Как составить пищевую цепь. Тема урока "цепи питания"

Структура пищевой цепи

Пищевая цепь представляет собой связную линейную структуру из звеньев , каждое из которых связано с соседними звеньями отношениями «пища - потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды . Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясь продуцентами . Чаще всего на этом месте находятся растения , грибы , водоросли . Организмы последнего звена в цепи не выступают в роли пищи для других организмов.

Каждый организм обладает некоторым запасом энергии, то есть можно говорить о том, что у каждого звена цепи есть своя потенциальная энергия . В процессе питания потенциальная энергия пищи переходит к её потребителю. При переносе потенциальной энергии от звена к звену до 80-90 % теряется в виде теплоты. Данный факт ограничивает длину цепи питания, которая в природе обычно не превышает 4-5 звеньев. Чем длиннее трофическая цепь, тем меньше продукция её последнего звена по отношению к продукции начального.

Трофическая сеть

Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища - потребитель». Так, траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру - трофическую сеть .

Трофический уровень

Трофический уровень - это совокупность организмов, которые, в зависимости от способа их питания и вида корма, составляют определённое звено пищевой цепи.

В некоторых случаях в трофической сети можно сгруппировать отдельные звенья по уровням таким образом, что звенья одного уровня выступают для следующего уровня только в качестве пищи. Такая группировка называется трофическим уровнем.

Типы пищевых цепей

Существуют 2 основных типа трофических цепей - пастбищные и детритные .

В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы , затем идут потребляющие их (консументы) растительноядные животные (например, зоопланктон , питающийся фитопланктоном), потом хищники 1-го порядка (например, рыбы , потребляющие зоопланктон), хищники 2-го порядка (например, щука , питающаяся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка.

В детритных трофических цепях (цепи разложения), наиболее распространённых в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации . Таким образом, детритные трофические цепи начинаются от детрита (органических останков), идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям - хищникам. В водных экосистемах (особенно в эвтрофных водоёмах и на больших глубинах океана) часть продукции растений и животных также поступает в детритные трофические цепи.

Наземные детритные цепи питания более энергоёмки, поскольку большая часть органической массы, создаваемой автотрофными организмами, остаётся невостребованной и отмирает, формируя детрит. В масштабах планеты, на долю цепей выедания приходится около 10 % энергии и веществ, запасённых автотрофами, 90 % же процентов включается в круговорот посредством цепей разложения.

См. также

Литература

  • Трофическая цепь / Биологический энциклопедический словарь / глав. ред. М. С. Гиляров. - М.: Советская энциклопедия, 1986. - С. 648-649.

Wikimedia Foundation . 2010 .

Смотреть что такое "Пищевая цепь" в других словарях:

    - (цепь питания, трофическая цепь), взаимоотношения между организмами, при которых группы особей (бактерии, грибы, растения, животные) связаны друг с другом отношениями: пища потребитель. Пищевая цепь включает обычно от 2 до 5 звеньев: фото и… … Современная энциклопедия

    - (цепь питания трофическая цепь), ряд организмов (растений, животных, микроорганизмов), в котором каждое предыдущее звено служит пищей для последующего. Связаны друг с другом отношениями: пища потребитель. Пищевая цепь включает обычно от 2 до 5… … Большой Энциклопедический словарь

    ПИЩЕВАЯ ЦЕПЬ, система передачи энергии от организма к организму, в которой каждый предыдущий организм истребляется последующим. В простейшей форме передача энергии начинается с растений (ПЕРВИЧНЫХ ПРОИЗВОДИТЕЛЕЙ). Следующим звеном цепи являются… … Научно-технический энциклопедический словарь

    См. Трофическая цепь. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    пищевая цепь - — EN food chain A sequence of organisms on successive trophic levels within a community, through which energy is transferred by feeding; energy enters the food chain during fixation … Справочник технического переводчика

