Массой состав входит атомное. Какие компоненты входят в состав ядра

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами ).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения α -частиц через вещество. Оказалось, что почти вся масса атома (99,95%) сосредоточена в ядре. Размер атомного ядра имеет порядок величины 10 -1 3 -10 - 12 см, что в 10 000 раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода , выбитых α -частицами из ядер других элементов (1919-1920 гг.), привели уче-ного к представлению о протоне . Термин протон был введен в начале 20-х гг XX ст.

Протон (от греч. protons — первый, символ p ) — стабильная элементарная частица, ядро ато-ма водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона e = 1,6 · 10 -1 9 Кл. Масса протона в 1836 раз больше массы электрона. Масса покоя протона m р = 1,6726231 · 10 -27 кг = 1,007276470 а.е.м.

Второй частицей, входящей в состав ядра, является нейтрон .

Нейтрон (от лат. neuter — ни тот, ви другой, символ n ) — это эле-ментарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в 1839 раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона m n = 1,6749286 · 10 -27 кг = 1,0008664902 а.е.м. и превосходит массу протона па 2,5 массы электрона. Нейтрон, наря-ду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия α -частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало пре-граду из свинцовой пластины толщиной 10-20 см) усиливало свое действие при прохождении через парафиновую пластину (см. рисунок). Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это γ -кванты. Большая проникающая способность новых частиц, названных ней-тронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании α -частиц в ядра бериллия происходит следующая реакция:

Здесь — символ нейтрона; заряд его равен нулю, а относительная атомная масса прибли-зительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время ~ 15 мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протонно-нейтронную (нуклонную) модель ядра . Согласно этой моде-ли, ядро состоит из протонов и нейтронов. Число протонов Z совпадает с порядковым номером элемента в таблице Д. И. Менделеева .

Заряд ядра Q определяется числом протонов Z , входящих в состав ядра, и кратен абсолютной величине заряда электрона e :

Q = +Ze.

Число Z называется зарядовым числом ядра или атомным номером .

Массовым числом ядра А называется общее число нуклонов, т. е. протонов и нейтронов, содер-жащихся в нем. Число нейтронов в ядре обозначается буквой N . Таким образом, массовое число равно:

А = Z + N.

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов .

Изотопы (от греч. isos — равный, одинаковый и topoa — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число прото-нов (Z ) и различное число нейтронов (N ).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного эле-мента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами Z и N . Общее обозначение нуклидов имеет вид ……. где X — символ химического эле-мента, A = Z + N — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и про-изошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (b почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемен-та определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1 Н протий , 2 Н дейтерий , 3 Н тритий столь сильно отличаются по массе, что и их физические и хими-ческие свойства различны. Дейтерий стабилен (т.е. не радиоактивен) и входит в качестве неболь-шой примеси (1: 4500) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода . Она при нормальном атмосферном давлении кипит при 101,2 °С и замерзает при +3,8 ºС. Тритий β -радиоактивен с периодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактив-ные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами 235 и 238. Изотоп составляет всего 1/140 часть от более распространенного .

Ядро атома состоит из нуклонов, которые подразделяются на протоны и нейтроны.

Символическое обозначение ядра атома:

А- число нуклонов, т.е. протонов + нейтронов (или атомная масса)
Z- число протонов (равно числу электронов)
N- число нейтронов (или атомный номер)

