Телескоп вебба когда запустят. Замена "хаббла" будет запущена в космос на европейской ракете-носителе

Телескоп «Джеймс Уэбб» - это орбитальная инфракрасная обсерватория, которая должна заменить тот самый знаменитый космический телескоп «Хаббл».

Это очень сложный механизм. Работа над его идет около 20 лет! «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре и стоить около 6.8 млрд долларов. Для сравнения, диаметр зеркала «Хаббла» - «всего» 2.4 метра.

Посмотрим?


1. Телескоп «Джеймс Уэбб» должен быть размещен на гало-орбите в точке Лагранжа L2 системы Солнце - Земля. А в космосе холодно. Здесь показаны испытания, проводимые 30 марта 2012, направленные на изучение возможности противостоять холодным температурам пространства. (Фото Chris Gunn | NASA):



2. «Джеймс Уэбб» будет обладать составным зеркалом 6.5 метров в диаметре с площадью собирающей поверхности 25 м². Много это, или мало? (Фото Chris Gunn):

3. Сравним с «Хабблом». Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе:

4. Полномасштабная модель космического телескопа Джеймса Уэбба в Остине, штат Техас, 8 марта 2013. (Фото Chris Gunn):

5. Проект телескопа представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств. (Фото Chris Gunn):

6. Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года.(Фото Chris Gunn):

7. Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6.5 метра, чтобы измерить свет от самых далёких галактик.

Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади. (Фото Chris Gunn):

8. Не только у нас всё дорожает от начальной сметы. Так, стоимость телескопа «Джеймс Уэбб» превысила изначальные расчёты по меньшей мере в 4 раза. Планировалось, что телескоп обойдётся в 1,6 млрд долл. и будет запущен в 2011 году, однако по новым оценкам стоимость может составить 6.8 млрд, при этом запуск состоится не ранее 2018 года. (Фото Chris Gunn):

9. Это спектрограф ближнего инфракрасного диапазона. Он будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. (Фото Chris Gunn):

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря «Джеймсу Уэббу» ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет.

11. Инженеры тестируют в камере. систему подъема телескопа, 9 сентября 2014. (Фото Chris Gunn):

12. Исследование зеркал, 29 сентября 2014. Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой - для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области. (Фото Chris Gunn):

13. Очистка зеркала сухим льдом из двуокиси углерода. Тряпками здесь никто не трет. (Фото Chris Gunn):

14. Камера A — это гигантская испытательная камера с вакуумом, которая будет моделировать космическое пространства при испытаниях телескопа «Джеймса Уэбба», 20 мая 2015. (Фото Chris Gunn):

17. Размер каждого из 18 шестигранных сегментов зеркала составляет 1.32 метра от ребра до ребра. (Фото Chris Gunn):

18. Масса непосредственно самого́ зеркала в каждом сегменте - 20 кг, а масса всего сегмента в сборе - 40 кг. (Фото Chris Gunn):

19. Для зеркала телескопа «Джеймса Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1.3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента. (Фото Chris Gunn):

20. Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку. (Фото Chris Gunn):

21. По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6-29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах. (Фото Chris Gunn):

22. Работа над телескопом в ноябре 2016 года. (Фото Chris Gunn):

23. НАСА завершило сборку космического телескопа «Джеймс Уэбб» в 2016 году и приступило к его испытаниям. Это снимок от 5 марта 2017 года. На длинной выдержке техники выглядят призраками. (Фото Chris Gunn):

26. Дверь в ту самую камеру А с 14-й фотографии, в которой моделируется космическое пространство. (Фото Chris Gunn):

28. Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года. Отвечая на вопрос о том, что ученые ожидают узнать с помощью нового телескопа, ведущий научный сотрудник проекта Джон Мэтер сказал: «Надеюсь, мы найдем что-то, о чем никто ничего не знает». UPD. Запуск телескопа «Джеймс Уэбб» перенесен на 2020 год. (Фото Chris Gunn).

С каждым дополнительным сантиметром апертуры, каждой дополнительной секундой времени наблюдения и каждым дополнительным атомом атмосферных помех, удаленным из поля обзора телескопа, лучше, глубже и понятнее можно будет увидеть Вселенную.

25 лет «Хабблу»

Когда телескоп «Хаббл» начал функционировать в 1990 году, он открыл новую эру в астрономии - космическую. Не нужно было больше бороться с атмосферой, беспокоиться об облаках или электромагнитных мерцаниях. Все, что требовалось, - это развернуть спутник на цель, стабилизировать его и собирать фотоны. За 25 лет космические телескопы начали охватывать весь электромагнитный спектр, что позволило впервые рассмотреть Вселенную на каждой длине волны света.

Но поскольку наше знание увеличилось, выросло и наше понимание неизвестного. Чем дальше мы заглядываем во Вселенную, тем более глубокое прошлое мы видим: конечное количество времени с момента Большого взрыва в сочетании с конечной скоростью света обеспечивает предел того, что мы можем наблюдать. Более того, расширение самого пространства работает против нас, растягивая звезд, пока он путешествует по Вселенной к нашим глазам. Даже космический телескоп «Хаббл», дающий нам самое глубокое, самое захватывающее изображение Вселенной, которое мы когда-либо открывали, в этом отношении ограничен.

Недостатки «Хаббла»

«Хаббл» - удивительный телескоп, но он имеет ряд принципиальных ограничений:

  • Всего 2,4 м в диаметре, что ограничивает его
  • Несмотря на покрытие светоотражающими материалами, он постоянно находится под прямыми солнечными лучами, которые его нагревают. Это значит, что из-за тепловых эффектов он не может наблюдать длину волны света более 1,6 мкм.
  • Сочетание ограниченной светосилы и длин волн, к которым он чувствителен, означает, что телескоп может видеть галактики возрастом не старше 500 млн лет.

Эти галактики прекрасны, далеки и существовали тогда, когда Вселенной было всего около 4% от ее нынешнего возраста. Но известно, что звезды и галактики существовали еще раньше.

Чтобы увидеть должен обладать более высокой чувствительностью. Это означает переход на более длинные волны и более низкие температуры, чем у «Хаббла». Именно поэтому и создается космический телескоп Джеймса Вебба.