    - (цепь питания, трофическая цепь), ряд организмов (растений, животных, микроорганизмов), в котором каждое предыдущее звено служит пищей для последующего. Связаны друг с другом отношениями: пища потребитель. Пищевая цепь включает обычно от 2 до… … Энциклопедический словарь

    пищевая цепь - mitybos grandinė statusas T sritis ekologija ir aplinkotyra apibrėžtis Augalų, gyvūnų ir mikroorganizmų mitybos ryšiai, dėl kurių pirminė augalų energija maisto pavidalu perduodama vartotojams ir skaidytojams. Vienam organizmui pasimaitinus kitu … Ekologijos terminų aiškinamasis žodynas

    - (цепь питания, трофическая цепь), ряд организмов (р ний, ж ных, микроорганизмов), в к ром каждое предыдущее звено служит пищей для последующего. Связаны друг с другом отношениями: пища потребитель. П. ц. включает обычно от 2 до 5 звеньев: фото и… … Естествознание. Энциклопедический словарь

    - (трофическая цепь, цепь питания), взаимосвязь организмов через отношения пища потребитель (одни служат пищей для других). При этом происходит трансформация вещества и энергии от продуцентов (первичных производителей) через консументов… … Биологический энциклопедический словарь

    См. Цепь питания … Большой медицинский словарь

Книги

  • Дилемма всеядного. Шокирующее исследование рациона современного человека , Поллан Майкл. Вы когда-нибудь задумывались о том, как еда попадает на наш стол? Вы купили продукты в супермаркете или на фермерском рынке? А может быть, вы сами вырастили помидорыили привезли гуся с…

Перенос энергии в экосистеме осуществляется через так называемые пищевые цепи . В свою очередь, пищевая цепь - это перенос энергии от ее первоначального источника (обычно им являются автотрофы) через ряд организмов, путем поедания одних другими. Пищевые цепи подразделяются на два вида:

Сосна обыкновенная => Тли => Божьи коровки => Пауки =>Насекомоядные

птицы => Хищные птицы.

Трава => Травоядные млекопитающие => Блохи => Жгутиконосцы.

2) Детритная пищевая цепь. Она берет свое начало от мертвого органического вещества (т.н. детрита ), которое либо потреблятеся в пищу мелкими, преймущественно беспозвоночными животными, либо разлагается бактериями или грибами. Организмы, потребляющие мертвое органическое вещество, называются детритофагами , разлагающие его - деструкторами .

Пастбищная и детритная пищевые цепи обычно существуют в экосистемах совместно, но один из видов пищевых цепей почти всегда доминирует над другим. В некоторых же специфических средах (например в подземной), где из-за отсутствия света невозможна жизнедеятельность зеленых растений, существуют только детритные пищевые цепи.

В экосистемах пещевые цепи не изолированы друг от друга, а тесно переплетены. Они составляют так называемые пищевые сети . Это происходит потому, что каждый продуцент имеет не одного, а нескольких консументов, которые, в свою очередь, могут иметь несколько источников питания. Взаимосвязи внутри пищевой сети наглядно иллюстрирует приведенная ниже схема.

Схема пищевой сети.

В пищевых цепях образуются так называемые трофические уровни . Трофические уровни классифицируют организмы в пищевой цепи по типам их жизнедеятельности или по источникам получения энергии. Растения занимают первый трофический уровень (уровень продуцентов), травоядные (консументы первого порядка) относятся ко второму трофическому уровню, хищники, поедающие травоядных, образуют третий трофический уровень, вторичные хищники - четвертый и т.д. первого порядка.

Поток энергии в экосистеме

Как нам известно, перенос энергии в экосистеме осуществляется через пищевые цепи. Но далеко не вся энергия предыдущего трофического уровня переходит на следующий. В качестве примера можно привести следующую ситуацию: чистая первичная продукция в экосистеме (то есть количество энергии, накопленное продуцентами) составляет 200 ккал/м^2, вторичная продуктивность (энергия, накопленная консументами первого порядка) равна 20 ккал/м^2 или 10% от предыдущего трофческого уровня, энергия же следующего уровня составляет 2 ккал/м^2, что равно 20% от энергии предыдущего уровня. Как видно из данного примера, при каждом переходе на более высокий уровень теряется 80-90% энергии предыдущего звена пищевой цепи. Подобные потери связаны с тем, что значительная часть энергии при переходе с одной ступени на другую не усваивается представителями следующего трофического уровня или превращается в тепло, недоступное для использования живыми организмами.

