Какие составные части включает в себя нуклеотид. Из чего состоит нуклеотид и что это такое

НУКЛЕОТИДЫ НУКЛЕОТИДЫ

нуклеозидфосфаты, фосфорные эфиры нуклеозидов. Состоят из азотистого основания (обычно пуринового или пиримидинового), углевода рибозы (рибонуклеотиды) или дезоксирибозы (дезоксирибонуклеотиды) и одного или неск. остатков фосфорной к-ты. Соединения из двух остатков Н. наз. динуклеотидами, из нескольких - олигонуклеотидами, из множества - полинуклеотидами. Н. входят в состав нуклеиновых к-т (полинуклеотиды), важнейших коферментов (НАД, НАДФ, ФАД, КоА) и др. биологически активных соединений. Свободные Н. в виде нуклеозидмоно-, ди- и трифосфатов в значит, кол-вах содержатся в живых клетках. Нуклеозидтрифосфаты - Н., содержащие 3 остатка фосфорной к-ты, являются богатыми энергией (макроэргическими) соединениями, источниками и переносчиками химич. энергии фосфатной связи. Особую роль играет АТФ - универсальный аккумулятор энергии, обеспечивающий разл. процессы жизнедеятельности. Высокоэнергетич. фосфатные связи нуклеозидтрифосфатов используются в синтезе полисахаридов (уридинтрифосфат, АТФ), белков (ГТФ, АТФ), липидов (цитидинтрифосфат, АТФ). Нуклеозидтрифосфаты являются также субстратами для синтеза нуклеиновых к-т. Уридиндифосфат участвует в обмене углеводов в качестве переносчика остатков моносахаридов, цитидиндифосфат (переносчик остатков холина и этаноламина) - в обмене липидов. Важную регуляторную роль в организме играют циклические нуклеотиды. Свободные нуклеозидмонофосфаты образуются путём синтеза (см. ПУРИНОВЫЕ ОСНОВАНИЯ , ПИРИМИДИНОВЫЕ ОСНОВАНИЯ) или при гидролизе нуклеиновых к-т под действием нуклеаз. Последовательное фосфорилирование нуклеозидмонофосфатов приводит к образованию соответствующих нуклеозидди- и нуклеозидтрифосфатов. Распад Н. происходит под действием нуклеотидаз (при этом образуются нуклеозиды), а также нуклеотидпирофосфорилаз, катализирующих обратимую реакцию расщепления Н. до свободных оснований и фосфорибозилпирофосфата. (см. АДЕНОЗИНФОСФОРНЫЕ КИСЛОТЫ , ГУАНОЗИНФОСФОРНЫЕ КИСЛОТЫ , ИНОЗИНФОСФОРНЫЕ КИСЛОТЫ , ТИМИДИНФОСФОРНЫЕ КИСЛОТЫ , ЦИТИДИНФОСФОРНЫЕ КИСЛОТЫ , УРИДИНФОСФОРНЫЕ КИСЛОТЫ).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

нуклеоти́ды

Природные соединения, из которых, как из звеньев, построены цепочки нуклеиновых кислот ; входят также в состав важнейших коферментов (органические соединения небелковой природы – компонент некоторых ферментов) и других биологически активных веществ, служат в клетках переносчиками энергии.
Молекула каждого нуклеотида (мононуклеотида) состоит из трёх химически различных частей. Во-первых, это пятиуглеродный сахар (пентоза) – рибоза (в этом случае нуклеотиды называются рибонуклеотидами и входят в состав рибонуклеиновых кислот , или РНК) или дезоксирибоза (нуклеотиды называются дезоксирибонуклеотидами и входят в состав дезоксирибонуклеиновых кислот , или ДНК). Во-вторых, это пуриновое или пиримидиновое азотистое основание. Связанное с углеродным атомом сахара, оно образует соединение, называемое нуклеозидом. И наконец, один, два или три остатка фосфорной кислоты, присоединённые эфирными связями к углероду сахара, образуют молекулу нуклеотида. Азотистые основания нуклеотидов ДНК – это пурины аденин и гуанин и пиримидины цитозин и тимин. Нуклеотиды РНК содержат те же основания, что и ДНК, но тимин в них заменён близким по химическому строению урацилом.
Азотистые основания и, соответственно, включающие их нуклеотиды в биологической литературе принято обозначать начальными буквами (латинскими или русскими) их названий: аденин – А(А), гуанин – G(Г), цитозин – С(Ц), тимин – Т(Т), урацил – U(У). Соединение двух нуклеотидов называется динуклеотидом, нескольких – олинонуклеотидом, множества – полинуклеотидом, или нуклеиновой кислотой.
Кроме того что нуклеотиды образуют цепи ДНК и РНК, они являются коферментами, а нуклеотиды, несущие три остатка фосфорной кислоты (нуклеозидтрифосфаты), – источниками химической энергии, заключённой в фосфатных связях. Чрезвычайно велика во всех процессах жизнедеятельности роль такого универсального переносчика энергии, как аденозинтрифосат (АТФ).
Особую группу составляют циклические нуклеотиды, опосредующие действие гормонов при регуляции обмена веществ в клетках.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Смотреть что такое "НУКЛЕОТИДЫ" в других словарях:

    - (нуклеозидфосфаты) фосфорные эфиры нуклеозидов; состоят из азотистого основания (пуринового или пиримидинового), углевода (рибозы или дезоксирибозы) и одного или нескольких остатков фосфорной кислоты. Соединения из одного, двух, трех, нескольких… … Большой Энциклопедический словарь

    нуклеотиды - ов, мн. nucléotides < nucleus. биол. Органические вещества составная часть нуклеиновых кислот и коферментов многих ферментов. Н. играют важную роль в обмене веществ в животном и растительном мире. Крысин 1998. Лекс. СИС 1964: нуклеоти/ды … Исторический словарь галлицизмов русского языка

    нуклеотиды - – эфиры нуклеозидов с фосфорной кислотой … Краткий словарь биохимических терминов

