Какие фазовые переходы вы знаете. Фазовые переходы

Мы рассмотрели переходы из жидкого и газообразного состояния в твердое, т. е. кристаллизацию, и обратные переходы - плавление и возгонку. Ранее в гл. VII мы познакомились с переходом жидкости в пар - испарением и обратным переходом - конденсацией. При всех этих фазовых переходах (превращениях) тело либо выделяет, либо поглощает энергию в виде скрытой теплоты соответствующего перехода (теплота плавления, теплота испарения и т. д.).

Фазовые переходы, сопровождающиеся скачкообразным изменением энергии или других величин, связанных с энергией, например плотности, называются фазовыми переходами первого рода.

Для фазовых переходов первого рода характерно скачкообразное, т. е. происходящее в очень узком температурном интервале, изменение свойств веществ. Можно, следовательно, говорить об определенной температуре перехода или точке перехода: точка кипения, точка плавления и

Температуры фазовых переходов зависят от внешнего параметра - давления при данной температуре равновесие фаз, между которыми происходит переход, устанавливается при вполне определенном давлении. Линия фазового равновесия описывается известным нам уравнением Клапейрона - Клаузиуса:

где молярная теплота перехода, и молярные объемы обеих фаз.

При фазовых переходах первого рода новая фаза не возникает сразу во всем объеме. Сначала образуются зародыши новой фазы, которые затем растут, распространяясь на весь объем.

С процессом образования зародышей мы встречались при рассмотрении процесса конденсации жидкости. Для конденсации необходимо существование центров (зародышей) конденсаций в виде пылинок, ионов и т. п. Точно так же для отвердевания жидкости необходимы центры кристаллизации. В отсутствие таких центров пар или жидкость могут находиться в переохлажденном состоянии. Можно, например, длительное время наблюдать чистую воду при температуре

Встречаются, однако, фазовые переходы, при которых превращение происходит сразу во всем объеме в результате непрерывного изменения кристаллической решетки, т. е. взаимного расположения частиц в решетке. Это может привести к тому, что при определенной температуре изменится симметрия решетки, например, решетка с низкой симметрией перейдет в решетку с более высокой симметрией. Эта температура и будет точкой фазового перехода, который в этом случае называется фазовым переходом второго рода. Температура, при которой происходит фазовый переход второго рода, называется точкой Кюри, по имени Пьера Кюри, который обнаружил фазовый переход второго рода в ферромагнетиках.

При таком непрерывном изменении состояния в точке перехода не будет равновесия двух разных фаз, поскольку переход произошел сразу во всем объеме. Поэтому в точке перехода нет и скачка внутренней энергии II. Следовательно, такой переход не сопровождается выделением или поглощением скрытой теплоты перехода. Но так как при температурах выше и ниже точки перехода вещество находится в различных кристаллических модификациях, то у них различна теплоемкость. Это значит, что в точке фазового перехода скачком меняется теплоемкость, т. е. производная от внутренней энергии по температуре

Скачком изменяется и коэффициент объемного расширения хотя сам объем в точке перехода не изменяется.

Известны фазовые переходы второго рода, при которых непрерывное изменение состояния не означает изменения кристаллической структуры, но при которых состояние также изменяется сразу во всем объеме. Наиболее известные переходы этого типа - это переход вещества из ферромагнитного состояния в неферромагнитное, который происходит при температуре, называемой точкой Кюри; переход некоторых металлов из нормального в сверхпроводящее состояние, при котором исчезает электрическое сопротивление. В обоих случаях в точке перехода не происходят изменения структуры кристалла, но в обоих случаях состояние изменяется непрерывно и сразу во всем объеме. Переходом второго рода является и переход жидкого гелия из состояния Не I в состояние Не II. Во всех этих случаях в точке перехода наблюдается скачок теплоемкости. (В связи с этим температура фазового перехода второго рода имеет второе наименование: она называется -точкой, по характеру кривой изменения теплоемкости в этой точке; об этом уже говорилось в § 118, в тексте о жидком гелии.)

Разберем теперь немного подробнее, как происходят фазовые переходы. Основную роль в фазовых превращениях играют флуктуации физических величин. Мы уже встречались с ними при обсуждении вопроса о причине броуновского движения твердых частиц, взвешенных в жидкости (§ .7).