Универсальная модель потока энергии.

Поступление и расход энергии можно рассмотреть с помощью универсальной модели потока энергии . Она применима к любому живому компоненту экосистемы: растению, животному, микроорганизмам, популяции или трофической группе. Подобные графические модели, соединенные между собой, могут отражать пищевые цепи (при последовательном соединении схем потока энергии нескольких трофических уровней образуется схема потока энергии в пищевой цепи) или биоэнергетику в целом. Поступившая в биомассу энергия на схеме имеет обозначение I . Однако, часть поступившей энергии, не подвергается превращнию (на рисунке обозначена, как NU ). Например, это происходит в случае, когда часть света, проходящего через растения, не поглощается ими, или когда часть пищи, проходящей через пищеварительный тракт животного, не усваивается его организмом. Усвоенная (или ассимилированная ) энергия (обозначенная за A ) используется для различных целей. Она тратитися на дыхание (на схеме-R ) т.е. на поддержание жизнедеятельности биомассы и на продуцирование органического вещества (P ). Продукция, в свою очередь, принимате различные формы. Она выражается в энергетических затратах на рост биомассы (G ), в различных выделениях органического вещетсва во внешнюю среду (E ), в запасе энергии организмом (S ) (примером подобного запаса являются жировые накопления). Запасенная энергия образует на схеме так называемую рабочую петлю , так как данная часть продукции используется для обеспечения энергией в будущем (напимер, хищник использует свой запас энергии для поиска новых жертв). Оставшаяся часть продукции представляет собой биомассу (B ).

Универсальную модель потока энергии можно интерпретировать двояко. Во-первых она может представлять популяцию какого-либо вида. В данном случае каналы потока энергии и связи рассматриваемого вида с другими видами представляют собой схему пищевой цепи. Другая интерпритация трактует модель потока энергии как изображение какого-либо энергетического уровня. Тогда прямоугольник биомассы и каналы потока энергии представляют все популяции, поддерживаемые одним и тем же источником энергии.

Для того, чтобы наглядно показать различие подходов трактовки универсальной модели потока энергии можно рассмотреть пример с популяцией лис. Часть рациона лисиц составляет растительность (плоды и т.д.), другую же часть составляют травоядные животные. Чтобы подчеркнуть аспект внутрипопуляционной энергетики (первая интерпритация энергетической модели), всю популяцию лис следует изобразить в виде одного прямоугольника, если же нужно распределить метаболизм (метаболизм - обмен веществ, интенсивность обмена веществ) популяции лис на два трофических уровня, то есть отобразить соотношение ролей растительной и животной пищи в обмене веществ, необходимо построить два или несколько прямоугольников.

Зная универвальную модель потока энергии, можно определить отношение величин энергетического потока в разных точках пищевой цепи.Выраженные в процентах, эти отношения называют экологической эффективностью . Существует несколько групп экологических эффективностей. Первая группа энергетических отношений: B/R и P/R . Доля энергии, расходущейся на дыхание, велика в популяциях крупных организмов. При стрессовом воздействии внешней среды R возрастает. Величина P значительна в активных популяциях мелких организмов (например водорослей), а также в системах, получающих энергию извне.

Следующая группа отношений: A/I и P/A . Первое из них называется эффективностью ассимиляции (т.е. эффективностью использования поступившей энергии), второе - эффективностью роста тканей . Эффективность ассимиляции может варьироваться от 10 до 50% и выше. Она может либо достигать малой величины (при ассимиляции энергии света растениями), либо иметь большие значения (при ассимиляции энергии пищи животными). Обычно эффективность ассимиляции у животных зависит от их пищи. У растительноядных животных она достигает 80% при поедании семян, 60% при использовании в пищу молодой листвы, 30-40% - более старых листьев, 10-20% при питании древесиной. У хищных животных эффективность ассимиляции составляет 60-90%, так как животоная пища гораздо легче усваивается организмом, чем растительная.