    Нуклеотиды фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых… … Википедия

    Нуклеозидфосфаты, соединения, из которых состоят Нуклеиновые кислоты, многие Коферменты и др. биологически активные соединения; каждый Н. построен из азотистого основания (обычно пуринового или пиримидинового), углевода (рибозы или… … Большая советская энциклопедия

    - (нуклеозидфосфаты), фосфорные эфиры нуклеозидов; состоят из азотистого основания (пуринового или пиримидинового), углевода (рибозы или дезоксирибозы) и одного или нескольких остатков фосфорной кислоты. Соединения из одного, двух, трёх, нескольких … Энциклопедический словарь

    Нуклеотиды - Модель молекулы аденина. НУКЛЕОТИДЫ, органические соединения, состоящие из азотистого основания (аденина, гуанина, цитозина, тимина, урацила), углевода (рибозы или дезоксирибозы) и одного или нескольких остатков фосфорной кислоты. Нуклеотиды –… … Иллюстрированный энциклопедический словарь

    - (лат. nucleus ядро) органические вещества, состоящие из пуринового или пиримидинового основания, углевода и фосфорной кислоты; составная часть нуклеиновых кислот я коферментов многих ферментов; ряд нуклеотидов (адениловая кислота, аденозинди и… … Словарь иностранных слов русского языка

    Нуклеотиды - молекулы, состоящие из пяти азотистых оснований (цитозин, урацил, тимин, аденин и гуанин), рибозы (или дезоксирибозы) и остатка фосфорной кислоты. Нуклеотиды могут соединяться между собой, образуя полинуклеотиды (нуклеиновые кислоты) … Концепции современного естествознания. Словарь основных терминов

    - (нуклеозидфосфаты), эфиры фосфорной к ты и нуклеозидов по одному или неск. гидроксилам остатка моносахарида; в более широком смысле соед., в к рых моносахаридный остаток нуклеозида или его неприродного аналога этерифицирован одной или неск. моно… … Химическая энциклопедия

Книги

  • Биологически активные вещества в физиологических и биохимических процессах в организме животного , М. И. Клопов, В. И. Максимов. В пособии изложены современные представления о строении, механизме действия, роли в процессах жизнедеятельности и функциях организма биологически активных веществ (витамины, ферменты,…

Нуклеотиды — это сложные биологические вещества, которые играют ключевую роль во многих биологических процессах. Они служат основой для построения ДНК и РНК и, кроме того, отвечают за синтез белков и генетическую память, будучи универсальными источниками энергии. Нуклеотиды входят в состав коферментов, принимают участие в углеводном обмене и синтезе липидов. Кроме того, нуклеотиды являются компонентами активных форм витаминов, в основном группы В (рибофлавин, ниацин). Нуклеотиды способствуют формированию естественного микробиоценоза, предоставляют необходимую энергию для регенеративных процессов в кишечнике, влияют на созревание и нормализацию функционирования гепатоцитов.

Нуклеотиды представляют собой низкомолекулярные соединения, состоящие из азотистых оснований (пурины, пиримидины), пентозного сахара (рибоза или дезоксирибоза) и 1—3 фосфатных групп.

Наиболее распространенные монофосфаты участвуют в метаболических процессах: пурины — аденозинмонофосфат (АМФ), гуанозинмонофосфат (ГМФ), пиримидины — цитидинмонофосфат (ЦМФ), уридинмонофосфат (УМФ) .

Чем же вызван интерес к проблеме содержания нуклеотидов в детском питании?

До последнего времени считалось, что все необходимые нуклеотиды синтезируются внутри организма, и их не рассматривали как незаменимые питательные вещества. Предполагалось, что нуклеотиды, поступающие с пищей, в основном оказывают «местное действие», определяя рост и развитие тонкого кишечника, обмен липидов и печеночную функцию. Однако последние исследования (материалы сессии ESPGAN, 1997) показали, что эти нуклеотиды становятся необходимыми, когда эндогенного запаса недостаточно : например, при заболеваниях, сопровождающихся энергетическим дефицитом, — тяжелых инфекциях, болезнях потребления, а также в неонатальном периоде, во время быстрого роста ребенка, при иммунодефицитных состояниях и гипоксических повреждениях. При этом общий объем эндогенного синтеза снижается, становится недостаточным для удовлетворения потребностей организма. В таких условиях поступление нуклеотидов с пищей «экономит» в организме расходы энергии для синтеза этих веществ и может оптимизировать функцию тканей. Так, врачи издавна советовали после длительных заболеваний использовать в пищу печень, молоко, мясо, бульоны, т. е. продукты, богатые нуклеотидами.

Дополнительная дотация нуклеотидов с пищей крайне важна при вскармливании младенцев. Нуклеотиды были выделены из женского молока около 30 лет назад. К настоящему времени идентифицированы 13 кислоторастворимых нуклеотидов в женском молоке. Давно известно, что состав женского молока и молока различных видов животных не идентичен. Однако многие годы было принято обращать внимание лишь на основные пищевые компоненты: белки, углеводы, липиды, минералы, витамины. Вместе с тем, нуклеотиды в женском молоке существенно отличаются, причем не только по количеству, но и по составу от нуклеотидов в коровьем молоке. Так, например, оротат, главный нуклеотид коровьего молока, содержащийся в значительных количествах даже в адаптированных молочных смесях, не присутствует в женском молоке.

Нуклеотиды являются компонентом небелковой азотной фракции грудного молока. Небелковый азот отвечает приблизительно за 25% общего азота в грудном молоке и содержит аминосахара и карнитин, которые играют особую роль в развитии новорожденных. Нуклеотидовый азот может способствовать наиболее эффективному употреблению белка у младенцев, вскармливаемых грудным молоком, получающих сравнительно меньше белка по сравнению с детьми, которых вскармливают искусственными смесями.