Перспективы для науки

James Webb Space Telescope (JWST) предназначен для преодоления именно этих ограничений: с диаметром 6,5 м телескоп позволяет собирать в 7 раз больше света, чем "Хаббл". Он открывает возможность ультра-спектроскопии высокого разрешения от 600 нм до 6 мкм (в 4 раза больше длины волны, которую способен увидеть "Хаббл"), проводить наблюдения в средней инфракрасной области спектра с более высокой чувствительностью, чем когда-либо прежде. JWST использует пассивное охлаждение до температуры поверхности Плутона и способен активно охлаждать приборы средней инфракрасной области вплоть до 7 K. Телескоп Джеймса Вебба даст возможность заниматься наукой так, как никто раньше этого не делал.

Он позволит:

  • наблюдать самые ранние галактики, когда-либо сформировавшиеся;
  • видеть сквозь нейтральный газ и зондировать первые звезды и реионизацию Вселенной;
  • проводить спектроскопический анализ самых первых звезд (населения III), образовавшихся после Большого взрыва;
  • получить удивительные сюрпризы, подобные открытию самых ранних и квазаров во Вселенной.

Уровень научных исследований JWST не похож ни на что в прошлом, и поэтому телескоп был избран в качестве флагманской миссии НАСА 2010-х годов.

Научный шедевр

С технической точки зрения, новый телескоп Джеймса Вебба представляет собой настоящее произведение искусства. Проект прошел долгий путь: были перерасходы бюджета, отставания от графика и опасность отмены проекта. После вмешательства нового руководства все изменилось. Проект вдруг заработал как часы, были выделены средства, учтены ошибки, неудачи и проблемы, и команда JWST стала укладываться во все сроки, графики и бюджетные рамки. Запуск аппарата запланирован на октябрь 2018 года на ракете «Ариан-5». Команда не только следует расписанию, у нее есть девять месяцев в запасе, чтобы учесть все непредвиденные ситуации, чтобы все было собрано и готово к этой дате.

Телескоп Джеймса Вебба состоит из 4 основных частей.

Оптический блок

Включает все зеркала, из которых наиболее эффективны восемнадцать первичных сегментированных позолоченных зеркала. Они будут использоваться для сбора далекого звездного света и фокусирования его на инструментах для анализа. Все эти зеркала в настоящее время готовы и безупречны, сделаны точно по расписанию. По окончании сборки они будут сложены в компактную конструкцию, чтобы быть запущенными на расстояние более 1 млн км от Земли до точки Лагранжа L2, а затем автоматически развернуться с образованием сотовой структуры, которая долгие годы будет собирать сверхдальний свет. Это действительно красивая вещь и успешный результат титанических усилий многих специалистов.

Камера ближнего инфракрасного диапазона

«Вебб» оборудован четырьмя научными инструментами, которые уже готовы на 100%. Основной камерой телескопа является камера ближнего ИК-диапазона: от видимого оранжевого света до глубокой инфракрасной области. Она позволит получить беспрецедентные изображения самых ранних звезд, самых молодых галактик, находящихся еще в процессе формирования, молодых звезд Млечного Пути и близлежащих галактик, сотен новых объектов в поясе Койпера. Она оптимизирована для непосредственного получения изображений планет вокруг других звезд. Это будет основная камера, используемая большинством наблюдателей.

Ближний инфракрасный спектрограф

Данный инструмент не только разделяет свет на отдельные длины волн, но способен это делать для более 100 отдельных объектов одновременно! Этот прибор будет универсальным спектрографом «Вебба», который способен работать в 3-х различных режимах спектроскопии. Он был построен но многие компоненты, включая детекторы и батарея мульти-затвора, предоставлены Центром космических полетов им. Годдарда (НАСА). Этот прибор был протестирован и готов к установке.

Средне-инфракрасный инструмент

Прибор будет использоваться для широкополосной визуализации, то есть с его помощью будут получены наиболее впечатляющие изображения со всех инструментов «Вебба». С научной точки зрения, он будет наиболее полезным при измерении протопланетных дисков вокруг молодых звезд, измерении и визуализации с беспрецедентной точностью объектов пояса Койпера и пыли, разогретой светом звезд. Он будет единственным инструментом с криогенным охлаждением до 7 К. По сравнению с космическим телескопом Spitzer, это позволит улучшить результаты в 100 раз.

Бесщелевой спектрограф ближнего ИК-диапазона (NIRISS)

Прибор позволит производить:

  • широкоугольную спектроскопию в ближней инфракрасной области длин волн (1,0 - 2,5 мкм);
  • гризм-спектроскопию одного объекта в видимом и инфракрасном диапазоне (0,6 - 3,0 мкм);
  • апертурно-маскирующую интерферометрию на длинах волн 3,8 - 4,8 мкм (где ожидаются первые звезды и галактики);
  • широкодиапазонную съемку всего поля зрения.

Этот инструмент создан Канадским космическим агентством. После прохождения криогенного тестирования он также будет готов к интеграции в приборный отсек телескопа.

Солнцезащитное устройство

Космические телескопы ими еще не оборудовались. Одной из самых пугающих сторон каждого запуска является применение совершенно нового материала. Вместо того, чтобы охлаждать весь космический аппарат активно с помощью одноразового расходуемого хладагента, телескоп Джеймса Вебба использует совершенно новую технологию - 5-слойный солнцезащитный экран, который будет развернут для отражения солнечного излучения от телескопа. Пять 25-метровых листов будут соединены титановыми стержнями и установлены после развертывания телескопа. Защита тестировалась в 2008 и 2009 годах. Полномасштабные модели, участвовавшие в лабораторных испытаниях, выполнили все, что они должны были сделать, здесь на Земле. Это красивая инновация.

К тому же это еще и невероятная концепция: не просто блокировать свет от Солнца и поместить телескоп в тени, а сделать это таким образом, чтобы все тепло излучалось в направлении, противоположном ориентации телескопа. Каждый из пяти слоев в вакууме космоса будет становится холодным по мере удаления от наружного, который будет немного теплее, чем температура поверхности Земли - около 350-360 K. Температура последнего слоя должна опуститься до 37-40 К, что холоднее, чем ночью на поверхности Плутона.

Кроме того, предприняты значительные меры предосторожности для защиты от неблагоприятной среды глубокого космоса. Одной из вещей, о которых здесь следует беспокоиться, являются крошечные камешки, размером с гальку, песчинки, пылинки и еще меньше, пролетающие через межпланетное пространство со скоростью десятков или даже сотен тысяч км/ч. Эти микрометеориты способны проделывать крошечные, микроскопические отверстия во всем, с чем они сталкиваются: космических аппаратах, костюмах космонавтов, зеркалах телескопов и многом другом. Если зеркала получат только вмятины или отверстия, что слегка уменьшит количество доступного «хорошего света», то солнечный щит может порваться от края до края, что сделает весь слой бесполезным. Для борьбы с этим явлением была использована блестящая идея.