Эффективность роста тканей также широко варьируется. Наибольших значений она достигает в тех случаях, когда организмы имеют небольшие размеры и условия среды их обитания не требуют больших энергетических затрат на поддержание оптимальной для роста организмов температуры.

Третья группа энергетических отношений: P/B . Если рассматривать P как скорость прироста продукции, P/B представляет собой отношение продукции в конкретный момент времени к биомассе. Если расчитывается продукция за определенный промежуток времени, значение отношения P/B определяется исходя из средней за этот промежуток времени биомассы. В данном случае P/B является безразмерной величиной и показывает, во сколько раз продукция больше или меньше биомассы.

Следует отметить, что на энергетические характеристики экосистемы оказывает влияние размеры организмов, населяющих экосистему. Установлена зависимость между размером организма и его удельным метаболизмом (метаболизмом на 1г. биомассы). Чем мельче организм, тем выше его удельный метаболизм и, следовательно, тем меньше биомасса, которая может поддерживаться на данном трофическом уровне экосистемы. При одинаковом количестве использованной энергии организмы больших размеров накапливают большую биомассу, чем мелкие. Например, при равном значении потребленной энергии, биомасса, накопленная бактериями, будет гораздо ниже биомассы, накопленной крупными организмами (наприемр млекопитающими). Иная картина открывается при рассмотрении продуктивности. Так как продуктивность - это скорость прироста биомассы, то она больше у мелких жвотных, которые имеют более высокие темпы размножения и обновления биомассы.

В связи с потерей энергии внутри пищевых цепей и зависимостью метаболизма от размера особей, каждое биологическое сообщество приобретает определеную трофическую структуру, которая может служить характеристикой экосистемы. Трофическая структура характеризуется или урожаем на корню, или количеством энергии, фиксируемой на единицу площади в единицу времени каждым последующим трофическим уровнем. Трофическую структуру можно изобразить графически в виде пирамид, основанием у которых служит первый трофический уровень (уровень продуцентов), а последующие трофические уровни образуют "этажи" пирамиды. Выделяют три типа экологических пирамид.

1) Пирамида численности (на схеме обозначена цифрой 1) Она отображает количество отдельных организмов на каждом из трофических уровней. Численность особей на разных трофических уровнях зависит от двух основных факторов. Первый из них - более высокий уровень удельного метаболизма у мелких животных по сравнению с крупными, что позволяет им иметь численное превосходство над крупными видами и более высокие темпы размножения. Другой из вышеназванных факторов - существование у хищных животных верхнего и нижнего предела размера их жертв. Если жертва намного крупнее хищника по размерам, то он будет не в состоянии ее одолеть. Добыча же небольшого размера не сможет удовлетворить энергетических потребностей хищника. Поэтому для каждого хищного вида существует оптимальный размер жертв Однако, для данного правила существуют исключения (например, змеи с помощью яда убивают животных, превышающих их по размерам). Пирамиды чисел могут быть обращены "острием" вниз в том случае, если продуценты намного превосходят первичных консументов по своим размерам (примером может служить экосистема леса, где продуцентами являются деревья, а первичными консументами - насекомые).

2) Пирамида биомассы (на схеме - 2). С ее помощью можно наглядно показать соотношения биомасс на каждом из трофических уровней. Она может быть прямой, если размер и срок жизни продуцентов достигает относительно больших величин (наземные и мелководные экосистемы), и обращенной, когда продуценты невелики по размеру и имеют короткий жизненный цикл (открытые и глубокие водоемы).

