесса, основанных на этом механизме.

Какие молекулы синтезируются на основе матрицы

К реакциям матричного синтеза относят:

  • репликацию - удвоение генетического материала;
  • транскрипцию - синтез рибонуклеиновых кислот;
  • трансляцию - производство белковых молекул.

Репликация представляет собой превращение одной молекулы ДНК в две идентичные друг другу, что имеет огромное значение для жизненного цикла клеток (митоз, мейоз, удвоение плазмид, деление бактериальных клеток и т. д.). Очень многие процессы основаны на "размножении" генетического материала, а матричный синтез позволяет воссоздать точную копию любой молекулы ДНК.

Транскрипция и трансляция представляют собой две стадии реализации генома. При этом наследственная информация, записанная в ДНК, преобразуется в определенный белковый набор, от которого зависит фенотип организма. Данный механизм именуется путем "ДНК-РНК-белок" и составляет одну из центральных догм молекулярной биологии.

Реализация этого принципа достигается при помощи матричного синтеза, который сопрягает процесс образования новой молекулы с "исходным образцом". Основой такого сопряжения является фундаментальный принцип комплементарности.

Основные аспекты синтеза молекул на основе матрицы

Информация о структуре синтезируемой молекулы содержится в последовательности звеньев самой матрицы, к каждому из которых подбирается соответствующий элемент "дочерней" цепи. Если химическая природа синтезируемой и матричной молекул совпадают (ДНК-ДНК или ДНК-РНК), то сопряжение происходит напрямую, так как каждый нуклеотид имеет пару, с которой может связаться.

Для синтеза белка требуется посредник, одна часть которого взаимодействует с матрицей по механизму нуклеотидного соответствия, а другая присоединяет белковые звенья. Таким образом, принцип комплементарности нуклеотидов работает и в этом случае, хоть и не связывает напрямую звенья матричной и синтезируемой цепей.

Этапы синтеза

Все процессы матричного синтеза поделены на три этапа:

  • инициация (начало);
  • элонгация;
  • терминация (окончание).

Инициация представляет собой подготовку к синтезу, характер которой зависит от вида процесса. Главной целью этой стадии является приведение системы фермент-субстрат в рабочее состояние.

Во время элонгации непосредственно осуществляется наращивание синтезируемой цепи, при котором между подобранными согласно матричной последовательности звеньями замыкается ковалентная связь (пептидная или фосфодиэфирная). Терминация приводит к остановке синтеза и освобождению продукта.

Роль комплементарности в механизме матричного синтеза

Принцип комплементарности основан на выборочном соответствии азотистых оснований нуклеотидов друг другу. Так, аденину в качестве пары подойдут только тимин или урацил (двойная связь), а гуанину - цитозин (3 тройная связь).

В процессе синтеза нуклеиновых кислот со звеньями одноцепочечной матрицы связываются комплементарные нуклеотиды, выстраиваясь в определенную последовательность. Таким образом, на основании участка ДНК ААЦГТТ при репликации может получиться только ТТГЦАА, а при транскрипции - УУГЦАА.

Как уже было отмечено выше, белковый синтез происходит с участием посредника. Эту роль выполняет транспортная РНК, которая имеет участок для присоединения аминокислоты и нуклеотидный триплет (антикодон), предназначенный для связывания с матричной РНК.

В этом случае комплементарный подбор происходит не по одному, а по три нуклеотида. Так как каждая аминокислота специфична только к одному виду тРНК, а антикодон соответствует конкретному триплету в РНК, синтезируется белок с определенной последовательностью звеньев, которая заложена в геноме.

Как происходит репликация

Матричный синтез ДНК происходит с участием множества ферментов и вспомогательных белков. Ключевыми компонентами являются:

  • ДНК-хеликаза - расплетает двойную спираль, разрушает связи между цепями молекулы;
  • ДНК-лигаза - "зашивает" разрывы между фрагментами Оказаки;
  • праймаза - синтезирует затравку, необходимую для работы ДНК-синтезирующего фрагмента;
  • SSB-белки - стабилизируют одноцепочечные фрагменты расплетенной ДНК;
  • ДНК-полимеразы - синтезируют дочернюю матричную цепь.

Хеликаза, праймаза и SSB-белки подготавливают почву для синтеза. В результате каждая из цепей исходной молекулы становится матрицей. Синтез осуществляется с огромной скоростью (от 50 нуклеотидов в секунду).

Работа ДНК-полимеразы происходит в направлении от 5`к 3`- концу. Из-за этого на одной из цепей (лидирующей) синтез происходит по ходу расплетания и непрерывно, а на другой (отстающей) - в обратном направлении и отдельными фрагментами, названными "Оказаки".

Y-образная структура, образованная в месте расплетания ДНК, называется репликационной вилкой.

Механизм транскрипции

Ключевым ферментом транскрипции является РНК-полимераза. Последняя бывает нескольких видов и отличается по строению у прокариот и эукариот. Однако механизм ее действия везде одинаков и заключается в наращивании цепи комплементарно подбираемых рибонуклеотидов с замыканием фосфодиэфирной связи между ними.

Матричной молекулой для этого процесса служит ДНК. На ее основе могут создаваться разные типы РНК, а не только информационные, которые используются в белковом синтезе.

Участок матрицы, с которого "списывается" последовательность РНК, называется транскриптоном. В его составе имеется промотор (место для присоединения РНК-полимеразы) и терминатор, на котором синтез останавливается.

Трансляция

Матричный синтез белка и у прокариот, и у эукариот осуществляется в специализированных органоидах - рибосомах. Последние состоят из двух субъединиц, одна из которых (малая) служит для связывания тРНК и матричной РНК, а другая (большая) принимает участие в образовании пептидных связей.

Началу трансляции предшествует активация аминокислот, т. е. присоединение их к соответствующим транспортным РНК с образованием макроэргической связи, за счет энергии которых впоследствии осуществляются реакции транспептидирования (присоединения к цепи очередного звена).

В процессе синтеза также принимают участие белковые факторы и ГТФ. Энергия последнего необходима для продвижения рибосомы по матричной цепи РНК.