Весь солнечный щит был разделен на участки таким образом, что, если возникнет небольшой разрыв в одном, двух или даже трех из них, слой не порвется дальше, как трещина в лобовом стекле автомобиля. Секционирование сохранит всю структуру целой, что важно для предотвращения деградации.

Космический аппарат: системы сборки и управления

Это самый обычный компонент, так как есть у всех космических телескопов и научных миссий. У JWST он уникален, но также полностью готов. Все, что осталось сделать генеральному подрядчику проекта компании Northrop Grumman, - закончить щит, собрать телескоп и проверить его. Аппарат будет готов к запуску через 2 года.

10 лет открытий

Если все пойдет правильно, человечество окажется на пороге больших научных открытий. Завеса нейтрального газа, которая до сих пор заслоняла обзор самых ранних звезд и галактик, будет устранена инфракрасными возможностями «Вебба» и его огромной светосилой. Это будет самый большой, самый чувствительный телескоп с огромным диапазоном длин волн от 0,6 до 28 микрон (человеческий глаз видит от 0,4 до 0,7 мкм) из когда-либо построенных. Ожидается, что он обеспечит десятилетие наблюдений.

Согласно НАСА, срок миссии «Вебба» составит от 5,5 до 10 лет. Он ограничен количеством топлива, которое необходимо для поддержания орбиты, и сроком службы электроники и оборудования в суровых условиях космоса. Орбитальный телескоп Джеймса Вебба будет нести запас топлива на весь 10-летний срок, а через 6 месяцев после запуска будет произведено тестирование обеспечения полета, которое гарантирует 5 лет научных работ.

Что может пойти не так?

Основным ограничивающим фактором является количество топлива на борту. Когда оно закончится, спутник будет дрейфовать в сторону от L2, выйдя на хаотическую орбиту в непосредственной близости от Земли.

Коме этого, могут произойти и другие неприятности:

  • деградация зеркал, которая повлияет на количество собираемого света и создаст артефакты изображения, но не повредит дальнейшей эксплуатации телескопа;
  • выход из строя части или всего солнечного экрана, что приведет к повышению температуры космического аппарата и сузит используемый диапазон длин волн до очень близкой инфракрасной области (2-3 мкм);
  • поломка системы охлаждения инструмента среднего ИК-диапазона, что сделает его непригодным для использования, но не повлияет на другие инструменты (от 0,6 до 6 мкм).

Наиболее тяжелое испытание, которое ожидает телескоп Джеймса Вебба, - запуск и выведение на заданную орбиту. Именно эти ситуации тестировались и были успешно пройдены.

Революция в науке

Если телескоп Вебба заработает в штатном режиме, топлива хватит, чтобы обеспечить его работу с 2018 по 2028 год. Кроме того, существует потенциальная возможность дозаправки, которая могла бы увеличить срок службы телескопа еще на одно десятилетие. Подобно тому, как «Хаббл» эксплуатировался в течение 25 лет, JWST мог бы обеспечить поколение революционной науки. В октябре 2018 года ракета-носитель «Ариан-5» выведет на орбиту будущее астрономии, которое после более 10 лет напряженной работы уже готово начать приносить плоды. Будущее космических телескопов почти наступило.

Идея строительства нового мощного космического телескопа возникла почти 20 лет назад, в 1996 году когда американские астрономы выпустили доклад HST and Beyond, в котором обсуждался вопрос - куда же должна двигаться астрономия дальше. Незадолго до этого, в 1995 году была открыта первая экзопланета рядом со звездой, похожей на наше Солнце. Это взбудоражило научное сообщество - ведь появился шанс, что где-то может существовать мир, напоминающий Землю - поэтому исследователи попросили NASA построить телескоп, который будет пригоден в том числе для поиска и изучения экзопланет. Именно здесь берет начало история «Джеймса Уэбба». Запуск этого телескопа постоянно откладывался (первоначально планировалось отправить его в космос еще в 2011 году), но теперь он, кажется, выходит на финишную прямую. Редакция N+1 попыталась разобраться, что астрономы рассчитывают узнать с помощью «Уэбба», и поговорила с теми, кто создает этот инструмент.

Название «Джеймс Уэбб» телескопу было присвоено в 2002 году, до этого он назывался Next Generation Space Telescope («Космический телескоп нового поколения») или сокращенно NGST, поскольку новый инструмент должен продолжить исследования, начатые «Хабблом». Если « » исследует Вселенную преимущественно в оптическом диапазоне, захватывая лишь ближний инфракрасный и ультрафиолетовый диапазон, которые граничат с видимым излучением, то «Джеймс Уэбб» сконцентрируется на инфракрасной части спектра, где видно более древние и более холодные объекты. Кроме того, выражение «новое поколение» указывает на продвинутые технологии и инженерные решения, которые будут использоваться в телескопе.


Процесс изготовления зеркала телескопа


Фрагмент зеркала телескопа


Процесс изготовления зеркала телескопа


Фрагмент зеркала телескопа


Фрагмент зеркала телескопа


Фрагмент зеркала телескопа

Пожалуй, самое нестандартное и сложное из них - это главное зеркало «Джеймса Уэбба» диаметром 6,5 метра. Ученые не стали создавать увеличенную версию зеркала «Хаббла», потому что оно весило бы слишком много, и придумали изящный выход из ситуации: они решили собрать зеркало из 18 отдельных сегментов. Для них использовался легкий и прочный металл бериллий, на который был нанесен тонкий слой золота. В итоге зеркало весит 705 килограммов, в то время как его площадь составляет 25 квадратных метров. Зеркало «Хаббла» весит 828 килограммов при площади 4,5 квадратных метра.

Другой важный компонент телескопа, который в последнее время доставляет немало хлопот инженерам - развертываемый теплозащитный экран, необходимый для защиты приборов «Джеймса Уэбба» от перегрева. На околоземной орбите под прямыми лучами Солнца предметы могут разогреваться до 121 градуса Цельсия. Приборы «Джеймса Уэбба» предназначены для работы в условиях достаточно низких температур, поэтому и понадобился теплозащитный экран, закрывающий их от Солнца.

По размеру он сравним с теннисным кортом, 21 x 14 метров, поэтому отправить его в точку Лагранжа L2 (именно там будет работать телескоп) в развернутом виде невозможно. Здесь и начинаются основные трудности - как доставить щит к пункту назначения так, чтобы он не повредился? Самым логичным решением оказалось сложить его на время полета, а потом развернуть, когда «Джеймс Уэбб» будет в рабочей точке.