ЯДЕРНЫЕ СИЛЫ

Действуют между всеми нуклонами в ядре;
- силы притяжения;
- короткодействующие

Нуклоны притягиваются друг к другу ядерными силами, которые совершенно непохожи ни на гравитационные, ни на электростатические. . Ядерные силы очень быстро спадают с расстоянием. Радиус их действия порядка 0,000 000 000 000 001 метра.
Для этой сверхмалой длины, характеризующей размеры атомных ядер, ввели специальное обозначение - 1 Фм (в честь итальянского физика Э. Ферми, 1901-1954). Все ядра имеют размеры нескольких ферми. Радиус ядерных сил равен размеру нуклона, поэтому ядра - сгустки очень плотной материи. Возможно, самой плотной в земных условиях.
Ядерные силы - сильные взаимодействия. Они многократно превосходят кулоновскую силу (на одинаковом расстоянии). Короткодействие ограничивает действие ядерных сил. С ростом числа нуклонов ядра становятся неустойчивыми, и поэтому большинство тяжелых ядер радиоактивны, а совсем тяжелые вообще не могут существовать.
Конечное число элементов в природе - следствие короткодействия ядерных сил.



Строение атома - Класс!ная физика

Знаете ли вы?

В середине XX века теория ядра предсказала существование стабильных элементов с порядковыми номерами Z = =110 -114.
В Дубне был получен 114-й элемент с атомной массой А = 289, который "жил" всего 30 секунд, что невероятно долго для атома с ядром такого размера.
Сегодня теоретики уже обсуждают свойства сверхтяжелых ядер массой 300 и даже 500.

Атомы с одинаковыми атомными номерами называют изотопами: в таблице Менделеева
они расположены в одной клеточке (по-гречески изос - равный, топос - место).
Химические свойства изотопов почти тождественны.
Если элементов всего в природе - около 100, то изотопов - более 2000. Многие из них неустойчивы, то есть радиоактивны, и распадаются, испуская различные виды излучений.
Изотопы одного и того же элемента по составу отличаются лишь количеством нейтронов в ядре.


Изотопы водорода.

Если удалить пространство из всех атомов человеческого тела, то то, что останется, сможет пролезть в игольное ушко.


Любознательным

«Глиссирующие» автомобили

Если, двигаясь на автомобиле по мокрой дороге с большой скоростью, резко затормозить, то автомобиль поведет себя как глиссер; шины его начнут скользить по тонкой пленке воды, практически не касаясь дороги. Почему это происходит? Почему автомобиль не всегда скользит на мокрой дороге, даже если тормоз не нажат? Существует ли такой рисунок протектора, который уменьшает этот эффект?

Оказывается...
Предлагалось несколько рисунков протектора, уменьшающего вероятность «аквапланирования». Например, канавка может отводить воду к задней точке контакта протектора с дорогой, откуда вода будет выбрасываться наружу. По другим, более мелким канавкам вода может отводиться в стороны. Наконец, небольшие углубления на протекторе могут как бы «промокать» водяной слой на дороге, прикасаясь к нему непосредственно перед зоной основного контакта протектора с дорожным покрытием. Во всех случаях задача состоит в том, чтобы как можно скорее убрать воду из зоны контакта и не допустить аквапланирования.

Делимо ли атомное ядро? И если да, то из каких частиц оно состоит? На этот вопрос пытались ответить многие физики.

В 1909 г. британский физик Эрнест Резерфорд вместе с немецким физиком Гансом Гейгером и физиком из Новой Зеландии Эрнстом Марсденом провёл свой известный эксперимент по рассеянию α-частиц, результатом которого стал вывод о том, что атом вовсе не неделимая частица. Он состоит из положительно заряженного ядра и вращающихся вокруг него электронов. Причём, несмотря на то, что размер ядра примерно в 10 000 раз меньше размера самого атома, в нём сосредоточено 99,9% массы атома.

Но что из себя представляет ядро атома? Какие частицы входят в его состав? Это сейчас мы знаем, что ядро любого элемента состоит из протонов и нейтронов , общее название которых нуклоны . А в начале ХХ века после появления планетарной, или ядерной, модели атома, это было загадкой для многих учёных. Выдвигались разные гипотезы и предлагались разные модели. Но правильный ответ на этот вопрос снова дал Резерфорд.

Открытие протона

Опыт Резерфорда

Ядро атома водорода – это атом водорода, из которого удалили его единственный электрон.