Флуктуации - случайные изменения энергии, плотности и других связанных с ними величин - существуют всегда. Но вдали от точки фазового перехода они возникают в очень малых объемах и тут же снова рассасываются. Когда же температура и давление в веществе близки к критическим, то в объеме, охваченном флуктуацией, становится возможным появление новой фазы. Все различие между фазовыми переходами первого и второго рода заключается в том, что флуктуации вблизи точки перехода развиваются по-разному.

Выше уже говорилось, что при переходе первого рода новая фаза возникает в виде зародышей внутри старой фазы. Причина их появления - это случайные флуктуации энергии и плотности. По мере приближения к точке перехода флуктуации, приводящие к новой фазе, происходят все чаще и чаще, и хотя каждая флуктуация охватывает очень малый объем, все вместе они могут привести к появлению макроскопического зародыша новой фазы, если в месте их образования имеется центр конденсации.

В случае перехода второго рода ситуация гораздо более сложная. Поскольку новая фаза появляется сразу во всем объеме, обычные микроскопические флуктуации сами по себе не могут привести к фазовому переходу. Их характер существенно меняется. По мере приближения к критической температуре флуктуации, «подготавливающие» переход в новую фазу, охватывают все большую часть вещества и, наконец, в точке перехода становятся бесконечными,

т. е. происходят во всем объеме. Ниже точки перехода, когда новая фаза уже установилась, они снова начинают здтухать и постепенно опять становятся короткодействующими и кратковременными.

Фазовый переход второго рода всегда связан с изменением симметрии системы, в новой фазе либо возникает порядок, которого не было в первоначальной (например, упорядочиваются магнитные моменты отдельных частиц при переходе в ферромагнитное состояние), либо изменяется уже существовавший порядок (при переходах с изменением кристаллической структуры).

Этот новый порядок содержится и во флуктуациях вблизи точки фазового перехода.

Наглядным пояснением к описанному механизму перехода является всем известный «эффект глазеющей толпы» (рис. 185). Представим себе прохожих, идущих по тротуару и глядящих в самых случайных направлениях. Это - «нормальное» состояние уличной толпы, в которой упорядоченность отсутствует. Пусть теперь один из прохожих без видимых причин уставился в пустое окно на втором этаже («случайная флуктуация»). Постепенно все большее число людей начинает смотреть в то же окно, и в конце концов все взгляды оказываются направленными в одну точку. Возникла «упорядоченная» фаза, хотя нет никаких внешних сил, способствующих установлению порядка, - за окном на втором этаже решительно ничего не происходит

Фазовые переходы второго рода - очень сложное и интересное явление. Процессы, происходящие в непосредственной окрестности точки перехода, еще до конца не исследованы, и полная картина поведения физических величин в условиях бесконечных флуктуаций еще только создается.

переходы в-ва из одной фазы в другую при изменении параметров состояния, характеризующих термодинамич. равновесие. Значение т-ры, давления или к.-л. др. физ. величины, при к-ром происходят Ф. п. в одно-компонентной системе, наз. точкой перехода. При Ф. п. I рода св-ва, выражаемые первыми производными энергии Гиббса G по давлению р, т-ре Т и др. параметрам, меняются скачком при непрерывном изменении этих параметров. При этом выделяется или поглощается теплота перехода. В однокомпонентной системе т-ра перехода 1 связана с давлением р 1 Клапейрона - Клаузиуса уравнением dp 1 /dT 1 = = QIT 1 DV, где Q - теплота перехода, DV - скачок объема. Для Ф. п. I рода характерны гистерезисные явления (напр., перегрев или переохлаждение одной из фаз), необходимые для образования зародышей другой фазы и протекания Ф. п. с конечной скоростью. В отсутствие устойчивых зародышей перегретая (переохлажденная) фаза находится в состоянии метастабильного равновесия (см. Зарождение новой фазы). Одна и та же фаза может существовать (хотя и метастабильно) по обе стороны от точки перехода на диаграмме состояния (однако кристаллич. фазы нельзя перегреть выше т-ры плавления или сублимации). В точке F. p. I рода энергия Гиббса G как ф-ция параметров состояния непрерывна (см. рис. в ст. Диаграмма состояния), а обе фазы могут сосуществовать сколь угодно долго, т. е. имеет место т. наз. фазовое расслоение (напр., сосуществование жидкости и ее пара или твердого тела и расплава при заданном полном объеме системы).