Внешняя сторона щита, где находится антенна, бортовой компьютер, гироскопы и солнечная панель, разогреется, как ожидают ученые, до 85 градусов Цельсия. Зато на «ночной» стороне, где находятся основные научные приборы, будет морозно: около 233 градусов ниже нуля. Обеспечивать теплоизоляцию будут пять слоев щита - каждый холоднее предыдущего.



Разворачиваемый щит «Джеймса Уэбба»

Какие же научные приборы требуется так тщательно укрывать от Солнца? Всего их четыре: камера ближнего инфракрасного диапазона NIRCam, прибор для работы в среднем ИК-диапазоне MIRI, спектрограф ближнего ИК-диапазона NIRSpec и система FGS/NIRISS. На картинке ниже можно наглядно увидеть, в каком «свете» они будут видеть Вселенную:


Изображение показывает диапазон, который захватят инструменты телескопа

С помощью научных приборов ученые надеются ответить на многие фундаментальные вопросы. В первую очередь, они касаются экзопланет.

Несмотря на то, что на сегодняшний день телескоп «Кеплер» открыл более 2,5 тысячи экзопланет, оценки плотности существуют лишь для нескольких сотен. Меж тем, эти оценки позволяют нам понять, к какому типу принадлежит планета. Если у нее низкая плотность - очевидно, перед нами газовый гигант. Если же небесное тело имеет высокую плотность, то, скорее всего, это каменистая планета, напоминающая Землю или Марс. Астрономы надеются, что «Джеймс Уэбб» поможет собрать больше данных о массах и диаметрах планет, что поможет вычислить их плотность и определить их тип.


NASA/Goddard Space Flight Center and the Advanced Visualization Laboratory at the National Center for Supercomputing Applications

Другой важный вопрос касается атмосфер экзопланет. «Хаббл» и «Спитцер» собрали данные о газовых оболочках примерно ста планет. Инструменты «Джеймса Уэбба» позволят увеличить это число, как минимум, в три раза. Благодаря научным приборам и разным режимам наблюдений, астрономы смогут определить присутствие огромного числа веществ, в том числе воды, метана и углекислого газа - причем не только на крупных планетах, но и на планетах земного типа. Одной из наблюдательных целей станет , где находится сразу семь землеподобных планет.

Больше всего результатов ожидается для молодых, только сформировавшихся юпитеров, которые все еще излучают в инфракрасном диапазоне. В частности, в Солнечной системе по мере уменьшения массы газовых гигантов, содержание в них металлов (элементов тяжелее водорода и гелия) возрастает. «Хаббл» в свое время показал, что не все планетные системы подчиняются этому закону, однако статистически достоверной выборки пока что нет - ее получит «Джеймс Уэбб». Кроме того, ожидается, что телескоп также изучит субнептуны и суперземли.

Другой важной целью телескопа станут древние галактики. Сегодня мы уже достаточно много знаем об окрестных галактиках, но все еще очень мало о тех, что появились в очень молодой Вселенной. «Хаббл» может видеть Вселенную такой, какой она была спустя 400 миллионов лет после Большого взрыва, а обсерватория «Планк» наблюдала космическое микроволновое излучение, которое возникло спустя 400 тысяч лет после Большого взрыва. «Джеймсу Уэббу» предстоит заполнить пробел между ними и выяснить, как выглядели галактики в первые 3 процента космической истории.

Сейчас астрономы наблюдают прямую зависимость между размером галактики и ее возрастом - чем старше Вселенная, тем больше в ней маленьких галактик. Однако этот тренд вряд ли сохранится, и ученые надеются определить некоторую «поворотную точку», найти нижний предел размера галактик. Таким образом, астрономы хотят ответить на вопрос, когда возникли первые галактики.

Отдельным пунктом стоит изучение молекулярных облаков и протопланетных дисков. В прошлом «Спитцер» мог заглянуть лишь в ближайшие окрестности Солнечной системы. «Уэбб» намного более чувствителен и фактически сможет увидеть другой край Млечного пути, равно как и его центр.

Также «Джеймс Уэбб» будет искать гипотетические звезды населения III - это очень тяжелые объекты, в которых почти нет элементов тяжелее гелия, водорода и лития. Предполагается, что звезды этого типа должны составлять после Большого взрыва.



Пара взаимодействующих галактик, получившая название «Антенны»

Сегодня запуск «Джеймса Уэбба» намечен на июнь 2019 года. Изначально предполагалось, что телескоп отправят в космос ранней весной, однако миссия была отложена на несколько месяцев из-за технических проблем. Кристин Пуллиам (Christine Pulliam), заместитель научного руководителя проекта, ответила на вопросы N+1 о самом телескопе и сложностях при его строительстве.

Наверное, я задам очевидный вопрос, но что делает «Джеймс Уэбб» уникальным?

«Уэбб» позволит нам увидеть Вселенную такой, какой мы никогда не видели ее раньше. Он будет вести наблюдения в инфракрасном диапазоне, то есть на других длинах волн, нежели «Хаббл», сможет заглянуть дальше, чем «Спитцер», и в другие области, нежели «Гершель». Он заполнит пробелы и поможет создать целостную картину Вселенной. Обширные наблюдения в ИК-диапазоне помогут нам увидеть зарождающиеся звезды и планеты. Нам наконец-то откроются первые галактики, и это поможет сложить воедино всю космологическую историю. Некоторые любят говорить, что телескопы - это машины времени, и это очень хорошее выражение. Когда мы смотрим в космос, мы видим прошлое, потому что свету требуется время, чтобы достигнуть Земли. Мы увидим Вселенную, когда она была крайне молодой - и это поможет понять, как появились мы, и как работает Вселенная. Если говорить о чем-то более близком человечеству, то мы увидим, как возникали звезды, как формировались экзопланеты, и мы сможем даже охарактеризовать их атмосферы.

Да, вопрос об атмосферах далеких планет волнует очень многих. Какие результаты вы ожидаете получить?

У нас были миссии вроде «Кеплера», которые занимались поиском кандидатов. Благодаря им, сегодня нам известны тысячи экзопланет. Теперь же «Джеймс Уэбб» будет смотреть на уже известные объекты и исследовать их атмосферы. В частности это касается планет-гигантов - небесных тел по размеру находящихся между нептунами и супер-юпитерами. Нам крайне важно понять, как такие объекты формируются, как они эволюционируют и на что похожи системы, в состав которых они входят. Например, если мы видим систему из нескольких планет, нам важно определить, может ли там быть вода и где ее искать.

Фактически определить зону обитаемости?