К 1913 г. были вычислены масса и заряд ядра атома водорода. Кроме того, стало известно, что масса атома любого химического элемента всегда делится без остатка на массу атома водорода. Этот факт навёл Резерфорда на мысль, что в любое ядро входят ядра атомов водорода. И ему удалось доказать это экспериментально в 1919 г.

В своём опыте Резерфорд поместил источник α-частиц в камеру, в которой был создан вакуум. Толщина фольги, закрывавшей окно камеры, была такой, что α-частицы не могли выходить наружу. За окном камеры располагался экран, на который нанесли покрытие из сернистого цинка.

Когда камеру начинали заполнять азотом, на экране фиксировались световые вспышки. Это означало, что под воздействием α-частиц из азота выбивались какие-то новые частицы, без труда проникавшие через фольгу, непроходимую для α-частиц. Оказалось, что неизвестные частицы имеют положительный заряд, равный по величине заряду электрона, а их масса равна массе ядра атома водорода. Эти частицы Резерфорд назвал протонами .

Но вскоре стало понятно, что ядра атомов состоят не только из протонов. Ведь если бы это было так, то масса атома равнялась бы сумме масс протонов в ядре, а отношение заряда ядра к массе было бы величиной постоянной. На самом деле, это справедливо только для простейшего атома водорода. В атомах других элементов всё по-другому. К примеру, в ядре атома бериллия сума масс протонов равна 4 единицам, а масса самого ядра равна 9 единицам. Значит, в этом ядре существуют и другие частицы, обладающие массой в 5 единиц, но не имеющие заряда.

Открытие нейтрона

В 1930 г. немецкий физик Вальтер Боте Боте и Ханс Беккер во время эксперимента обнаружили, что излучение, возникающее при бомбардировке атомов бериллия α-частицами, имеет огромную проникающую способность. Спустя 2 года английский физик Джеймс Чедвик, ученик Резерфорда, выяснил, что даже свинцовая пластинка толщиной 20 см, помещённая на пути этого неизвестного излучения, не ослабляет и не усиливает его. Оказалось, что и электромагнитное поле не оказывает на излучаемые частицы никакого воздействия. Это означало, что они не имеют заряда. Так была открыта ещё одна частица, входящая в состав ядра. Её назвали нейтроном . Масса нейтрона оказалась равной массе протона.

Протонно-нейтронная теория ядра

После экспериментального открытия нейтрона российский ученый Д. Д. Иваненко и немецкий физик В. Гейзенберг, независимо друг от друга предложили протонно-нейтронную теорию ядра, которая дала научное обоснование состава ядра. Согласно этой теории ядро любого химического элемента состоит из протонов и нейтронов. Их общее название - нуклоны.

Общее число нуклонов в ядре обозначают буквой A . Если число протонов в ядре обозначить буквой Z , а число нейтронов буквой N , то получим выражение:

A = Z + N

Это уравнение называется уравнением Иваненко-Гейзенберга .

Так как заряд ядра атома равен количеству протонов в нём, то Z называют также зарядовым числом . Зарядовое число, или атомный номер, совпадает с его порядковым номером в периодической системе элементов Менделеева.

В природе существуют элементы, химические свойства которых абсолютно одинаковы, а массовые числа разные. Такие элементы называются изотопами . У изотопов одинаковое количество протонов и разное количество нейтронов.

К примеру, у водорода три изотопа. Все они имеют порядковый номер, равный 1, а число нейтронов в ядре у них разное. Так, у самого простого изотопа водорода, протия, массовое число 1, в ядре 1 протон и ни одного нейтрона. Это простейший химический элемент.

.
В некоторых редких случаях могут образовываться короткоживущие экзотические атомы , у которых вместо нуклона ядром служат иные частицы.

Количество протонов в ядре называется его зарядовым числом Z {\displaystyle Z} - это число равно порядковому номеру элемента , к которому относится атом, в таблице (Периодической системе элементов) Менделеева . Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом N {\displaystyle N} . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами . Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами . Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом A {\displaystyle A} ( A = N + Z {\displaystyle A=N+Z} ) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами .

Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами .

Энциклопедичный YouTube

    1 / 5

    ✪ Строение атомного ядра. Ядерные силы

    ✪ Ядерные силы Энергия связи частиц в ядре Деление ядер урана Цепная реакция

    ✪ Ядерные реакции

    ✪ Ядерная физика - Строение ядра атома v1

    ✪ КАК УСТРОЕНА АТОМНАЯ БОМБА "ТОЛСТЯК"

    Субтитры

История

Рассеяние заряженных частиц может быть объяснено, если предположить такой атом, который состоит из центрального электрического заряда, сосредоточенного в точке и окружённого однородным сферическим распределением противоположного электричества равной величины. При таком устройстве атома α- и β-частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала.

Таким образом Резерфорд открыл атомное ядро, с этого момента и ведёт начало ядерная физика, изучающая строение и свойства атомных ядер.

После обнаружения стабильных изотопов элементов, ядру самого лёгкого атома была отведена роль структурной частицы всех ядер. С 1920 года ядро атома водорода имеет официальный термин - протон . В 1921 году Лиза Мейтнер предложила первую, протон-электронную, модель строения атомного ядра, согласно которой оно состоит из протонов, электронов и альфа-частиц :96 . Однако в 1929 году произошла «азотная катастрофа» - В. Гайтлер и Г. Герцберг установили , что ядро атома азота подчиняется статистике Бозе - Эйнштейна , а не статистике Ферми - Дирака , как предсказывала протон-электронная модель :374 . Таким образом, эта модель вступила в противоречие с экспериментальными результатами измерений спинов и магнитных моментов ядер . В 1932 году Джеймсом Чедвиком была открыта новая электрически нейтральная частица, названная нейтроном . В том же году Иваненко и, независимо, Гейзенберг выдвинули гипотезу о протон-нейтронной структуре ядра. В дальнейшем, с развитием ядерной физики и её приложений, эта гипотеза была полностью подтверждена .

Теории строения атомного ядра

В процессе развития физики выдвигались различные гипотезы строения атомного ядра; тем не менее, каждая из них способна описать лишь ограниченную совокупность ядерных свойств. Некоторые модели могут взаимоисключать друг друга.

Наиболее известными являются следующие:

  • Капельная модель ядра - предложена в 1936 году Нильсом Бором .
  • Оболочечная модель ядра - предложена в 30-х годах XX века.
  • Обобщённая модель Бора - Моттельсона
  • Кластерная модель ядра
  • Модель нуклонных ассоциаций
  • Сверхтекучая модель ядра
  • Статистическая модель ядра

Ядерно-физические характеристики

Впервые заряды атомных ядер определил Генри Мозли в 1913 году . Свои экспериментальные наблюдения учёный интерпретировал зависимостью длины волны рентгеновского излучения от некоторой константы Z {\displaystyle Z} , изменяющейся на единицу от элемента к элементу и равной единице для водорода:

1 / λ = a Z − b {\displaystyle {\sqrt {1/\lambda }}=aZ-b} , где

A {\displaystyle a} и b {\displaystyle b} - постоянные.

Из чего Мозли сделал вывод, что найденная в его опытах константа атома, определяющая длину волны характеристического рентгеновского излучения и совпадающая с порядковым номером элемента, может быть только зарядом атомного ядра, что стало известно под названием закон Мозли .

Масса

Из-за разницы в числе нейтронов A − Z {\displaystyle A-Z} изотопы элемента имеют разную массу M (A , Z) {\displaystyle M(A,Z)} , которая является важной характеристикой ядра. В ядерной физике массу ядер принято измерять в атомных единицах массы (а. е. м. ), за одну а. е. м. принимают 1/12 часть массы нуклида 12 C . Следует отметить, что стандартная масса, которая обычно приводится для нуклида - это масса нейтрального атома . Для определения массы ядра нужно из массы атома вычесть сумму масс всех электронов (более точное значение получится, если учесть ещё и энергию связи электронов с ядром).