Ф. п. I рода - широко распространенные в природе явления. К ним относятся испарение и конденсация из газовой в жидкую фазу, плавление и затвердевание, сублимация и конденсация (десублимация) из газовой в твердую фазу, большинство полиморфных превращений, нек-рые структурные переходы в твердых телах, напр, образование мартенсита в сплаве железо - углерод. В чистых сверхпроводниках достаточно сильное магн. поле вызывает Ф. п. I рода из сверхпроводящего в нормальное состояние.

При Ф. п. II рода сама величина G и первые производные G по T, р и др. параметрам состояниям меняются непрерывно, а вторые производные (соотв. теплоемкость, коэф. сжимаемости и термич. расширения) при непрерывном изменении параметров меняются скачком либо сингулярны. Теплота не выделяется и не поглощается, явления гистерезиса и метаста-бильные состояния отсутствуют. К F.п. II рода, наблюдаемым при изменении т-ры, относятся, напр., переходы из парамагнитного (неупорядоченного) состояния в магнитоупо-рядоченное (ферро- и ферримагнитное в Кюри точке, антиферромагнитное в Нееля точке) с появлением спонтанной намагниченности (соотв. во всей решетке или в каждой из магн. подрешеток); переход диэлектрик - сегнетоэлектрик с появлением спонтанной поляризации; возникновение упорядоченного состояния в твердых телах (в упорядочивающихся сплавах); переход смектич. жидких кристаллов в нематич. фазу, сопровождающийся аномальным ростом теплоемкости, а также переходы между разл. смектич. фазами; l-переход в 4 He, сопровождающийся возникновением аномально высокой теплопроводности и сверхтекучести (см. Гелий); переход металлов в сверхпроводящее состояние в отсутствие магн. поля.

F. п. могут быть связаны с изменением давления. Многие в-ва при малых давлениях кристаллизуются в неплотноупако-ванные структуры. Напр., структура графита представляет собой ряд далеко отстоящих друг от друга слоев атомов углерода. При достаточно высоких давлениях таким рыхлым структурам соответствуют большие значения энергии Гиббса, а меньшим значениям отвечают равновесные плотноупако-ванные фазы. Поэтому при больших давлениях графит переходит в алмаз. Квантовые жидкости 4 He и 3 He при нормальном давлении остаются жидкими вплоть до самых низких из достигнутых т-р вблизи абс. нуля. Причина этого - в слабом взаимод. атомов и большой амплитуде их "нулевых колебаний" (высокой вероятности квантового туннелирования из одного фиксированного положения в другое). Однако повышение давления приводит к затвердеванию жидкого гелия; напр., 4 He при 2,5 МПа образует гексаген, плотноупакован-ную решетку.

Общая трактовка F. п. II рода предложена Л. Д. Ландау в 1937. Выше точки перехода система, как правило, обладает более высокой симметрией, чем ниже точки перехода, поэтому F. p. П рода трактуется как точка изменения симметрии. Напр., в ферромагнетике выше точки Кюри направления спиновых магн. моментов частиц распределены хаотически, поэтому одновременное вращение всех спинов вокруг одной и той же оси на одинаковый угол не меняет физ. св-в системы. Ниже точки перехода спины имеют преимуществ. ориентацию, и совместный их поворот в указанном выше смысле изменяет направление магн. момента системы. В двухкомпо-нентном сплаве, атомы к-рого А и В расположены в узлах простой кубич. кристаллич. решетки, неупорядоченное состояние характеризуется хаотич. распределением А и В по узлам решетки, так что сдвиг решетки на один период не меняет св-в. Ниже точки перехода атомы сплава располагаются упорядочено: ...ABAB... Сдвиг такой решетки на период приводит к замене всех атомов А на В и наоборот. T. обр., симметрия решетки уменьшается, т. к. подрешетки, образуемые атомами А и В, становятся неэквивалентными.