Именно. Для разных звезд она будет разной. «Джеймс Уэбб» поможет нам охарактеризовать далекие планеты и понять, насколько уникален наш дом.

Ожидается, что миссия телескопа продлится около десяти лет. Однако каковы реальные прогнозы? Все мы помним «Вояджеры», которые до сих пор находятся в рабочем состоянии и отправляют данные на Землю, хотя этого никто не планировал.

Номинальный срок службы инструмента - пять лет, и мы надеемся, что сможет столько проработать. Если давать более смелые оценки, то это десять лет. Мы ограничены запасом охладителя, который должен поддерживать системы телескопа в рабочем состоянии. Я не думаю, что «Джеймс Уэбб» сможет, как и «Хаббл», протянуть 29 лет.

Да, «Джеймс Уэбб» будет слишком далеко от Земли, во второй точке Лагранжа. Как вы думаете, позволят ли нам технологии в будущем долететь до телескопа и починить его в случае поломки?

Такая возможность не исключается. На этот случай на телескопе есть крепление для роботизированного манипулятора, который может быть установлен на «Уэббе». Тем не менее, с самого начала обслуживание телескопа не предусматривалось, поэтому на это не стоит возлагать слишком много надежд. С учетом того, что инструмент будет работать всего 5-10 лет, мы вряд ли успеем шагнуть так далеко вперед, чтобы отправить к нему космический корабль.

Сможет ли «Джеймс Уэбб» работать в паре с другими космическими аппаратами? Например, Космический и астрономический центр Университета Колорадо предлагают создать внешний коронограф для него. В 2013 году они говорили о возможной совместной работе с телескопом - есть ли такие планы в действительности?

Я бы не сказала, что в данный момент мы рассматриваем такую возможность. Если я не ошибаюсь, то за этот проект отвечает Уэбб Кэш, но есть и другой проект звездного щита, а также несколько других групп, которые занимаются созданием похожих инструментов. Никаких конкретных планов относительно того, чтобы связать «Джеймс Уэбб» с другим инструментом, сегодня нет, хотя гипотетически он может работать совместно с любой космической обсерваторией.

А как планируется распределять время наблюдений?

Сейчас астрономы со всего мира присылают нам свои заявки, и после того, как они пройдут рецензирование, мы получим приблизительный план. Существует «гарантированное время для наблюдений», которое закреплено за учеными, помогающими в проектировании и создании «Джеймса Уэбба» сегодня, что-то вроде благодарности за их работу. Эти исследователи будут изучать галактики, экзопланеты, например планеты системы TRAPPIST. Отчасти мы сами выбираем цели, чтобы проверить возможности «Джеймса Уэба». При создании телескопа мы только начинали задумываться об экзопланетах, но теперь - это очень перспективная область в астрономии, и мы должны понять, как использовать «Джеймс Уэбб» для изучения планет за пределами Солнечной системы. Как раз этим и займутся команды, которые будут проводить наблюдения в первый год. Осенью уже станет известно, что мы «увидим» в первый год.


Hubble Ultra Deep Field

Почему сроки запуска вновь сдвигают? Ходят слухи о финансовых проблемах и о проблемах с системой зеркал.

Дело в том, что «Уэбб» - очень непростой телескоп, и мы впервые решаем столь сложную задачу. В аппарате есть несколько главных компонентов: зеркала, инструменты, огромный щит и охлаждающие механизмы. Все эти элементы надо построить и протестировать, совместить, протестировать снова - само собой, это требует времени. Также надо убедиться, что мы все сделали правильно, что все детали подходят друг к другу, что запуск будет удачным, а все элементы развернутся правильно. Задержки происходят из-за большого количества этапов и необходимости тщательной проверки.

То есть сейчас вы проводили тесты, и поняли, что не укладываетесь в изначальное расписание?

Да. На самом деле, у нас есть еще много резервного времени. Мы изначально знали, что все будет в порядке, но допускали, что подготовка может по некоторым причинам затянуться. Кроме того, когда мы будем готовы запускать аппарат, нам также потребуется договориться о конкретной дате с ESA, которому принадлежит ракета «Ариан». Поэтому мы подумали - куда торопиться?

Расскажите, какие тесты должен пройти и проходит телескоп?

Совсем недавно завершилась проверка системы OTISS (Optical Telescope and Instrument Assembly) в космическом центре имени Линдона Джонсона. Ее охладили до крайне низких рабочих температур, протестировали всю оптику и сам телескоп. Недавно ученые вынули систему из охлаждающей камеры, нагрели ее снова и теперь OTISS отправится в Калифорнию, в Космический парк на пляже Редандо, где ее соединят с солнцезащитным щитом. Кроме того, сейчас ведется работа и над самим щитом, специалисты проводят многочисленные проверки. Когда все элементы будут прикреплены к щиту, его будут складывать и раскладывать, чтобы убедиться, что он работает без нареканий, а затем будут проведены и другие тесты, включая тест на вибрацию, с которой телескоп столкнется во время полета на ракете. Запуск в космос - серьезное испытание для аппарата, поэтому инженеры хотят быть уверены, что все его компоненты переживут полет. Затем исследователи подготовят «Джеймс Уэбб» к запуску, погрузят на баржу, и отправят его на космодром во Французской Гвиане где-то в начале 2019 года.

А что насчет остальных инструментов? Насколько мне известно, вы упомянули не все. Они уже прошли предварительные проверки?

Да, они уже прошли все тесты и сейчас уже установлены на телескоп. Это отдельные приборы, которые будут проводить многочисленные научные исследования - спектрограф, изучающий небо в среднем ИК-диапазоне, камера. Кроме того, у всех инструментов разные режимы, поэтому надо проверить, действительно ли они работают так, как мы задумали. Это очень важно - необходимо «тряхнуть» прибор и убедиться, что угол зрения остался тем же.

Когда нам следует ждать первых результатов?

Скорее всего, первые данные придут только в конце будущего года или в начале 2020 года. Между запуском и получением первой информации пройдет где-то полгода. В течение этого времени телескоп будет разворачиваться, и мы убедимся, что он раскрылся и работает нормально. Затем приборам нужно будет охладиться, это займет достаточно много времени. На Земле «Джеймс Уэбб» находится при комнатной температуре, но когда мы запустим его в космос, необходимо будет дождаться, когда его инструменты достигнут рабочих температур. Затем мы введем их в эксплуатацию: сейчас уже запланирован ряд «тренировочных упражнений» - несколько плановых наблюдений и проверок разных режимов работы, которые позволят убедиться, что все функционирует, как и должно. Так как у нас нет пусковой даты, и, как следствие, нам неизвестно, что попадет в поле зрения телескопа, конкретный объект для наблюдений не выбран. Скорее всего, мы будем калибровать приборы телескопа на какой-нибудь далекой звезде. Все это внутренние процессы - сначала предстоит убедиться, что мы вообще можем что-либо увидеть.