Кроме того, в ядерной физике часто используется энергетический эквивалент массы . Согласно соотношению Эйнштейна , каждому значению массы M {\displaystyle M} соответствует полная энергия:

E = M c 2 {\displaystyle E=Mc^{2}} , где c {\displaystyle c} - скорость света в вакууме .

Соотношение между а. е. м. и её энергетическим эквивалентом в джоулях :

E 1 = 1 , 660539 ⋅ 10 − 27 ⋅ (2 , 997925 ⋅ 10 8) 2 = 1 , 492418 ⋅ 10 − 10 {\displaystyle E_{1}=1,660539\cdot 10^{-27}\cdot (2,997925\cdot 10^{8})^{2}=1,492418\cdot 10^{-10}} , E 1 = 931 , 494 {\displaystyle E_{1}=931,494} .

Радиус

Анализ распада тяжёлых ядер уточнил оценку Резерфорда и связал радиус ядра с массовым числом простым соотношением:

R = r 0 A 1 / 3 {\displaystyle R=r_{0}A^{1/3}} ,

где - константа.

Так как радиус ядра не является чисто геометрической характеристикой и связан прежде всего с радиусом действия ядерных сил , то значение r 0 {\displaystyle r_{0}} зависит от процесса, при анализе которого получено значение R {\displaystyle R} , усреднённое значение r 0 = 1 , 23 ⋅ 10 − 15 {\displaystyle r_{0}=1,23\cdot 10^{-15}} м, таким образом радиус ядра в метрах :

R = 1 , 23 ⋅ 10 − 15 A 1 / 3 {\displaystyle R=1,23\cdot 10^{-15}A^{1/3}} .

Моменты ядра

Как и составляющие его нуклоны, ядро имеет собственные моменты.

Спин

Поскольку нуклоны обладают собственным механическим моментом, или спином, равным 1 / 2 {\displaystyle 1/2} , то и ядра должны иметь механические моменты. Кроме того, нуклоны участвуют в ядре в орбитальном движении, которое также характеризуется определённым моментом количества движения каждого нуклона. Орбитальные моменты принимают только целочисленные значения ℏ {\displaystyle \hbar } (постоянная Дирака). Все механические моменты нуклонов, как спины, так и орбитальные, суммируются алгебраически и составляют спин ядра.

Несмотря на то, что число нуклонов в ядре может быть очень велико, спины ядер обычно невелики и составляют не более нескольких ℏ {\displaystyle \hbar } , что объясняется особенностью взаимодействия одноимённых нуклонов. Все парные протоны и нейтроны взаимодействуют только так, что их спины взаимно компенсируются, то есть пары всегда взаимодействуют с антипараллельными спинами. Суммарный орбитальный момент пары также всегда равен нулю. В результате ядра, состоящие из чётного числа протонов и чётного числа нейтронов, не имеют механического момента. Отличные от нуля спины существуют только у ядер, имеющих в своём составе непарные нуклоны, спин такого нуклона суммируется с его же орбитальным моментом и имеет какое-либо полуцелое значение: 1/2, 3/2, 5/2. Ядра нечётно-нечётного состава имеют целочисленные спины: 1, 2, 3 и т. д. .

Магнитный момент

Измерения спинов стали возможными благодаря наличию непосредственно связанных с ними магнитных моментов . Они измеряются в магнетонах и у различных ядер равны от −2 до +5 ядерных магнетонов. Из-за относительно большой массы нуклонов магнитные моменты ядер очень малы по сравнению с магнитными моментами электронов , поэтому их измерение гораздо сложнее. Как и спины, магнитные моменты измеряются спектроскопическими методами , наиболее точным является метод ядерного магнитного резонанса .