3) Пирамида энергии (на схеме - 3). Отражает величину потока энергии и продуктивность на каждом из трофических уровней. В отличии от пирамид численности и биомассы, пирамида энергии не может быть обращенной, так как переход энергии пищи на вышестоящие трофические уровни происходит с большими энергопотерями. Следовательно, суммарная энергия каждого предыдущего трофического уровня не может быть выше энергии последующего. Вышеприведеное рассуждение основано на использовании второго закона термодинамики, поэтому пирамида энергии в экосистеме служит его наглядной иллюстрацией.

Из всех названных выше трофических характеристик экосистемы только пирамида энергии дает наиболее полное представление об организации биологических сообществ. В пирамиде численности сильно преувеличена роль мелких организмов, а в пирамиде биомассы завышено значение крупных. В таком случае, данные критерии непригодны для сравнении функциональной роли популяции, сильно различающихся по значению отношения интенсивности метаболизма к размеру особей. По этой причине, именно поток энергии служит наиболее подходящим критерием для сравнения отдельных компонентов экосистемы между собой, а также для сравнения двух экосистем друг с другом.

Знание основных законов превращения энергии в экосистеме способствуют лучшему пониманию процессов функционрования экосистемы. Это особенно важно в связи с тем, что вмешательство человека в ее естественую "работу" может привести экологическую систему к гибели. В связи с этим, он должен уметь заранее предсказывать результаты своей деятельности, и представление об энергетических потоках в экосистеме сможет обеспечить большую точность этих предсказаний.

Большинство живых организмов питаются органической пищей, в этом специфика их жизнедеятельности на нашей планете. Среди этой пищи и растения, и мясо других животных, их продукты деятельности и мертвая материя, готовая к разложению. Сам процесс питания у различных видов растений и животных происходит по-разному, но всегда образуются так называемые Они преобразовывают материю и энергию, а питательные вещества могут таким образом переходить от одного существа к другому, осуществляя круговорот веществ в природе.

в лесу

Лесами различного рода покрыто довольно много поверхности суши. Это - легкие и инструмент очищения нашей планеты. Не зря многие прогрессивные современные ученые и активисты выступают сегодня против массовой вырубки лесов. Цепь питания в лесу может быть довольно разнообразна, но, как правило, включает в себя не более 3-5 звеньев. Для того чтобы понять суть вопроса, обратимся к возможным составляющим данной цепи.

Продуценты и консументы

  1. Первые - автотрофные организмы, что питаются неорганической пищей. Они берут энергию и материю для создания собственных тел, используя газы и соли из окружающей их среды. Как пример - зеленые растения, которые получают питание от солнечного света при помощи фотосинтеза. Или многочисленные виды микроорганизмов, которые обитают везде: в воздухе, в почве, в воде. Именно продуценты составляют в большинстве своем первое звено практически любой цепи питания в лесу (примеры будут приведены ниже).
  2. Вторые - гетеротрофные организмы, которые питаются органикой. Среди них - первого порядка те, что непосредственно осуществляют питание за счет растений и бактерий, продуцентов. Второго порядка - те, кто питается животной пищей (хищники или плотоядные).

Растения

С них, как правило, начинается цепь питания в лесу. Они выступают первым звеном в этом круговороте. Деревья и кустарники, травы и мхи добывают пищу из неорганических веществ, используя солнечный свет, газы и минералы. Цепь питания в лесу, к примеру, может начинаться с березы, кору которой поедает заяц, а его, в свою очередь, убивает и съедает волк.

Растительноядные животные

В разнообразных лесах в изобилии встречаются животные, которые питаются растительной пищей. Конечно же, например, сильно отличается по своему наполнению от угодий средней полосы. В джунглях обитают различные виды животных, многие из которых - травоядные, а значит, составляют второе звено пищевой цепи, питаясь растительной пищей. От слонов и носорогов до едва ли заметных насекомых, от земноводных и птиц до млекопитающих. Так, в Бразилии, к примеру, водятся более 700 видов бабочек, практически все из них - растительноядные.