Однако после того, как мы удостоверимся, что все инструменты работают, мы приступим непосредственно к научным экспериментам. Команда ученых, которая специализируется на снимках, определит, какие цели будут выглядеть по-настоящему завораживающими и зацепят публику. Работа будет выполнена теми же художниками, которые работали со снимками «Хаббла» - это люди с многолетним опытом обработки астрономических изображений. Кроме того, будут проводиться дополнительные тесты оборудования.

После того, как выйдут первые изображения, у нас будет год с небольшим для научных наблюдений. Они включают уже известные программы по изучению очень далеких галактик, квазаров, экзопланет и Юпитера. В целом, астрономы будут наблюдать все, что только возможно - начиная с областей активного звездообразования и заканчивая льдом в протопланетных дисках. Эти исследования важны для всех нас: все остальное научное сообщество сможет увидеть результаты других команд и понять, куда им следует двигаться дальше.

Кристина Уласович

Космический телескоп имени Джеймса Уэбба. Авторы и права: NASA.

Космический телескоп Джеймса Уэбба (JWST) ещё не скоро начнет свою миссию, а его сверкающее золотом зеркало уже достигло культового статуса. Это сегментированное зеркало напоминает глаз насекомого, и в будущем, когда “глаз” начнёт свою работу в точке Лагранжа (L2), он предоставит человечеству подробнейшие данные о нашей Вселенной. Зеркало телескопа уже собрано, и оно находится в стерильном помещении в Центре космических полетов имени Годдарда, что даёт нам возможность узнать, как телескоп будет выглядеть, когда он начнёт свою миссию.

Даже если вы ничего не знаете о JWST, его возможностях, или возложенных на него задачах, вы будете впечатлены, просто посмотрев на него. Очевидно, что это высокотехнологический и единственный в своем роде инструмент. На самом деле, его даже можно принять за образец искусства. Я, к сожалению, видел менее привлекательные творения современного искусства, а вы?

Конечно, многим из вас известен тот факт, что JWST превзойдёт своего предшественника – космический телескоп “Хаббл”. И это вполне понятно, учитывая тот факт, что “Хаббл” был запущен в апреле далёкого 1990 года. Но как именно JWST сможет опередить “Хаббл”, и каковы его основные цели?

Главные задачи миссии JWST можно разделить на четыре направления:

  1. Инфракрасные наблюдения, которые можно сравнить с машиной времени. Они позволяют нам взглянуть на первые звёзды и галактики, которые сформировались во Вселенной, более 13 миллиардов лет назад;
  2. Сравнительное исследование ярких спиральных и эллиптических галактик, а также более тусклых ранних галактик;
  3. Зондирование космического пространства, позволяющее нам заглянуть сквозь облака газа и пыли, для изучения процессов формирования звёзд и планет;
  4. Исследование экзопланет и их атмосфер, а также обнаружение там биомаркеров.

То есть это довольно внушительный список, даже в эпоху, когда люди принимают технологический и научный прогресс как само собой разумеющееся. Но наряду с этими запланированными целями, будут, без сомнения, и некоторые сюрпризы. Гадать, что это может быть глупое занятие, но давайте всё же попробуем.

Мы считаем, что процесс абиогенеза на Земле произошёл довольно быстро, но, к сожалению, нам не с чем сравнивать. Найдём ли мы аналогии при изучении далёких экзопланет и их атмосфер, прольём ли свет на условия, необходимые для появления жизни? Это кажется невероятным, но кто знает.

Мы уверены, что Вселенная расширяется, и для этого есть довольно убедительные доказательства. Узнаем ли мы что-то новое об этом процессе? Или мы найдём то, что прольёт свет на тёмную материю или тёмную энергию, и их роль в жизни ранней Вселенной?

JWST. Авторы и права: NASA.

Конечно, не всё должно быть удивительным, чтобы быть захватывающим. Обнаружение доказательств, которые подтвердят современные теории также интригует. И “Джеймс Уэбб” должен предоставить нам эти доказательства.

Нет сомнений, что JWST сможет переплюнуть телескоп “Хаббла”. Но для одного или двух поколений людей, “Хаббл” всегда будет занимать особое место. Он удивлял и заинтересовывал многих из нас своими захватывающими изображениями туманностей, галактик и других объектов, в ходе его знаменитой миссии Deep Field, и, конечно же, своими научными исследованиями. Вероятно, “Хаббл” – это первый телескоп, который получил статус знаменитости.

“Джеймс Уэбб”, наверно, никогда не получит особый статус, который приобрёл “Хаббл”. Это что-то вроде: “Битлз может быть только один” или “единственный в своём роде”. Но JWST будет гораздо более мощным инструментом, и откроет нам многое из того, что было недоступно “Хабблу”.

Если все пойдёт по плану, то JWST станет грандиозным технологическим достижением всего человечества. Его способность смотреть сквозь облака газа и пыли, или оглянуться назад во времени, показав нам первые дни жизни Вселенной, сделает его мощным научным инструментом.

Главные подрядчики Northrop Grumman
Ball Aerospace Волновой диапазон 0,6-28 мкм (части видимого и инфракрасного) Местонахождение точка Лагранжа L 2 системы Солнце - Земля (1,5 млн км от Земли в противоположную Солнцу сторону) Тип орбиты гало-орбита Дата запуска 30 Марта 2021 года Место запуска Куру Средство вывода на орбиту Ариан-5 или Ариан-6 Продолжительность 5-10 лет Дата схода с орбиты около 2024 Масса 6,2 тонны Тип телескопа телескоп-рефлектор системы Корша Диаметр около 6,5 м Площадь собирающей
поверхности около 25 м² Фокусное расстояние 131,4 м Научные инструменты
  • MIRI
прибор среднего инфракрасного диапазона
  • NIRCam
камера ближнего инфракрасного диапазона
  • NIRSpec
спектрограф ближнего инфракрасного диапазона
  • FGS/NIRISS
датчик точного наведения с устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом Сайт www.jwst.nasa.gov Медиафайлы на Викискладе

Первоначально назывался «Космический телескоп нового поколения» (англ. Next-generation space telescope, NGST ). В 2002 году переименован в честь второго руководителя НАСА Джеймса Уэбба (1906-1992), возглавлявшего агентство в 1961-1968 годах во время реализации программы Аполлон .

«Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре с площадью собирающей поверхности 25 м² , скрытым от инфракрасного излучения со стороны Солнца и Земли тепловым экраном . Телескоп будет размещён на гало-орбите в точке Лагранжа L 2 системы Солнце - Земля.

Проект представляет собой результат международного сотрудничества 17 стран , во главе которых стоит NASA , со значительным вкладом Европейского и Канадского космических агентств.

Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5 » в марте 2021 года . В этом случае первые научные исследования начнутся осенью 2021 года. Срок работы телескопа составит не менее пяти лет.

Задачи

Астрофизика

Первичными задачами JWST являются: обнаружение света первых звёзд и галактик , сформированных после Большого взрыва , изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также «Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало .

Экзопланетология

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря JWST ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет (что будет являться недостижимым показателем ни для одного наземного и космического телескопа до 2025 года, когда в строй будет введен Европейский чрезвычайно большой телескоп с диаметром зеркала в 39,3 м ) . Для поиска экзопланет будут также использованы данные, которые получил телескоп «Кеплер» начиная с 2009 года. Однако возможностей телескопа будет недостаточно для получения изображений найденных экзопланет. Такая возможность появится не раньше середины 2030-х годов, когда будет запущен телескоп-наследник «Джеймса Уэбба» - ATLAST .

Водные миры Солнечной системы

Инфракрасные инструменты телескопа будут использованы для изучения водных миров Солнечной системы - спутника Юпитера Европы и спутника Сатурна Энцелада . Инструмент NIRSpec будет использован для поиска биосигнатур (метан, метанол, этан) в гейзерах обоих спутников .

Инструмент NIRCam сможет получить изображения Европы в высоком разрешении, которые будут использованы для изучения её поверхности и поиска регионов с гейзерами и высокой геологической активностью. Состав зафиксированных гейзеров будет проанализирован с помощью инструментов NIRSpec и MIRI. Данные, полученные в ходе этих исследований, будут также использованы при исследовании Европы зондом Europa Clipper .

Для Энцелада, ввиду его удаленности и малых размеров, получить изображения в высоком разрешении не удастся, однако возможности телескопа позволят провести анализ молекулярного состава его гейзеров.

История

Изменение планируемой даты запуска и бюджета
Год Планируемая
дата запуска
Планируемый
бюджет
(млрд долларов)
1997 2007 0,5
1998 2007 1
1999 2007-2008 1
2000 2009 1,8
2002 2010 2,5
2003 2011 2,5
2005 2013 3
2006 2014 4,5
2008 2014 5,1
2010 не раньше сентября 2015 ≥6,5
2011 2018 8,7
2013 2018 8,8
2017 весна 2019 8,8
2018 не раньше марта 2020 ≥8,8
2018 30 марта 2021 9,66

Изначально запуск намечался на 2007 год, в дальнейшем переносился несколько раз (см. таблицу). Первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года. По данным на весну 2018 года, планируемая дата запуска была сдвинута на 30 марта 2021 года .

Финансирование

Стоимость проекта тоже неоднократно увеличивалась. В июне 2011 года стало известно, что стоимость телескопа превысила изначальные расчёты по меньшей мере в четыре раза. В бюджете НАСА, предложенном в июле 2011 года конгрессом, предполагалось прекращение финансирования строительства телескопа из-за плохого управления и превышения бюджета программы , но в сентябре того же года бюджет был пересмотрен, и проект сохранил финансирование . Окончательное решение о продолжении финансирования было принято сенатом 1 ноября 2011 года.

В 2013 году на постройку телескопа было выделено 626,7 млн долларов .

К весне 2018 года стоимость проекта возросла до 9,66 млрд долларов .

Изготовление оптической системы

Проблемы

Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6,5 метра , чтобы измерить свет от самых далёких галактик . Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл », но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл » на единицу площади .

Разработка и испытания

Производство

Для зеркала «Уэбба» используется особый тип бериллия . Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1,3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента.

Процесс формирования зеркала начинается с вырезания излишков материала на оборотной стороне бериллиевой заготовки таким образом, что остаётся тонкая рёберная структура. Передняя же сторона каждой заготовки сглаживается с учётом положения сегмента в большом зеркале.

Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку.

По завершении обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6-29 мкм , и готовый сегмент проходит повторные испытания при криогенных температурах .

Тестирование

10 июля 2017 года - начало финального криогенного теста телескопа при температуре 37 в космическом центре имени Джонсона в Хьюстоне , который продлился 100 дней .

Помимо испытаний в Хьюстоне аппарат прошел серию механических проверок в центре космических полётов Годдарда, которые показали, что он сможет выдержать запуск с помощью тяжелой ракеты-носителя.

В начале февраля 2018 года гигантские зеркала и различные приборы доставлены на предприятие компании Northrop Grumman в Редондо-Бич для последнего этапа сборки телескопа. Там уже идет сооружение двигательного модуля телескопа и его солнцезащитного экрана. Когда вся конструкция будет собрана, её отправят на морском судне из Калифорнии во французскую Гвиану .

Оборудование

JWST будет иметь следующие научные инструменты для проведения исследования космоса:

  • Камера ближнего инфракрасного диапазона (англ. Near-Infrared Camera );
  • Прибор для работы в среднем диапазоне инфракрасного излучения (англ. Mid-Infrared Instrument, MIRI );
  • Спектрограф ближнего инфракрасного диапазона (англ. Near-Infrared Spectrograph, NIRSpec );
  • Датчик точного наведения (англ. Fine Guidance Sensor, FGS ) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (англ. Near InfraRed Imager and Slitless Spectrograph, NIRISS ).

Камера ближнего инфракрасного диапазона

Камера ближнего инфракрасного диапазона является основным блоком формирования изображения «Уэбба» и будет состоять из массива ртутно-кадмиево-теллуровых детекторов . Рабочий диапазон прибора составляет от 0,6 до 5 мкм . Его разработка поручена Аризонскому университету и Центру продвинутых технологий компании Lockheed Martin .

В задачи прибора входят:

  • обнаружение света от самых ранних звёзд и галактик на стадии их формирования;
  • изучение звёздных населений в ближайших галактиках ;
  • изучение молодых звёзд Млечного Пути и объектов пояса Койпера ;
  • определение морфологии и цвета галактик при сильном красном смещении ;
  • определение кривых блеска дальних сверхновых ;
  • создание карты тёмной материи с помощью гравитационного линзирования .