Симметрия появляется и исчезает скачком; при этом нарушение симметрии можно охарактеризовать физ. величиной, к-рая при Ф. п. II рода изменяется непрерывно и наз. параметром порядка. Для чистых жидкостей таким параметром является плотность, для р-ров - состав, для ферро- и ферримагнетиков - спонтанная намагниченность, для сегне-тоэлектриков - спонтанная электрич. поляризация, для сплавов - доля упорядочившихся атомов для смектич. жидких кристаллов - амплитуда волны плотности и т. п. Во всех перечисленных случаях при т-рах выше точки Ф. п. II рода параметр порядка равен нулю, ниже этой точки начинается его аномальный рост, приводящий к макс. значению при T = O.

Отсутствие теплоты перехода, скачков плотности, и концентраций, характерное для Ф. п. II рода, наблюдается и в критич. точке на кривых Ф. п. I рода (см. Критические явления). Сходство оказывается очень глубоким. Состояние в-ва около критич. точки также можно охарактеризовать величиной, играющей роль параметра порядка. Напр., в случае равновесия жидкость - пар таким параметром служит отклонение плотности в-ва от критич. значения: при движении по критич. изохоре со стороны высоких т-р газ однороден и отклонение плотности от критич. значения равно нулю, а ниже критич. т-ры в-во расслаивается на две фазы, в каждой из к-рых отклонение плотности от критической не равно нулю.

Поскольку вблизи точки Ф. п. II рода фазы мало отличаются друг от друга, возможно существование флуктуации параметра порядка, точно так же, как вблизи критич. точки. С этим связаны критич. явления в точках Ф. п. II рода: аномальный рост магн. восприимчивости ферромагнетиков и диэлектрич. восприимчивости сегнетоэлектриков (аналогом является рост сжимаемости вблизи критич. точки перехода жидкость - пар); резкий рост теплоемкости; аномальное рассеяние световых волн в системе жидкость - пар (т. наз. критич. опалесценция), рентгеновских лучей в твердых телах, нейтронов в ферромагнетиках. Существенно меняются и динамич. процессы, что связано с очень медленным рассасыванием образовавшихся флуктуации. Напр., вблизи критич. точки жидкость - пар сужается линия рэлеевского рассеяния света, вблизи точек Кюри и Нееля соотв. в ферромагнетиках и антиферромагнетиках замедляется спиновая диффузия (происходящее по законам диффузии распространение избыточной намагниченности). Средний размер флуктуации (корреляционный радиус) растет по мере приближения к точке Ф. п. II рода и становится в этой точке аномально большим. Это означает, что любая часть в-ва в точке перехода "чувствует" изменения, произошедшие в остальных частях. Наоборот, вдали от точки перехода II рода флуктуации статистически независимы и случайные изменения состояния в данной части системы не сказываются на св-вах других ее частей.

Деление Ф. п. на два рода несколько условно, т. к. бывают Ф. п. I рода с малыми скачками параметра порядка и малыми теплотами перехода при сильно развитых флуктуациях. Это наиб, характерно для переходов между жидкокристаллич. фазами. Чаще всего это Ф. п. I рода, очень близкие к Ф. п. П рода. Поэтому они, как правило, сопровождаются критич. явлениями. Природа многих Ф. п. в жидких кристаллах определяется взаимод. неск. параметров порядка, связанных с разл. типами симметрии. В нек-рых орг. соед. наблюдаются т. наз. возвратные жидкокристаллич. фазы, появляющиеся при охлаждении ниже т-р существования первичных нема-тич., холестерич. и смектич. фаз.

Особая точка на фазовой диаграмме, в к-рой линия переходов I рода превращается в линию переходов П рода, наз. трикритич. точкой. Трикритич. точки обнаружены на линиях Ф. п. в сверхтекучее состояние в р-рах 4 He - 3 He, на линиях ориентационных переходов в галогенидах аммония, на линии переходов нематич. жидкий кристалл - смектич. жидкий кристалл и в др. системах.

Лит.: Бrаут Р., Фазовые переходы, пер. с англ., M., 1967; Ландау Л. Д., Лифшиц E.M., Статистическая физика, ч. 1, 3 изд., M., 1976; Пикин С. А., Структурные превращения в жидких кристаллах, M., 1981; Паташинский А. 3., Покровский В. Л., Флуктуационная теория фазовых переходов, 2 изд., M., 1982; Анисимов M. А., Критические явления в жидкостях и жидких кристаллах, M., 1987. М. А. Анисимов.