Скуднее, конечно же, фауна в лесополосе средней части России. Соответственно, вариантов цепи питания в гораздо меньше. Белки и зайцы, другие грызуны, олени и лоси, зайцы - вот основа для подобных цепочек.

Хищники или плотоядные

Они так и называются, потому что поедают плоть, питаясь мясом других животных. В пищевой цепочке занимают главенствующее положение, часто являясь заключительным звеном. В наших лесах это лисы и волки, совы и орлы, иногда - медведи (но вообще-то они относятся к которые могут питаться и растительной, и животной пищей). В пищевой цепи могут принимать участие как один, так и несколько хищников, поедающих друг друга. Заключающим звеном, как правило, является наиболее крупный и наиболее сильный плотоядный. В лесу средней полосы эту роль может выполнять, например, волк. Таких хищников не слишком много, и их популяция ограничивается питательной базой и энергетическими запасами. Так как, согласно закону сохранения энергии, при переходе питательных веществ от одного звена к последующему может утратиться до 90% ресурса. Наверное, поэтому численность звеньев большинства пищевых цепей не может превышать пяти.

Падальщики

Они питаются останками других организмов. Как ни странно, но их в природе леса также довольно много: от микроорганизмов и насекомых до птиц и млекопитающих. Многие жуки, к примеру, используют в качестве пищи трупы других насекомых и даже позвоночных. А бактерии способны разлагать умершие тела млекопитающих за довольно короткое время. Организмы-падальщики играют в природе огромную роль. Они уничтожают материю, преобразуя ее в неорганические вещества, высвобождают энергию, используя ее для своей жизнедеятельности. Если бы не падальщики, то, наверное, все земное пространство было бы покрыто телами умерших за все времена животных и растений.

в лесу

Чтобы составить цепь питания в лесу, необходимо знать о тех обитателях, кто проживает там. А также о том, чем эти животные могут питаться.

  1. Кора березы - личинки насекомых - мелкие птицы - хищные птицы.
  2. Палая листва - бактерии.
  3. Гусеница бабочки - мышь - змея - еж - лиса.
  4. Желудь - мышь - лиса.
  5. Зерновые - мышь - филин.

Есть и подлиннее: палая листва - бактерии - черви дождевые - мыши - крот - еж - лиса - волк. Но, как правило, количество звеньев не больше пяти. Цепь питания в еловом лесу немного отличается от аналогичных в лиственном.

  1. Семена злаков - воробей - дикая кошка.
  2. Цветы (нектар) - бабочка - лягушка - уж.
  3. Еловая шишка - дятел - орлан.

Пищевые цепочки иногда могут сплетаться между собой, образуя и более сложные, многоуровневые структуры, объединяющиеся в единую экосистему леса. К примеру, лиса не брезгует питаться и насекомыми и их личинками, и млекопитающими, таким образом, несколько пищевых цепей пересекаются.

Пищевой, или трофической цепью называют взаимоотношение между различными группами организмов (растениями, грибами, животными и микробами), в котором происходит транспорт энергии в результате употребления в пищу одних особей другими. Перенос энергии - основа нормального функционирования экосистемы. Наверняка эти понятия знакомы вам с 9 класса школы из курса общей биологии.

Особи последующего звена съедают организмы прошлого звена, и так происходит транспорт вещества и энергии по цепочке. Эта последовательность процессов лежит в основе живого круговорота веществ в природе. Стоит сказать, что огромная часть потенциальной энергии (примерно 85%) теряется при переносе от одного звена к другому, она диссипируется, то есть рассеивается в виде тепла. Этот фактор является лимитирующим по отношению к длине пищевых цепей, которые в природе обычно насчитывают 4-5 звеньев.

Виды пищевых взаимоотношений

Внутри экосистем органические вещества производятся автотрофами (продуцентами). Растения, в свою очередь, поедаются растительноядными животными (консументами первого порядка), которых затем съедают хищные животные (консументами второго порядка). Эта цепь питания из 3 звеньев является примером правильной пищевой цепи.