Было выявлено, что в женском молоке концентрация нуклеотидов превышает их содержание в сыворотке крови. Это говорит о том, что грудные железы женщины синтезируют дополнительное количество нуклеотидов, которые поступают в грудное молоко. Также имеются различия в содержании нуклеотидов по стадиям лактации. Так, наибольшее количество нуклеотидов в молоке определяется на 2-4-м месяце, и затем их содержание после 6-7-го месяца начинает постепенно снижаться.

Раннее зрелое молоко содержит преимущественно мононуклеотиды (АМФ, ЦМФ, ГМФ). Их количество в позднем зрелом молоке выше, чем в молозиве, однако меньше, чем в молоке первого месяца лактации.

Концентрация нуклеотидов в грудном молоке на порядок выше зимой, чем в аналогичные сроки кормления в летний период.

Эти данные могут свидетельствовать о том, что в клетках грудных желез происходит дополнительный синтез нуклеотидов, так как в первые месяцы жизни извне поступающие вещества поддерживают необходимый уровень метаболизма и энергетического обмена ребенка. Увеличение синтеза нуклеотидов в грудном молоке в зимний период является защитным механизмом: в это время года ребенок больше подвержен инфекции и легче развивается витаминная и минеральная недостаточность.

Как указывалось выше, состав и концентрация нуклеотидов в молоке всех видов млекопитающих различаются, но всегда их количество ниже, чем в грудном молоке. Это, по-видимому, связано с тем, что потребность в экзогенных нуклеотидах особенно высока у беззащитных детенышей .

Грудное молоко — это не только наиболее сбалансированный продукт для рационального развития ребенка, но и тонкая физиологическая система, способная меняться в зависимости от нужд ребенка. Грудное молоко еще долго будет всесторонне изучаться, причем не только количественный и качественный его состав, но и роль отдельных ингредиентов в функционировании систем растущего и формирующегося организма. Смеси для искусственного вскармливания грудных детей также будут совершенствоваться и постепенно превратятся в настоящие «заменители грудного молока». Данные о том, что нуклеотиды грудного молока имеют более широкое физиологическое значение для растущего и развивающегося организма, послужили основанием для введения их в смеси для детского питания и приближения по концентрации и составу к таковым в грудном молоке .

Следующим этапом исследований стала попытка установить влияние нуклеотидов, введенных в детские смеси, на созревание плода и развитие младенца.

Наиболее наглядными оказались данные об активации иммунной системы ребенка . Как известно, IgG регистрируется еще внутриутробно, IgM начинает синтезироваться сразу после рождения ребенка, IgA синтезируется наиболее медленно, и активный его синтез возникает к концу 2-3-го месяца жизни. Эффективность их выработки во многом определяется зрелостью иммунного ответа.

Для исследования были сформированы 3 группы: дети, получавшие только грудное молоко, только смеси с нуклеотидами и молочные смеси без нуклеотидов.

В результате было выявлено, что дети, получавшие формулы с нуклеотидными добавками, к концу 1-го месяца жизни и на 3-м месяце имели уровень синтеза иммуноглобулина М, примерно равный таковому у детей, находящихся на грудном вскармливании, но значительно более высокий, чем у детей, получавших простую смесь. Аналогичные результаты получены и при анализе уровня синтеза иммуноглобулина А .

Зрелость иммунной системы определяет эффективность вакцинопрофилактики, ведь способность к формированию иммунного ответа на прививку — это один из показателей выработки иммунитета на первом году жизни. Для примера исследовали уровень выработки антител к дифтерии у детей, находящихся на «нуклеотидной» формуле, грудном вскармливании и смесях без нуклеотидов. Уровень антител измерялся через 1 месяц после первой и после последней вакцинации. Установлено, что даже первые показатели были выше, а вторые — достоверно выше у детей, получавших смеси с нуклеотидами .

При исследовании влияния вскармливания смесью с нуклеотидами на физическое и психомоторное развитие детей отмечена тенденция к лучшей прибавке массы и более быстрому становлению моторной и психической функции .

Кроме того, есть данные, что дотация нуклеотидов способствует более быстрому созреванию нервной ткани, функций мозга и зрительного анализатора, что крайне актуально для недоношенных и морфофункционально незрелых детей, а также малышей с офтальмологическими проблемами .

Всем известны проблемы со становлением микробиоценоза у детей раннего возраста, особенно в первые месяцы. Это явления диспепсии, кишечные колики, повышенный метеоризм. Потребление «нуклеотидных» смесей позволяет быстрее нормализовать ситуацию, без необходимости коррекции пробиотиками. У детей, получавших смеси с нуклеотидами, реже отмечались дисфункция желудочно-кишечного тракта, неустойчивость стула, они легче переносили введение последующего прикорма.

Однако при применении смесей с нуклеотидами необходимо иметь в виду, что они сокращают частоту стула, поэтому детям с запорами их следует рекомендовать с осторожностью .

Особое значение эти смеси могут иметь у детей с гипотрофией, анемией, а также перенесших гипоксические нарушения в неонатальном периоде. Смеси с нуклеотидами помогают решить ряд проблем, возникающих при выхаживании недоношенных детей. В частности, речь идет о плохом аппетите и низкой прибавке массы тела в течение всего первого года жизни, кроме того, употребление смесей способствует более полноценному психомоторному развитию малышей .

Исходя из вышеизложенного применение смесей с нуклеотидными добавками для нас, врачей, представляет большой интерес. Рекомендовать эти смеси мы можем большому кругу детей, тем более что смеси не являются лечебными. Вместе с тем, мы считаем важным указать на возможность индивидуальных вкусовых реакций у детей раннего возраста, особенно при переводе ребенка с обычной смеси на нуклеотидсодержащую. Так, в некоторых случаях, даже при использовании смесей одной фирмы, мы отмечали у ребенка негативные реакции, вплоть до отказа от предлагаемой смеси. Однако все литературные источники утверждают, что нуклеотиды не только не влияют отрицательно на вкусовые качества, но и, напротив, улучшают их, не изменяя органолептических свойств смеси .