  • - - особый класс магнитных фазовых переходов, при к-рыхменяется ориентация осей лёгкого намагничивания магнетиков при изменениивнеш. параметров...

    Физическая энциклопедия

  • - в ускорителях - совокупность взаимосвязанных колебаний фаз, радиусов орбит и энергий заряж. частиц вблизи их равновесных значений. Для практич...

    Физическая энциклопедия

  • - искажения формы сигнала, обусловленные нарушением фазовых соотношений в его частотном спектре...

    Физическая энциклопедия

  • Химическая энциклопедия

  • - скачкообразные переходы квантовой системы из одного возможного состояния в другое. Квантовые переходы могут быть излучательными и безызлучательными...

    Современная энциклопедия

  • Естествознание. Энциклопедический словарь

  • - - сооружаются на опорах при пересечении водных и др. преград, при прокладке трубопроводов на заболоченных, обводнённых, многолетнемёрзлых грунтах...

    Геологическая энциклопедия

  • - напряжения, возникающие при фазовых превращениях металлов и сплавов в твердом состоянии вследствие различий в удельных объемах образующейся и исходной фаз. Смотри также: - Напряжения - термические...

    Энциклопедический словарь по металлургии

  • - см. Мышцы, электрические свойства...

    Энциклопедический словарь Брокгауза и Евфрона

  • - в квантовой теории, переходы физической микросистемы из одного состояния в другое, связанные с рождением или уничтожением виртуальных частиц, т. е. частиц, существующих лишь в промежуточных, имеющих...
  • - скачкообразные переходы квантовой системы из одного состояния в другое...

    Большая Советская энциклопедия

  • - см. Квантовые переходы...

    Большая Советская энциклопедия

  • - переходы вещества из одной фазы в другую, происходящие при изменении температуры, давления или под действием каких-либо других внешних факторов...

    Современная энциклопедия

  • - скачкообразные переходы квантовой системы из одного возможного состояния в другое...

    Большой энциклопедический словарь

  • - Глаголы, обозначающие какую-либо фазу действия...

    Словарь лингвистических терминов

  • - ФА́ЗА, -ы,...

    Толковый словарь Ожегова

"ФАЗОВЫЕ ПЕРЕХОДЫ" в книгах

Переходы

Из книги Выступление без подготовки. Что и как говорить, если вас застали врасплох автора Седнев Андрей

Переходы Выступая без подготовки, вы сначала говорите о том, что первым пришло вам в голову, затем переходите ко второй идее, после этого – к третьей, а при необходимости – еще дальше. Чтобы речь звучала красиво и непринужденно, используйте специальные

Переходы

Из книги Зрелость. Ответственность быть самим собой автора Раджниш Бхагван Шри

Переходы От Нет К ДА Сознание приносит свободу. Свобода не подразумевает только свободу поступать правильно; если бы это было смыслом свободы, что это была бы за свобода? Если ты свободен только поступать правильно, тогда ты вообще не свободен. Свобода подразумевает обе

Переходы

Из книги Славянская кармическая нумерология. Улучши матрицу своей судьбы автора Маслова Наталья Николаевна

Переходы Вкратце расскажу, как человек может себе организовать переход. Подробнее – в части «Что делать?».Например, восьмерка – это клановость. То есть для ее трансформации в единицы нам нужно оторваться от клана. Нам нужно уехать из дома. Перестать каким-либо образом

Фазовые эксперименты

Из книги Фаза. Взламывая иллюзию реальности автора Радуга Михаил

12. Переходы

Из книги Руководство Proshow Producer Version 4.5 автора Corporation Photodex

12. Переходы Искусство перехода от слайда к слайду

2. Переходы в CSS

Из книги CSS3 для веб-дизайнеров автора Сидерхолм Дэн

2. Переходы в CSS Шел 1997 год; я сидел в плохонькой квартирке в красивом Оллстоне, в Массачусетсе. Обычная ночь просмотра исходников и изучения HTML, которой предшествовал день упаковывания компакт-дисков на местной звукозаписывающей студии, – практически бесплатно

7.2. Переходы

Из книги Самоучитель UML автора Леоненков Александр

7.2. Переходы Переход как элемент языка UML был рассмотрен в главе 6. При построении диаграммы деятельности используются только нетриггерные переходы, т. е. такие, которые срабатывают сразу после завершения деятельности или выполнения соответствующего действия. Этот

Фазовые соотношения в усилителе с общим эмиттером

Из книги OrCAD PSpice. Анализ электрических цепей автора Кеоун Дж.