Магнитный момент чётно-чётных пар, как и спин, равен нулю. Магнитные моменты ядер с непарными нуклонами образуются собственными моментами этих нуклонов и моментом, связанным с орбитальным движением непарного протона .

Электрический квадрупольный момент

Атомные ядра, спин которых больше или равен единице, имеют отличные от нуля квадрупольные моменты, что говорит об их не точно сферической форме. Квадрупольный момент имеет знак плюс, если ядро вытянуто вдоль оси спина (веретенообразное тело), и знак минус, если ядро растянуто в плоскости, перпендикулярной оси спина (чечевицеобразное тело). Известны ядра с положительными и отрицательными квадрупольными моментами. Отсутствие сферической симметрии у электрического поля , создаваемого ядром с ненулевым квадрупольным моментом, приводит к образованию дополнительных энергетических уровней атомных электронов и появлению в спектрах атомов линий сверхтонкой структуры , расстояния между которыми зависят от квадрупольного момента .

Энергия связи

Устойчивость ядер

Из факта убывания средней энергии связи для нуклидов с массовыми числами больше или меньше 50-60 следует, что для ядер с малыми A {\displaystyle A} энергетически выгоден процесс слияния - термоядерный синтез , приводящий к увеличению массового числа, а для ядер с большими A {\displaystyle A} - процесс деления . В настоящее время оба этих процесса, приводящих к выделению энергии, осуществлены, причём последний лежит в основе современной ядерной энергетики , а первый находится в стадии разработки.

Детальные исследования показали, что устойчивость ядер также существенно зависит от параметра N / Z {\displaystyle N/Z} - отношения чисел нейтронов и протонов. В среднем для наиболее стабильных ядер N / Z ≈ 1 + 0.015 A 2 / 3 {\displaystyle N/Z\approx 1+0.015A^{2/3}} , поэтому ядра лёгких нуклидов наиболее устойчивы при N ≈ Z {\displaystyle N\approx Z} , а с ростом массового числа всё более заметным становится электростатическое отталкивание между протонами, и область устойчивости сдвигается в сторону N > Z {\displaystyle N>Z} (см. поясняющий рисунок ).

Если рассмотреть таблицу стабильных нуклидов, встречающихся в природе, можно обратить внимание на их распределение по чётным и нечётным значениям Z {\displaystyle Z} и N {\displaystyle N} . Все ядра с нечётными значениями этих величин являются ядрами лёгких нуклидов 1 2 H {\displaystyle {}_{1}^{2}{\textrm {H}}} , 3 6 Li {\displaystyle {}_{3}^{6}{\textrm {Li}}} , 5 10 B {\displaystyle {}_{5}^{10}{\textrm {B}}} , 7 14 N {\displaystyle {}_{7}^{14}{\textrm {N}}} . Среди изобар с нечётными A, как правило, стабилен лишь один. В случае же чётных A {\displaystyle A} часто встречаются по два, три и более стабильных изобар, следовательно, наиболее стабильны чётно-чётные, наименее - нечётно-нечётные. Это явления свидетельствует о том, что как нейтроны, так и протоны, проявляют тенденцию группироваться парами с антипараллельными спинами , что приводит к нарушению плавности вышеописанной зависимости энергии связи от A {\displaystyle A} .

Таким образом, чётность числа протонов или нейтронов создаёт некоторый запас устойчивости, который приводит к возможности существования нескольких стабильных нуклидов, различающихся соответственно по числу нейтронов для изотопов и по числу протонов для изотонов. Также чётность числа нейтронов в составе тяжёлых ядер определяет их способность делиться под воздействием нейтронов .

Ядерные силы

Ядерные силы - это силы, удерживающие нуклоны в ядре, представляющие собой большие силы притяжения, действующие только на малых расстояниях. Они обладают свойствами насыщения, в связи с чем ядерным силам приписывается обменный характер (с помощью пи-мезонов). Ядерные силы зависят от спина, не зависят от электрического заряда и не являются центральными силами .