Представляем обзор смесей, содержащих нуклеотидные добавки и имеющихся на нашем рынке . Это сывороточные смеси фирмы «Фризленд Ньютришн» (Голландия) «Фрисолак», «Фрисомел», в которых содержатся 4 нуклеотида, идентичных нуклеотидам женского молока; сывороточная смесь «Мамекс» (Intern Nutrition, Дания), НАН («Нестле», Швейцария), «Энфамил» («Мид Джонсон», США), смесь «Симилак формула плюс» («Эббот Лабораториз», Испания/США). Количество и состав нуклеотидов в этих смесях разные, что определяется фирмой-производителем.

Все фирмы-изготовители стараются подобрать соотношение и состав нуклеотидов, приблизив его, насколько возможно технически и биохимически, к аналогичным показателям грудного молока. Совершенно ясно, что механический подход не является физиологическим. Безусловно, введение нуклеотидов в смеси для детского питания — это революционный шаг в производстве заменителей грудного молока, способствующий максимальному приближению к составу женского грудного молока. Однако никакая смесь пока не может считаться физиологически полностью идентичной этому единственному, универсальному и необходимому ребенку продукту.

Литература
  1. Gyorgy. P. Biochemical aspects. Am.Y.Clin. Nutr. 24(8), 970-975.
  2. Europan society for Pediatric Gastroenterology and Nutrition (ESPGAN). Committee on Nutrition: Guidelines on infant nutrition I. Recommendations on the composition of an adapted formula. Asta Paediatr Scand 1977; Suppl 262: 1-42.
  3. James L. Leach, Jeffreu H. Baxter, Bruce E. Molitor, Mary B. Ramstac, Marc L\ Masor. Все потенциально имеющиеся нуклеотиды материнского молока на стадии лактации//Американский журнал клинического питания. - Июнь 1995. - Т. 61. - №6. - С. 1224-30.
  4. Carver J. D., Pimental B., Cox WI, Barmess L. A. Dietary nucleotidi effects upon immune function in infаnts. Pediatrics 1991; 88; 359-363.
  5. Uauy. R., Stringel G., Thomas R. and Quan R . (1990) Effect of dietari nucleosides on growth and maturation of the developing gut in the rat. J. Pediatr. Gastroenterol. Nutr. 10, 497-503.
  6. Brunser O., Espinosa J., Araya М., Gruchet S. and Gil А. (1994) Effect of dietari nucleotide suppementation on diarrhoeal disease in infants. Asta Paediatr. 883. 188-191.
  7. Кешишян Е. С., Бердникова Е. К.//Смеси с нуклеотидными добавками для вскармливания детей первого года жизни//Детское питание XXI века. - С. 24.
  8. Дэвид. Новые технологии улучшения продуктов детского питания//Педиатрия. - 1997. - №1. - С. 61-62.
  9. Кешишян Е. С., Бердникова Е. К. Смеси с нуклеотидными добавками для вскармливания грудных детей. Ожидаемый эффект//Педиатрия. Consilium medicum. - Приложение №2. - 2002. - С. 27-30.

Е. С. Кешишян, доктор медицинских наук, профессор
Е. К. Бердникова
МНИИ педиатрии и детской хирургии Минздрава РФ, Москва

Учебное пособие предназначено для студентов направления «Биология» всех профилей подготовки, всех форм обучения для теоретической подготовки к занятиям, зачетам и экзаменам. Пособие охватывает основные разделы структурной биохимии: строение, физико-химические свойства и функции основных классов биологических макромолекул. Большое внимание уделено ряду прикладных аспектов биохимии.

Нуклеотиды и нуклеиновые кислоты

Структура нуклеотидов и азотистых оснований

Нуклеотиды принимают участие во множестве биохимических процессов, а также являются мономерами нуклеиновых кислот. Нуклеиновые кислоты обеспечивают все генетические процессы. Каждый нуклеотид состоит из трех типов химических молекул:

Азотистое основание;

Моносахарид;

1-3 остатка фосфорной кислоты.

В отличие от моносахаридов, нуклеотиды как мономеры являются сложно устроенными молекулами, состоящими из структур, относящихся к разным классам химических веществ, поэтому необходимо рассмотреть свойства и структуру этих компонентов по отдельности.

Азотистые основания

Азотистые основания относятся к гетероциклическим соединениям. В состав гетероцикла помимо атомов углерода входят атомы азота. Все азотистые основания, входящие в нуклеотиды относят к двум классам азотистых оснований: пуриновые и пиримидиновые. Пуриновые основания это производные пурина – гетероцикла, состоящего из двух циклов, один пятичленный, второй – шести, нумерация осуществляется так, как показано на рисунке. Пиримидиновые основания являются производными пиримидина и состоят из одного шестичленного цикла, нумерация также указана на рисунке (Рисунок 31). Главные пиримидиновые основания и у прокариот, и у эукариот – это цитозин, тимин и урацил. Из пуриновых оснований чаще всего встречаются аденин и гуанин. Два других – ксантин и гипоксантин – являются интермедиатами в процессах их метаболизма. У человека в роли конечного продукта катаболизма пуринов выступает окисленное пуриновое основание – мочевая кислота . Помимо пяти названных выше главных оснований известны и менее широко представленные минорные основания. Некоторые из них присутствуют только в нуклеиновых кислотах бактерий и вирусов, но многие также найдены в составе про- и эукариотических ДНК и транспортных и рибосомных РНК. Так, и бактериальная ДНК, и ДНК человека содержат значительные количества 5-метилцитозина; в бактериофагах обнаружен 5-гидроксиметилцитозин. Необычные основания выявлены в матричной РНК – N 6 -метиладенин, N 6 , N 6 -диметиладенин и N 7 -Meтилгуанин. У бактерий также обнаружен модифицированный урацил с присоединенной по N 3 -положению (α-амино, α-карбокси) -пропильной группой. Функции этих замещенных пуринов и пиримидинов до конца не выяснены, однако они могут образовывать неканонические связи между основаниями (это будет рассмотрено ниже), обеспечивая образование вторичных и третичных структур нуклеиновых кислот.