Фазовые соотношения в усилителе с общим эмиттером Когда в усилителе с ОЭ для стабилизации параметров смещения используется эмиттерный резистор RЕ, он шунтируется конденсатором СЕ с такой емкостью, чтобы на частоте входного сигнала эмиттер можно было бы считать

Переходы

Из книги Искусство беллетристики [Руководство для писателей и читателей.] автора Рэнд Айн

Переходы Трудная проблема, о которой обычно не думают, пока не столкнутся с ней напрямую, как перейти от одного пункта к другому - например, как вывести человека из комнаты на улицу, или как заставить его пересечь комнату, чтобы поднять что-то. На сцене об этих

Переходы

Из книги Лошадь в выездке автора Больдт Харри

Переходы Переходы от одного аллюра к другому и от одного ритма к другому должны быть отчетливо наглядны, но выполняться плавно, а не рывком. При выполнении программы нужно сконцентрировать внимание на том, чтобы делать переходы в точно предписываемом месте. Вплоть до

Фазовые эксперименты

Из книги Сверхвозможности человеческого мозга. Путешествие в подсознание автора Радуга Михаил

Фазовые эксперименты В этом разделе акцент делается не на самом факте достижения фазы, а на дальнейших внутренних действиях в ней: перемещение в пространстве, управление им, нахождение объектов и экспериментах.Практики время от времени пытаются направить свои опыты на

§ 4.18 Фазовые переходы 1-го и 2-го рода

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

§ 4.18 Фазовые переходы 1-го и 2-го рода Я полагаю, что следует ввести в физику понятия симметрии, столь привычные для кристаллографов. П. Кюри, "О симметрии физических явлений", 1894 г. Эти исследования, если бы они были продолжены П. Кюри, могли бы, вероятно, иметь для развития

7. Фазовые переходы I и II рода

автора Буслаева Елена Михайловна

7. Фазовые переходы I и II рода Компоненты в жидком состоянии (компоненты А) растворимы неограниченно, компоненты в твердом состоянии (компоненты В) не образуют химических соединений и нерастворимы.Диаграммы состояния представляют график в координатах сплава –

12. Фазовые превращения в твердом состоянии

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

12. Фазовые превращения в твердом состоянии Фаза – это однородная часть системы, которая отделена от другой части системы (фазы) поверхностью раздела, при переходе через которую химический состав или структура изменяются скачком.При кристаллизации чистого металла в

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре Сплавы железа с углеродом являются самыми распространенными металлическими

Фазовый переход (фазовое превращение) в термодинамике - переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры , давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

Поскольку разделение на термодинамические фазы - более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.

Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но при изменении концентрации компонентов (например, появление кристалликов соли в растворе, который достиг насыщения).

Классификация фазовых переходов

При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём, количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов).

Наиболее распространённые примеры фазовых переходов первого рода:

  • плавление и затвердевание
  • кипение и конденсация
  • сублимация и десублимация

При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их производные по температуре и давлению: теплоёмкость , коэффициент теплового расширения, различные восприимчивости и т. д.

Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке перехода параметра порядка, равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.

Наиболее распространённые примеры фазовых переходов второго рода: прохождение системы через критическую точку

  • переход парамагнетик-ферромагнетик или парамагнетик-антиферромагнетик (параметр порядка - намагниченность)
  • переход металлов и сплавов в состояние сверхпроводимости (параметр порядка - плотность сверхпроводящего конденсата)
  • переход жидкого гелия в сверхтекучее состояние (п.п. - плотность сверхтекучей компоненты)
  • переход аморфных материалов в стеклообразное состояние

Современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода.

В последнее время широкое распространение получило понятие квантовый фазовый переход, т.е. фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.