Уровни ядра

В отличие от свободных частиц, для которых энергия может принимать любые значения (так называемый непрерывный спектр), связанные частицы (то есть частицы, кинетическая энергия которых меньше абсолютного значения потенциальной), согласно квантовой механике , могут находиться в состояниях только с определёнными дискретными значениями энергий, так называемый дискретный спектр. Так как ядро - система связанных нуклонов, оно обладает дискретным спектром энергий. Обычно оно находится в наиболее низком энергетическом состоянии, называемым основным . Если передать ядру энергию, оно перейдёт в возбуждённое состояние .

Расположение энергетических уровней ядра в первом приближении:

D = a e − b E ∗ {\displaystyle D=ae^{-b{\sqrt {E^{*}}}}} , где:

D {\displaystyle D} - среднее расстояние между уровнями,

E ∗ {\displaystyle E^{*}} - энергия возбуждения ядра,

A {\displaystyle a} и b {\displaystyle b} - коэффициенты, постоянные для данного ядра:

A {\displaystyle a} - среднее расстояние между первыми возбуждёнными уровнями (для лёгких ядер примерно 1 МэВ, для тяжёлых - 0,1 МэВ)

Изучая состав вещества, ученые пришли к выводу, что вся материя состоит из молекул и атомов. Долгое время атом (в переводе с греческого "неделимый") считался наименьшей конструкционной единицей вещества. Однако дальнейшие исследования показали, что атом имеет сложное строение и, в свою очередь, включает более мелкие частицы.

Из чего состоит атом?

В 1911 году ученый Резерфорд высказал предположение, что в атоме имеется центральная часть, обладающая положительным зарядом. Так впервые появилось понятие об атомном ядре.

По схеме Резерфорда, названной планетарной моделью, атом состоит из ядра и элементарных частиц с отрицательным зарядом - электронов, движущихся вокруг ядра, подобно тому, как планеты обращаются по орбите вокруг Солнца.

В 1932 году другой ученый, Чедвик, открыл нейтрон - частицу, не имеющую электрического заряда.

Согласно современным представлениям, ядра соответствует планетарной модели, предложенной Резерфордом. Ядро несет в себе большую часть атомной массы. Также оно имеет положительный заряд. В атомном ядре находятся протоны - положительно заряженные частицы и нейтроны - частицы, не несущие заряда. Протоны и нейтроны называются нуклонами. Отрицательно заряженные частицы - электроны - движутся по орбите вокруг ядра.

Количество протонов в ядре равняется движущихся по орбите. Следовательно, сам атом является частицей, не несущей заряда. Если атом захватит чужие электроны или потеряет свои, то он становится положительным или отрицательным и называется ионом.

Электроны, протоны и нейтроны обобщенно называют субатомными частицами.

Заряд атомного ядра

Ядро имеет зарядовое число Z. Оно определяется количеством протонов, входящих в состав атомного ядра. Узнать это количество просто: достаточно обратиться к периодической системе Менделеева. Порядковый номер элемента, которому принадлежит атом, равняется количеству протонов в ядре. Таким образом, если химическому элементу кислороду соответствует порядковый номер 8, то количество протонов тоже будет равняться восьми. Поскольку число протонов и электронов в атоме совпадает, то электронов тоже будет восемь.

Количество нейтронов называют изотопическим числом и обозначают буквой N. Их число может различаться в атоме одного и того же химического элемента.

Сумма протонов и электронов в ядре называется массовым числом атома и обозначается буквой А. Таким образом, формула подсчета массового числа выглядит так: А=Z+N.

Изотопы

В случае, когда элементы имеют равное количество протонов и электронов, но разное число нейтронов, их называют изотопами химического элемента. Изотопов может быть один или несколько. Они помещаются в одну и ту же ячейку периодической системы.