Рисунок 31. Структура азотистых оснований


В клетках растений выявлена серия пуриновых оснований с метильными заместителями. Многие из них фармакологически активны. В качестве примера можно привести кофейные зерна, содержащие кофеин (1,3, 7-триметилксантин), чайный лист, содержащий теофиллин (1, 3-диметил-ксантин), и какао-бобы, в состав которых входит теобромин (3, 7-диметилксантин).

изомерия и Физико-химические свойства пуриновых и пиримидиновых оснований

Молекула азотистого основания образует систему чередующихся одинарных и двойных связей (систему сопряженных двойных связей). Такая организация образует жесткую молекулу, без возможности конформационных переходов. В результате нельзя говорить об изменении конформации азотистых оснований.

Для азотистых оснований выявлен только один тип изомерии кето-енольный переход или таутомерия.

Таутомерия

Благодаря феномену кето-енольной таутомерии нуклеотиды могут существовать либо в лактимной, либо в лактамной формах, причем в физиологических условиях лактамная форма превалирует у гуанина и тимина (Рисунок 32). Важность этого обстоятельства станет ясна при обсуждении процессов спаривания оснований.


Рисунок 32. Таутомерия нуклеотидов


Растворимость

При нейтральном рН наименьшей растворимостью обладает гуанин. Следующим в этом ряду стоит ксантин. Мочевая кислота в форме уратов сравнительно неплохо растворяется при нейтральном рН, но очень плохо растворима в жидкостях с более низкими значениями рН, таких, как моча. Гуанин в моче человека в норме отсутствует, а ксантин и мочевая кислота являются ее обычными компонентами. Последние два пурина часто входят в состав камней мочевого тракта.

Поглощение света

За счет системы сопряженных двойных связей все азотистые основания поглощают в ультрафиолетовой части спектра. Спектр поглощения – график распределения оптической плотности в зависимости от длины волны. Для каждого азотистого основания свой спектр поглощения, по нему можно различить растворы различных азотистых оснований или соединений в состав которых входит азотистое основание (нуклеотиды), но максимум поглощения у всех совпадает при длине волны 260 нм. Это позволяет легко и быстро определять концентрацию как азотистых оснований, так нуклеотидов и нуклеиновых кислот. Спектр поглощения также зависит от рН раствора (Рисунок 33).


Рисунок 33. Спектры поглощения различных азотистых оснований

Функции азотистых оснований

Азотистые основания практически не встречаются в свободном состоянии. Исключение составляют некоторые алкалоиды и мочевая кислота.

Азотистые основания выполняют следующие функции:

Входят в состав нуклеотидов;

Часть алкалоидов – азотистые основания, например, кофеин в кофе или теофелин в чае;

Промежуточные продукты обмена азотистых оснований и нуклеотидов;

Мочевая кислота – причина мочекаменной болезни;

В виде мочевой кислоты выводится азот у некоторых организмов.

Нуклеотиды и нуклеозиды

Молекулы нуклеозидов построены из пуринового или пиримидинового основания, к которому (β-связью присоединен углевод (обычно D-рибоза или 2-дезоксирибоза) в N 9 или N 1 ‒положении соответственно. Таким образом, адениновый рибонуклеозид (аденозин) состоит из аденина и D-рибозы, присоединенной в положении N 9 ; гуанозин – из гуанина и D-рибозы в положении N 9 ; цитидин – из цитозина и рибозы в положении N 1 ; уридин – из урацила и рибозы в положении N 1 . Таким образом в пуриновых нуклеозидах (нуклеотидах) азотистое основание и сахар связаны 1-9 β гликозидной связью, а в пиримидинах – 1-1 β гликозидной связью.

В состав 2́-дезоксирибонуклеозидов входят пуриновые или пиримидиновые основания и 2́-дезоксирибоза, присоединенная по тем же атомам N 1 и N 9 . Присоединение рибозы или 2́-дезоксирибозы к кольцевой структуре основания происходит за счет относительно кислотолабильной N-гликозидной связи (Рисунок 34).

Нуклеотиды – это производные нуклеозидов, фосфорилированные по одной или более гидроксильным группам остатка рибозы (или дезоксирибозы). Так, аденозинмонофосфат (AMФ или аденилат) построен из аденина, рибозы и фосфата. 2́-дезоксиаденозинмонофосфат (дAMФ или дезоксиаденилат) представляет собой молекулу, состоящую из аденина, 2́-дезоксирибозы и фосфата. Обычно к урацилу присоединена рибоза, к тимину – 2́-дезоксирибоза. Поэтому тимидиловая кислота (ТМФ) состоит из тимина, 2́-дезоксирибозы и фосфата. Кроме вышеперечисленных форм нуклеотидов обнаружены и нуклеотиды необычной структуры. Так, в молекуле тРНК выявлен нуклеотид, в котором рибоза присоединяется к урацилу в пятом положении, т. е. не азот-углеродной связью, а углерод-углеродной. Продукт этого необычного присоединения назван псевдоуридином (ψ). Молекулы тРНК содержат и другую необычную нуклеотидную структуру – тимин, соединенный с рибозомонофосфатом. Этот нуклеотид образуется уже после синтеза молекулы тРНК путем метилирования остатка УMФ S-аденозилметионином. Псевдоуридиловая кислота (ψМФ) тоже образуется в результате перегруппировки УMФ после синтеза тРНК.