Динамика фазовых переходов

Как сказано выше, под скачкообразным изменением свойств вещества имеется в виду скачок при изменении температуры и давления. В реальности же, воздействуя на систему, мы изменяем не эти величины, а её объем и её полную внутреннюю энергию . Это изменение всегда происходит с какой-то конечной скоростью, а значит, что для того, чтобы «покрыть» весь разрыв в плотности или удельной внутренней энергии, нам требуется некоторое конечное время. В течение этого времени фазовый переход происходит не сразу во всём объёме вещества, а постепенно. При этом в случае фазового перехода первого рода выделяется (или забирается) определённое количество энергии, которая называется теплотой фазового перехода. Для того, чтобы фазовый переход не останавливался, требуется непрерывно отводить (или подводить) это тепло, либо компенсировать его совершением работы над системой.

В результате, в течение этого времени точка на фазовой диаграмме, описывающая систему, «замирает» (т.е. давление и температура остаются постоянными) до полного завершения процесса.

Литература

  • Базаров И. П. Термодинамика. - М.: Высшая школа, 1991, 376 с.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-ое испр. - М.: Едиториал УРСС, 2003. 120 с.
  • Квасников И. А. Термодинамика и статистическая физика. Т.1: Теория равновесных систем: Термодинамика. - Том.1. Изд. 2, испр. и доп. - М.: УРСС, 2002. 240 с.
  • Стенли. Г. Фазовые переходы и критические явления. - М.: Мир, 1973.
  • Паташинский А. З., Покровский В. Л. Флуктуационная теория фазовых переходов. - М.: Наука, 1981.
  • Гуфан Ю. М.. Термодинамическая теория фазовых переходов. - Ростов н/Д: Издательство Ростовского университета, 1982. - 172 с.

Важным разделом термодинамики является изучение превращений между различными фазами вещества, поскольку эти процессы происходят на практике и имеют принципиальное значение для прогнозирования поведения системы в тех или иных условиях. Эти превращения получили название фазовых переходов, которым и посвящается статья.

Понятие фазы и компонента системы

Прежде чем перейти к рассмотрению фазовых переходов в физике, следует определить понятие самой фазы. Как известно из курса общей физики, существует три состояния вещества: газообразное, твердое и жидкое. В специальном же разделе науки - в термодинамике - законы формулируются для фаз вещества, а не для их агрегатных состояний. Под фазой понимают некоторый объем материи, который обладает гомогенной структурой, характеризуется конкретными физико-химическими свойствами и отделен от остальной материи границами, которые называются межфазными.

Таким образом, понятие "фаза" несет гораздо больше практически значимой информации о свойствах материи, чем ее агрегатное состояние. Например, твердое состояние такого металла, как железо, может находиться в виде следующих фаз: низкотемпературная магнитная объемно-центрированная кубическая (ОЦк), низкотемпературная немагнитная ОЦК, гранецентрированная кубическая (ГЦК) и высокотемпературная немагнитная ОЦК.

Помимо понятия "фаза", в законах термодинамики также используют термин "компоненты", под которым понимают количество химических элементов, которые составляют конкретную систему. Это значит, что фаза может быть как монокомпонентной (1 химический элемент), так и многокомпонентной (несколько химических элементов).

Теорема Гиббса и равновесие между фазами системы

Для понимания фазовых переходов необходимо знать условия равновесия между ними. Эти условия можно математически получить, если решить систему уравнений Гиббса для каждой из них, полагая, что состояние равновесия достигается тогда, когда суммарная энергия Гиббса изолированной от внешнего влияния системы перестает изменяться.

В итоге решения указанной системы уравнений получаются условия для существования равновесия между несколькими фазами: изолированная система перестанет эволюционировать только тогда, когда давления, химические потенциалы каждого компонента и температуры во всех фазах будут равны друг другу.

Правило фаз Гиббса для равновесия

Система, состоящая из нескольких фаз и компонентов, может находиться в равновесии не только при определенных условиях, например, при конкретном значении температуры и давления. Некоторые переменные в теореме Гиббса для равновесия можно изменять, сохраняя и число фаз, и число компонентов, находящихся в этом равновесии. Количество переменных, которые можно изменять, не нарушая равновесия в системе, называется числом свобод этой системы.