Изотопы имеют большое значение в химии и физике. Например, изотоп водорода - дейтерий - в сочетании с кислородом дает совершенно новую субстанцию, которую называют тяжелой водой. Она имеет иную температуру кипения и замерзания, чем обычная. А сочетание дейтерия с другим изотопом водорода - тритием приводит к термоядерной реакции синтеза и может использоваться для выработки огромного количества энергии.

Масса ядра и субатомных частиц

Размеры и масса атомов и ничтожно малы в представлениях человека. Размер ядер составляется примерно 10 -12 см. Массу атомного ядра измеряют в физике в так называемых атомных единицах массы - а.е.м.

За одну а.е.м. принимают одну двенадцатую часть массы атома углерода. Используя привычные единицы измерения (килограммы и граммы), массу можно выразить следующим равенством: 1 а.е.м. = 1,660540·10 -24 г. Выраженная таким образом, она называется абсолютной атомной массой.

Несмотря на то, что атомное ядро является самой массивной составляющей атома, его размеры относительно электронного облака, окружающего его, чрезвычайно малы.

Ядерные силы

Атомные ядра являются чрезвычайно устойчивыми. Это значит, что протоны и нейтроны удерживаются в ядре какими-то силами. Это не могут быть электромагнитные силы, поскольку протоны являются одноименно заряженными частицами, а известно, что частицы, обладающие одинаковым зарядом, отталкиваются друг от друга. Гравитационные силы же слишком слабы, чтобы удержать нуклоны вместе. Следовательно, частицы удерживаются в ядре иным взаимодействием - ядерными силами.

Ядерное взаимодействие считается самым сильным из всех существующих в природе. Поэтому данный тип взаимодействия между элементами атомного ядра называют сильным. Оно присутствует у множества элементарных частиц, как и электромагнитные силы.

Особенности ядерных сил

  1. Короткодействие. Ядерные силы, в отличие от электромагнитных, проявляются лишь на очень малых расстояниях, сопоставимых с размерами ядра.
  2. Зарядовая независимость. Данная особенность проявляется в том, что ядерные силы действуют одинаково на протоны и нейтроны.
  3. Насыщение. Нуклоны ядра взаимодействуют лишь с определенным числом других нуклонов.

Энергия связи ядра

С понятием сильного взаимодействия тесно связано другое - энергия связи ядер. Под энергией ядерной связи понимают то количество энергии, которое требуется, чтобы разделить атомное ядро на составляющие его нуклоны. Она равняется энергии, необходимой для формирования ядра из отдельных частиц.

Для вычисления энергии связи ядра необходимо знать массу субатомных частиц. Вычисления показывают, что масса ядра всегда меньше, чем сумма входящих в его состав нуклонов. Дефектом массы называют разницу между массой ядра и суммой его протонов и электронов. При помощи о связи массы и энергии (Е=mc 2) можно вычислить энергию, выработанную при образовании ядра.

О силе энергии связи ядра можно судить по следующему примеру: при образовании нескольких граммов гелия вырабатывается столько же энергии, сколько при сгорании нескольких тонн каменного угля.

Ядерные реакции

Ядра атомов могут взаимодействовать с ядрами других атомов. Такие взаимодействия называются ядерными реакциями. Реакции бывают двух типов.

  1. Реакции деления. Они происходят, когда более тяжелые ядра в результате взаимодействия распадаются на более легкие.
  2. Реакции синтеза. Процесс, обратный делению: ядра сталкиваются, тем самым образуя более тяжелые элементы.

Все ядерные реакции сопровождаются выбросом энергии, которая впоследствии используется в промышленности, в военной сфере, в энергетике и так далее.

Ознакомившись с составом атомного ядра, можно сделать следующие выводы.

  1. Атом состоит из ядра, содержащего протоны и нейтроны, и электронов, находящихся вокруг него.
  2. Массовое число атома равняется сумме нуклонов его ядра.
  3. Нуклоны удерживаются сильным взаимодействием.
  4. Огромные силы, придающие атомному ядру стабильность, называются энергиями связи ядра.