Рисунок 34. Структура пуриновых и пиримидиновых нуклеозидов и нуклеотидов

Номенклатура, физико-химические свойства и функции нуклеозидов и нуклеотидов

Положение фосфатной группы в молекуле нуклеотида указывается цифрой. Например, аденозин с фосфатной группой, присоединенной к 3-му углероду рибозы, должен быть обозначен как 3́-монофосфат. Штрих после цифры ставят для того, чтобы отличить номер углерода в пуриновом или пиримидиновом основании от положения этого атома в остатке дезоксирибозы. При нумерации атомов углерода основания штрих не ставится. Нуклеотид 2́-дезоксиаденозин с фосфатным остатком при углероде-5 молекулы сахара обозначается как 2́-дезоксиаденозин-5́-монофосфат. Нуклеозиды, содержащие аденин, гуанин, цитозин, тимин и урацил, принято обозначать буквами A, Г, Ц, Т и У соответственно. Наличие буквы d (или д) перед сокращением обозначает, что углеводным компонентом нуклеозида является 2́-дезоксирибоза. Гуанозин, содержащий 2́-дезоксирибозу, может быть обозначен дГ (дезоксигуанозин), а соответствующий ему монофосфат с фосфатной группой, присоединенной к третьему атому углерода дезоксирибозы, – дГ-3́-МФ. Как правило, в тех случаях, когда фосфат присоединен к углероду-5 рибозы или дезоксирибозы, символ 5́ опускается. Так, гуанозин 5́-монофосфат принято обозначать ГМФ, а 5́-монофосфат 2́-дезоксигуанозина сокращают как дГМФ. Если к углеводному остатку нуклеозида присоединены 2 или 3 остатка фосфорной кислоты используются аббревиатуры ДФ (дифосфат) и ТФ (трифосфат). Таким образом, аденозин + трифосфат с тремя фосфатными группами в 5́-положении углевода будет обозначаться АТФ. Поскольку в молекулах нуклеотидов фосфаты находятся в виде ангидридов фосфорной кислоты, т. е. в состоянии с низкой энтропией, их называют макроэргами (обладающими большим запасом потенциальной энергии). При гидролизе 1 моля АТФ до AДФ высвобождается 7,3 кКал потенциальной энергии.


Рисунок 35. Структура цАМФ


Физико-химические свойства нуклеотидов

Так как в состав нуклеотидов входят азотистые основания, то такие свойства как таутомерия и способность поглощать в ультрафиолетовой части спектра также характерны и для нуклеотидов, причем спектры поглощения азотистых оснований и содержащих эти основания нуклеотидов сходны. Наличие сахара и остатков фосфорной кислоты делает их более гидрофильными чем азотистые основания. Все нуклеотиды являются кислотами, так как содержат остатки фосфорной кислоты.

Функции природных нуклеотидов

Нуклеотиды являются мономерами нуклеиновых кислот (РНК, ДНК). В состав ДНК входят дезоксирибонуклеотидфосфаты – производные аденина, тимина, гуанина и цитозина. Также некоторые молекулы гуанина и цитозина в составе ДНК метилированы, то есть содержат метильную группу. Как основные мономеры в состав РНК входят рибонуклеотидфосфаты – производные аденина, урацила, гуанина и цитозина. Также в состав РНК входят нуклеотиды, содержащие различные минорные азотистые основания, например ксантин, гипоксантин, дигидроуридин и др.

Нуклеотиды являются мономерами коферментов (НАД, НАДФ, ФАД, ко-энзим А, метионин-аденозин). В составе коферементов они участвуют в ферментативных реакциях. Более подробно эта функция будет рассмотрена ниже.

Энергетическая (АТФ) . АТФ выполняет функцию основного внутриклеточного переносчика свободной энергии. Концентрация наиболее распространенного свободного нуклеотида в клетках млекопитающих – АТФ – составляет около 1 ммоль/л.

Сигнальная (цГМФ, цАМФ) (Рисунок 35). Циклический AMФ (3́-, 5́-аденозинмонофосфат, цАМФ) – медиатор различных внеклеточных сигналов в клетках животных – образуется из АТФ в результате реакции, катализируемой аденилатциклазой. Активность аденилатциклазы регулируется комплексом взаимодействий, многие из которых инициируются через рецепторы гормонов. Внутриклеточная концентрация цАМФ (около 1 мкмоль/л) на 3 порядка ниже концентрации ATФ. Циклический цГМФ (3́-, 5́-гуанозинмонофосфат, цГМФ) служит внутриклеточным проводником внеклеточных сигналов. В некоторых случаях цГМФ выступает в роли антагониста цАМФ. цГМФ образуется из ГТФ под действием гуанилатциклазы – фермента, имеющего много общего с аденилатциклазой. Гуанилатциклаза, как и аденилатциклаза, регулируется различными эффекторами, в том числе и гормонами. Как и цАМФ, цГМФ гидролизуется фосфодиэстеразой до соответствующего 5́-монофосфата.

Регуляторная (ГТФ) . Активность группы белков (G-белков), выполняющих в основном регуляторную функцию, зависит от того: какой нуклеотид они связывают. В неактивной форме эти белки связывают ГДФ, при активации белка происходит замена ГДФ на ГТФ. При выполнении своей функции белок гидролизует ГТФ до ГДФ и фосфата, выделившаяся, энергия затрачивается на функционирование белка.

Активация при метаболизме липидов и моносахаридов (УТФ, СТФ) . Производные урациловых нуклеотидов участвуют в качестве активирующих агентов в реакциях метаболизма гексоз и полимеризации углеводов, в частности при биосинтезе крахмала и олигосахаридных фрагментов гликопротеинов и протеогликанов. Субстратами в этих реакциях являются уридин-дифосфатсахара. Например, уридиндифосфатглюкоза служит предшественником гликогена. Также превращение глюкозы в галактозу, глюкуроновую кислоту или другие производные моносахаридов происходит в виде коньюгата с УДФ. СТР необходим для биосинтеза некоторых фосфоглицеридов в тканях животных. Реакции с участием церамида и ЦДФ-холина приводят к образованию сфингомиелина и других замещенных сфингозинов.

Участие в дезактивации различных спиртов и фенолов (УДФ-глюкуроновая кислота). Уридиндифосфатглюкуроновая кислота – выполняет функцию «активного» глюкуронида в реакциях конъюгирования, например, при образовании глюкуронида билирубина.

Нуклеотиды в составе коферментов

Коферменты – это низкомолекулярные соединения связанные с ферментами (см раздел «Ферменты») непосредственно участвующие в в биохимической реакции, другими словами это еще один субстрат, не выходящий в окружающую среду.