Число свобод l системы, состоящей из f фаз и k компонентов, определяется однозначно из правила фаз Гиббса. Это правило математически записывается так: l + f = k + 2. Как работать с этим правилом? Очень просто. Например, известно, что система состоит из f=3 равновесных фаз. Какое минимальное количество компонентов может содержать такая система? Ответить на вопрос можно, рассуждая следующим образом: в случае равновесия самые жесткие условия существуют тогда, когда оно реализуется только при определенных показателях, то есть изменение любого термодинамического параметра повлечет нарушения равновесия. Это означает, что число свобод l=0. Подставляя известные значения l и f, получаем k=1, то есть система, в которой в равновесии находятся три фазы, может состоять из одного компонента. Ярким примером является тройная точка воды, когда лед, жидкая вода и пар существуют в равновесии при конкретных значениях температуры и давления.

Классификация фазовых превращений

Если начинать изменять в находящейся в равновесии системе некоторые то можно наблюдать, как одна фаза будет исчезать, а другая появляться. Простым примером этого процесса является таяние льда при его нагреве.

Учитывая, что уравнение Гиббса зависит только от двух переменных (давление и температура), а фазовый переход предполагает изменение этих переменных, тогда математически превращение между фазами может быть описано путем дифференцирования энергии Гиббса по ее переменным. Именно такой подход и использовал австрийский физик Пауль Эренфест в 1933 году, когда составлял классификацию всех известных термодинамических процессов, идущих с изменением фазового равновесия.

Из основ термодинамики следует, что первая производная энергии Гиббса по температуре равна изменению энтропии системы. Производная энергии Гиббса по давлению равна изменению объема. Если при изменении фаз в системе энтропия или объем терпят разрыв, то есть меняются резко, тогда говорят о фазовом переходе первого рода.

Далее, вторые производные энергии Гиббса по температуре и давлению - это теплоемкость и коэффициент объемного расширения соответственно. Если превращение между фазами сопровождается разрывом в значениях указанных физических величин, тогда говорят о фазовом переходе второго рода.

Примеры превращений между фазами

Существует огромное количество различных переходов в природе. В рамках указанной классификации яркими примерами переходов первого рода являются процессы плавления металлов или конденсации водяного пара из воздуха, когда происходит скачок объема в системе.

Если говорить о переходах второго рода, то яркими примерами являются трансформация железа из магнитного в парамагнитное состояние при температуре 768 ºC или превращение металлического проводника в сверхпроводящее состояние при температурах, близких к абсолютному нулю.

Уравнения, которые описывают переходы первого рода

На практике часто бывает необходимо знать, как изменяется температура, давление и поглощаемая (выделяемая) энергия в системе, когда в ней происходят фазовые превращения. Для этой цели используются два важных уравнения. Они получены исходя из знаний основ термодинамики:

  1. Формула Клапейрона, которая устанавливает связь между давлением и температурой во время превращений между разными фазами.
  2. Формула Клаузиуса, которая связывает поглощаемую (выделяемую) энергию и температуру системы в ходе превращения.

Польза обоих уравнений состоит не только в получении количественных зависимостей физических величин, но и в определении знака наклона кривых равновесия на фазовых диаграммах.

Уравнение для описания переходов второго рода

Фазовые переходы 1 и 2 рода описываются разными уравнениями, поскольку применение и Клаузиуса для переходов второго рода приводит к математической неопределенности.

Для описания последних используются уравнения Эренфеста, которые устанавливают связь между изменениями давления и температуры через знание изменения теплоемкости и коэффициента объемного расширения в ходе процесса превращения. Применяются уравнения Эренфеста для описания переходов проводник - суперпроводник в отсутствии магнитного поля.

Важность фазовых диаграмм

Фазовые диаграммы представляют собой графическое изображение областей, в которых существуют в равновесии соответствующие фазы. Эти области разделены линиями равновесия между фазами. Часто используются фазовые диаграммы на осях P-T (давление-температура), T-V (температура-объем) и P-V (давление-объем).

Важность фазовых диаграмм заключается в том, что они позволяют предсказать, в какой фазе будет находиться система при изменении внешних условий соответствующим образом. Эта информация используется при термической обработке различных материалов с целью получения структуры с заданными свойствами.