Различают:

Пастбищные цепи

Трофические цепи начинаются с авто- или хемотрофов (продуцентов) и включают гетеротрофов в виде консументов различных порядков. Такие пищевые цепи широко распространены в сухопутных и морских экосистемах. Их можно нарисовать и составить в виде схемы:

Продуценты —> Консументы I порядка —> Консументы I. I. порядка—> Консументы III порядка.

Типичным примером является пищевая цепь луга (это может быть и лесная зона, и пустыня, в этом случае будут отличаться лишь биологические виды различных участников трофической цепи и разветвлённость сети пищевых взаимодействий).

Итак, цветок с помощью энергии Солнца производит для себя питательные вещества, то есть является продуцентом и первым звеном в цепи. Бабочка, которая питается нектаром этого цветка - консумент I порядка и второе звено. Лягушка, также обитающая на лугу и являющаяся насекомоядным животным, съедает бабочку - третье звено в цепи, консумент II порядка. Лягушку проглатывает уж - четвёртое звено и консумент III порядка, ужа съедает ястреб - консумент IV порядка и пятое, как правило, последнее звено в пищевой цепочке. Человек может присутствовать в этой цепи также в роли консумента.

В водах Мирового океана автотрофы, представленные одноклеточными водорослями, могут существовать лишь до тех пор, пока сквозь толщу воды способен проникать солнечный свет. Это глубина 150-200 метров. Гетеротрофы могут жить и в более глубоких слоях, в ночное время поднимаясь к поверхности для подкормки водорослями, а утром вновь уходя на обычную глубину, совершая при этом вертикальные миграции до 1 километра в сутки. В свою очередь, гетеротрофы, являющиеся консументами последующих порядков, обитающие ещё глубже, утром поднимаются до уровня обитания консументов I порядка, чтобы питаться ими.

Таким образом, мы видим, что в глубоких водоёмах, как правило, морях и океанах, существует такое понятие, как «пищевая лестница». Его смысл заключается в том, что органические вещества, которые создаются водорослями в поверхностных слоях земли, переносятся по пищевой цепочке до самого дна. Учитывая этот факт, можно считать обоснованным мнение некоторых экологов о том, что весь водоём можно считать единым биогеоценозом.

Детритные трофические взаимосвязи

Чтобы понять, что такое детритная пищевая цепь, нужно начать с самого понятия «детрит». Детрит - это совокупность остатков отмерших растений, трупов и конечных продуктов обмена животных.

Детритные цепи являются типичными для сообществ внутриконтинентальных вод, дна озер, имеющих большую глубину, и океанов, многие представители которых питаются именно детритом, образованным остатками мёртвых организмов из верхних слоев или случайно попавших в водоем из экологических систем, находящихся на суше, в виде, например, листового опада.

Донные экологические системы океанов и морей, где нет продуцентов ввиду отсутствия солнечного света, и вовсе могут существовать только за счёт детрита, общая масса которого в Мировом океане за календарный год может достигать сотни миллионов тонн.

Также детритные цепи распространены в лесах, где немалая часть ежегодного прироста биомассы продуцентов не может быть употреблена в пищу непосредственно первым звеном консументов. Поэтому она отмирает, образуя опад, который, в свою очередь, разлагается сапротрофами, а затем минерализуется редуцентами. Важную в роль в образовании детрита лесных сообществ играют грибы.

Гетеротрофы, которые питаются непосредственно детритом - это детритофаги. В наземных экологических системах к детритофагам относят некоторые виды членистоногих, в частности насекомых, а также кольчатых червей. Крупных детритофагов среди птиц (грифов, ворон) и млекопитающих (гиен) принято называть падальщиками.

В экологических системах вод основную массу детритофагов составляют водные насекомые и их личинки, а также некоторые представители ракообразных. Детритофаги могут служить пищей для более крупных гетеротрофов, которые также, в свою очередь, в дальнейшем могут стать пищей для консументов высших порядков.

Звенья пищевой цепочки иначе называют трофическими уровнями. По определению это группа организмов, которая занимает конкретное место в пищевой цепочке и представляющая для каждого из последующих уровней источник энергии - пищу.