Коферменты подразделяют на две группы:

переносчики протонов и электронов, эти коферменты участвуют в окислительно-восстановительных реакциях;

переносчики всех остальных групп кроме протонов и электронов, эти коферменты участвуют в трансферазных реакциях.

Более подробно механизмы упомянутых реакций можно рассмотреть в главе «Ферменты».

Некоторые коферменты содержат в своем составе нуклеотиды. Они также делятся на эти же две группы.

Коферменты переносчики протонов и электронов

Эти коферменты участвуют в окислительно-восстановительных реакциях, где аденозин выполняет только структурную функцию, в реакцию вступают нуклеотиды, содержащие другие типы оснований, выделяют два типа таких коферментов: никотиновые и флавиновые. Они отличаются не только по активной группировке, но и по типу реакций, которые они осуществляют.


Никотиновые коферменты


Рисунок 36. Никотиновые коферменты. А-структура NAD, Б-структура NADP, В-механизм активности никотиновой кислоты, Г-механизм работы никотиновых коферментов


Никотинамидадениндинуклеотид (NAD +) – главный акцептор электронов при окислении топливных молекул. Реакционноспособная часть NAD + – его никотинамидное кольцо. При окислении субстрата никотинамидное кольцо NAD + присоединяет ион водорода и два электрона, которые являются эквивалентами гидрид-иона. Восстановленная форма этого переносчика – NADH. В ходе этого дегидрирования один атом водорода субстрата прямо переносится на NAD + , тогда как второй переходит в растворитель. Оба электрона, теряемые субстратом, переносятся на никотинамидное кольцо. Роль донора электронов в большинстве процессов восстановительного биосинтеза (пластического обмена); выполняет восстановленная форма никотин амидадениндинуклеотидфосфата (NADPH). NADPH отличается от NAD наличием фосфата, связанного эфирной связью с 2́-гидроксильной группой аденозина. Окисленная форма NADPH обозначается как NADP + . NADPH переносит электроны таким же образом, как NADH. Однако, NADPH используется почти исключительно в процессах восстановительного биосинтеза, тогда как NADH используется преимущественно для генерирования АТР. Дополнительная фосфатная группа NADPH – это участок, ответственный за осуществление целевого предназначения молекулы, состоящего в распознавании ферментами.


Флавиновые коферменты

Первый флавиновый кофермент (флавинмононуклеотид FMN) был выделен А. Сент-Дьёрдьи из сердечной мышцы в 1932 г., Р. Г. Варбург и В. Христиан тогда же получили из дрожжей первый флавопротеид, содержащий FMN в качестве кофермента. Второй важнейший флавиновый кофермент – флавинадениндинуклеотид (FAD) выделен ими же как кофактор оксидазы D-аминокислот в 1938 году. За счет окислительно-восстановительного превращения флавинового кольца флавиновые коферменты осуществляют окислительно-восстановительные реакции в составе многих важнейших ферментных систем: оксидаз (в частности, оксидаз D- и L-аминокислот, моноаминооксидазы, регулирующей уровень катехоламинов в крови) и дегидрогеназ (часто с участием никотинамидадениндинуклеотида и убихинонов).


Рисунок 37. Флавиновые коферменты. А-структура FAD, Б-механизм активности никотиновой кислоты, В-механизм работы флавиновых коферментов


Второй основной переносчик электронов при окислении топливных молекул – флавинадениндинуклеотид. Сокращения, используемые для обозначения окисленной и восстановленной форм этого переносчика – соответственно FAD и FADH 2 . Реакционноспособная часть FAD – это его изоаллоксазиновое кольцо. FAD, подобно NAD + , присоединяет два электрона. Однако FAD в отличие от NAD + присоединяет оба теряемых субстратом атома водорода.

Конец ознакомительного фрагмента.

В организме человека находится большое количество органических соединений, без которых невозможно представить стабильное течение обменных процессов, поддерживающих жизнедеятельность всех . Одними из таких веществ являются нуклеотиды – это фосфорные эфиры нуклеозидов, которые играют важнейшую роль в передаче информационных данных, а также химических реакциях с выделением внутриклеточной энергии.

Как самостоятельные органические единицы формируют наполнительный состав всех нуклеиновых кислот и большинства коферментов. Рассмотрим более подробно, что такое нуклеозидфосфаты и какую роль они играют в человеческом организме.

Из чего состоит вещество нуклеотид. Оно считается крайне сложным эфиром, относящимся к группе кислот фосфора и нуклеозидов, которые по своим биохимическим свойствам относятся к числу N-гликозидов и содержат гетероциклические фрагменты, связанные с молекулами глюкозы и атомом азота.

В природе наиболее распространенными являются нуклеотиды ДНК.

Кроме этого, еще различают органические вещества с похожими характеристиками строения: рибонуклеотиды, а также дезоксирибонуклеотиды. Все они без исключения являются мономерными молекулами, относящимися к сложным по строению биологическим веществам полимерного типа.

Из них формируется РНК и ДНК всех живых существ, начиная от простейших микроорганизмов и вирусных инфекций, заканчивая человеческим организмом.

Остаток молекулярной структуры фосфора среди нуклеозидфосфатов, образует эфирную связь с двумя, тремя, а в некоторых случаях сразу с пятью гидроксильными группами. Практически все без исключения нуклеотиды относятся к числу эфирных веществ, которые образовались из остатков ортофосфорной кислоты, поэтому их связи устойчивы и не распадаются под воздействием неблагоприятных факторов внутренней и внешней среды.

Обратите внимание! Строение нуклеотидов всегда сложное и основывается на моноэфирах. Последовательность нуклеотидов может меняться под воздействием стрессовых факторов.

Биологическая роль

Влияние нуклеотидов на течение всех процессов в организме живых существ изучают ученые, которые исследуют молекулярное строение внутриклеточного пространства.