Многие объекты, которые «Уэбб» будет изучать, излучают настолько мало света, что телескопу для анализа спектра необходимо собирать свет от них в течение сотен часов. Чтобы изучить тысячи галактик за 5 лет работы телескопа, спектрограф был разработан с возможностью наблюдения за 100 объектами на площади неба 3×3 угловых минуты одновременно. Для этого учёные и инженеры Годдарда разработали новую технологию микрозатворов для управления светом, входящим в спектрограф .

Суть технологии, позволяющей получать 100 одновременных спектров, заключается в микроэлектромеханической системе, именуемой «массив микрозатворов» (англ. microshutter array ). У ячеек микрозатворов спектрографа NIRSpec есть крышки, которые открываются и закрываются под действием магнитного поля. Каждая ячейка размером 100 на 200 мкм индивидуально управляется и может быть открытой или закрытой, предоставляя или, наоборот, блокируя часть неба для спектрографа , соответственно.

Именно эта регулируемость позволяет прибору делать спектроскопию такого количества объектов одновременно. Поскольку объекты, которые будет исследовать NIRSpec , находятся далеко и тусклы, инструмент нуждается в подавлении излучения от более близких ярких источников. Микрозатворы работают подобно тому, как люди смотрят искоса, чтобы сосредоточиться на объекте, блокируя нежелательный источник света.

Прибор уже разработан и в данный момент проходит испытания в Европе .

Прибор для работы в среднем диапазоне инфракрасного излучения

Прибор для работы в среднем диапазоне инфракрасного излучения (5 -28 мкм ) состоит из камеры с датчиком, имеющим разрешение 1024×1024 пикселя , и спектрографа .

MIRI состоит из трёх массивов мышьяко -кремниевых детекторов. Чувствительные детекторы этого прибора позволят увидеть красное смещение далёких галактик , формирование новых звёзд и слабо видимые кометы , а также объекты в поясе Койпера . Модуль камеры предоставляет возможность съёмки объектов в широком диапазоне частот с большим полем зрения, а модуль спектрографа обеспечивает спектроскопию среднего разрешения с меньшим полем зрения, что позволит получать подробные физические данные об удалённых объектах.

Номинальная рабочая температура для MIRI - 7 . Такая температура не может быть достигнута использованием только пассивной системы охлаждения. Вместо этого, охлаждение производится в два этапа: установка предварительного охлаждения на основе пульсационной трубы охлаждает прибор до 18 К , затем теплообменник с адиабатическим дросселированием (эффект Джоуля - Томсона) понижает температуру до 7 К .

MIRI разрабатывает группа под названием MIRI Consortium, состоящая из ученых и инженеров из стран Европы, команды сотрудников Лаборатории реактивного движения в Калифорнии и учёных из ряда институтов США .

FGS/NIRISS

Датчик точного наведения (FGS ) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (NIRISS ) будут упакованы вместе в «Уэббе», но по сути это два разных устройства . Оба устройства разрабатываются Канадским космическим агентством , и они уже получили прозвище «канадские глаза» по аналогии с «канадской рукой ». Этот инструмент уже прошел интегрирование со структурой ISIM в феврале 2013 года.

Датчик точного наведения

Датчик точного наведения (FGS ) позволит «Уэббу» производить точное наведение, чтобы он мог получать изображения высокого качества.

Камера FGS может формировать изображение из двух смежных участков неба размером 2,4×2,4 угловых минуты каждый, а также считывать информацию 16 раз в секунду с небольших групп пикселей размером 8×8, чего достаточно для нахождения соответствующей опорной звезды с 95-процентной вероятностью в любой точке неба, включая высокие широты.

Основные функции FGS включают в себя:

  • получение изображения для определения положения телескопа в пространстве;
  • получение предварительно выбранных опорных звёзд;
  • обеспечение системы управления положением англ. Attitude Control System измерениями центроида опорных звёзд со скоростью 16 раз в секунду.

Во время вывода на орбиту телескопа FGS также будет сообщать об отклонениях при развёртывании главного зеркала.

Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф

Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (NIRISS ) работают в диапазоне 0,8 -5,0 мкм и является специализированным инструментом с тремя основными режимами, каждый из которых работает с отдельным диапазоном.

NIRISS будет использоваться для выполнения следующих научных задач:

  • получение «первого света »;
  • обнаружение экзопланет ;
  • получение их характеристик;
  • транзитная спектроскопия.

См. также

Примечания

Примечания

Сноски

  1. Jim Bridenstine on Twitter: "The James Webb Space Telescope will produce first of its kind, world-class science. Based on recommendations by an Independent Review Board, the n...
  2. With further delays, Webb telescope at risk of seeing its rocket retired | Ars Technica
  3. https://www.ama-science.org/proceedings/details/368
  4. NASA Completes Webb Telescope Review, Commits to Launch in Early 2021 (англ.) . NASA (27 June 2018). Дата обращения 28 июня 2018.
  5. Icy Moons, Galaxy Clusters, and Distant Worlds Among Selected Targets for James Webb Space Telescope (неопр.) (15 июня 2017).
  6. https://nplus1.ru/news/2017/06/16/webb-telescope (неопр.) (16 июня 2017).
  7. Webb Science: The End of the Dark Ages: First Light and Reionization (неопр.) . НАСА . Дата обращения 18 марта 2013. Архивировано 21 марта 2013 года.
  8. Щепотка бесконечности (неопр.) (25 марта 2013). Архивировано 4 апреля 2013 года.
  9. «Кеплер» нашел десять новых возможных двойников Земли (неопр.) (19 июня 2017).
  10. NASA’s Webb Telescope Will Study Our Solar System’s “Ocean Worlds” (неопр.) (24 августа 2017).
  11. Berardelli, Phil . Next Generation Space Telescope will peer back to the beginning of time and space , CBS (27 октября 1997).
  12. The Next Generation Space Telescope (NGST) (неопр.) . University of Toronto (27 ноября 1998).
  13. Reichhardt, Tony. US astronomy: Is the next big thing too big? (англ.) // Nature. - 2006. - March (vol. 440 , no. 7081 ). - P. 140-143 . - DOI :10.1038/440140a . - Bibcode : 2006Natur.440..140R .
  14. Cosmic Ray Rejection with NGST (неопр.) .
  15. MIRI spectrometer for NGST (неопр.) (недоступная ссылка) . Архивировано 27 сентября 2011 года.
  16. NGST Weekly Missive (неопр.) (25 апреля 2002).
  17. NASA Modifies James Webb Space Telescope Contract (неопр.) (12 ноября 2003).