Организмами I трофического уровня в пастбищных пищевых цепях являются первичные продуценты, автотрофы, то есть растения, и хемотрофы - бактерии, использующие энергию химических реакций для синтеза органических веществ. В детритных же системах автотрофы отсутствуют, а I трофический уровень детритной трофической цепи образует собственно детрит.

Последний, V трофический уровень представлен организмами, которые потребляют мёртвые органические вещества и конечные продукты распада. Эти организмы называют деструкторами или редуцентами. Редуценты в основном представлены беспозвоночными животными, являющимися некро-, сапро- и копрофагами, использующими в пищу остатки, отходы и мёртвую органику. Также к этой группе относят растения-сапрофаги, которые разлагают листовой опад.

Ещё к уровню деструктуров относят гетеротрофные микроорганизмы, способные превращать органические вещества в неорганические (минеральные), образуя окончательные продукты - двуокись углерода и воду, которые возвращаются в экологическую систему и вновь вступают в природный круговорот веществ.

Значение пищевых взаимосвязей

Пищевая цепь - это сложная структура звеньев, в которой каждое из них взаимосвязано с соседним или же каким-либо другим звеном. Этими составляющими цепочки являются различные группы организмов флоры и фауны.

В природе пищевая цепь - это способ движения вещества и энергии в среде. Все это необходимо для развития и "строительства" экосистем. Трофическими уровнями называется сообщество организмов, которое располагается на определенном уровне.

Биотический круговорот

Пищевая цепь является биотическим круговоротом, который объединяет живые организмы и компоненты неживой природы. Данное явление также называется биогеоценозом и включает в себя три группы: 1. Продуценты. Группа состоит из организмов, которые производят пищевые вещества для других существ в результате фотосинтеза и хемосинтеза. Продуктом данных процессов являются первичные органические вещества. Традиционно, продуценты являются первыми в пищевой цепи. 2. Консументы. Пищевая цепь располагает данную группу над продуцентами, поскольку они потребляют те питательные вещества, которые произвели продуценты. В данную группу входят различные гетеротрофные организмы, к примеру, животные, съедающие растения. Различают несколько подвидов консументов: первичные и вторичные. В разряду первичных потребителей можно отнести травоядных животных, а ко вторичным - плотоядных, которые поедают описанных ранее травоядных. 3. Редуценты. Сюда относятся организмы, которые разрушают все предыдущие уровни. Наглядным примером может стать случай, когда беспозвоночные и бактерии разлагают остатки растений или мертвые организмы. Таким образом, пищевая цепь завершается, но круговорот веществ в природе продолжается, поскольку в результате данных превращений образуются минеральные и другие полезные вещества. В дальнейшем образованные компоненты используются продуцентами для образования первичной органики. Пищевая цепьсложная структура, поэтому вторичные консументы запросто могут стать пищей для других хищников, которых причисляют к третичным консументам.

Классификация

таким образом, принимает непосредственное участие в круговороте веществ в природе. Различают два типа цепей: детритные и пастбищные. Как видно из названий, первая группа наиболее часто встречается в лесных массивах, а вторая - на открытых пространствах: поле, луг, пастбище.

Такая цепь имеет более сложную структуру связей, там даже возможно появление хищников четвертого порядка.

Пирамиды

одна или несколько, существующие в конкретной среде обитания, образуют пути и направления движения веществ и энергии. Все это, то есть организмы и их места обитания, образуют функциональную систему, которая носит название экосистемы (экологической системы). Трофические связи достаточно редко бывают прямолинейными, обычно они имеют вид сложной и запутанной сети, в которых каждый компонент взаимосвязан с остальными. Переплетение пищевых цепей образует пищевые сети, которые в основном служат для построения и рассчетов экологических пирамид. В основе каждой пирамиды находится уровень продуцентов, наверх которого настраиваются все последующие уровни. Различают пирамиду чисел, энергии и биомассы.