Исходя из лабораторных заключений, полученных по итогам многолетней работы ученых различных стран мира, выделяют следующую роль нуклеозидфосфатов:

  • универсальный источник жизненной энергии, за счет которой происходит питание клеток и соответственно поддерживается нормальная работа тканей, формирующих внутренние органы, биологические жидкости, эпителиальный покров, сосудистую систему;
  • являются транспортировщиками глюкозных мономеров в клетках любого типа (это одна из форм углеводного обмена, когда употребляемый сахар, под воздействием пищеварительных ферментов трансформируется в глюкозу, которая разносится в каждый уголок организма вместе с нуклеозидфосфатами);
  • выполняют функцию кофермента (витаминные и минеральные соединения, которые способствуют обеспечению клеток питательными веществами);
  • сложные и циклические мононуклеотиды являются биологическими проводниками гормонов, распространяющихся вместе с потоком крови, а также усиливают действие нейронных импульсов;
  • аллостерическим образом регулируют активность пищеварительных ферментов, вырабатываемых тканями поджелудочной железы.

Нуклеотиды входят в состав нуклеиновых кислот. Они соединены тремя и пятью связями фосфодиэфирного типа. Генетики и ученые, посвятившие свою жизнь молекулярной биологии, продолжают лабораторные исследования нуклеозидфосфатов, поэтому ежегодно мир узнает еще больше интересного о свойствах нуклеотидов.

Последовательность нуклеотидов – это разновидность генетического равновесия и баланса расположения аминокислот в структуре ДНК, своеобразный порядок размещения остатков эфира в составе нуклеиновых кислот.

Он определяется с помощью традиционного метода секвенирования отобранного для анализа биологического материала.

Т – тимин;

А – аденин;

G – гуанин;

С – цитозин;

R – GA аденин в комплексе с гуанином и основаниями пурина;

Y – TC пиримидиновые соединения;

K – GT нуклеотиды, содержащие кетогруппу;

M – AC входящие в аминогруппу;

S – GC мощные, отличающиеся тремя водородными соединениями;

W – AT неустойчивые, которые образуют только по две водородные связи.

Последовательность нуклеотидов может меняться, а обозначения латинскими буквами необходимы в тех случаях, когда порядок расположения эфирных соединений неизвестен, является несущественным либо уже имеются результаты первичных исследований.

Наибольшее количество вариантов и комбинаций нуклеозидфосфатов свойственно для ДНК. Для записи эфирных соединений РНК достаточно символов A, С, G, U. Последнее литерное обозначение является веществом уридин, которое встречается только в РНК. Последовательность символических обозначений всегда записывается без использования пробелов.

Полезное видео: нуклеиновые кислоты (ДНК и РНК)

Сколько нуклеотидов в ДНК

Для того, чтобы максимально подробно понимать, о чем идет речь, следует иметь четкое представление о самой ДНК. Это отдельный вид молекул, которые имеют вытянутую форму и состоят из структурных элементов, а именно – нуклеозидфосфатов. Какое количество нуклеотидов в ДНК? Существует 4 вида эфирных соединений данного типа, входящие в состав ДНК. Это аденин, тимин, цитозин и гуанин. Все они формируют единую цепочку, из которой и образовывается молекулярная структура ДНК.

Впервые строение ДНК было расшифровано в далеком 1953 году американскими учеными Френсисом Криком и Джеймсом Уотсоном. В одной молекуле дезоксирибонуклеиновой кислоты содержится по две цепочки нуклеозидфосфатов. Они размещены таким образом, что внешне напоминают спираль, закручивающуюся вокруг своей оси.

Обратите внимание! Количество нуклеотидов в ДНК неизменное и ограничивается только четырьмя видами — данное открытие приблизило человечество к расшифровке полного генетического кода человека.

При этом строение молекулы имеет одну важную особенность. Все нуклеотидные цепочки обладают свойством комплементарности. Это означает, что друг напротив друга размещаются только эфирные соединения определенного вида. Известно, что напротив тимина всегда расположен аденин. Напротив цитозина не может находится никакое другое вещество кроме гуанина. Такие нуклеотидные пары формируют принцип комплементарности и являются неразделимыми.

Масса и длина

С помощью сложных математических подсчетов и лабораторных исследований, ученым удалось установить точные физико-биологические свойства эфирных соединений, формирующих молекулярную структуру дезоксирибонуклеиновой кислоты.

Известно, что протяжная длина одного внутриклеточного остатка, состоящего из аминокислот в единой полипептидной цепи – 3,5 ангстрем. Средняя масса одного молекулярного остатка равна 110 а.е.м.

Кроме этого, еще выделяют мономеры нуклеотидного типа, которые сформированы не только из аминокислот, но имеют и эфирные составляющие. Это мономеры ДНК и РНК. Их линейная длина измеряется непосредственно внутри нуклеиновой кислоты и составляет не менее 3,4 ангстрем. Молекулярный вес одного нуклеозидфосфата находится в пределах 345 а.е.м. Это исходные данные, которые используются в практической лабораторной работе, посвященной опытам, генетическим исследованиям и прочей научной деятельности.

Медицинские обозначения

Генетика, как наука, развивалась еще в период, когда не было исследований строения ДНК человека и других живых существ на молекулярном уровне. Поэтому в период домолекулярной генетики нуклеотидные связи обозначались, как наименьший элемент в структуре молекулы ДНК. Как ранее, так и в настоящее время, эфирные вещества данного типа были подвержены . Она могла быть спонтанной или индуцированной, потому для обозначения нуклеозидфосфатов с поврежденной структурой еще используют термин «рекон».

Для определения понятия наступления возможной мутации в азотистых соединениях нуклеотидных связей, применяют термин «мутон». Данные обозначения больше востребованы в лабораторной работе с биологическим материалом. Также используются учеными генетиками, которые изучают устройство молекул ДНК, пути передачи наследственной информации, способы ее шифрования и возможные комбинации генов, получаемых в результате слияния генетического потенциала двух половых партнеров.

Вконтакте

Нуклеотид – нуклеозид + один или несколько остатков фосфорной кислоты. Нуклеозид – азотистое основание и молекула пентозы. В состав нуклеотидов входят два пуриновых основания (аденин и гуанин) и 3 пиримидиновых основания (тимин, урацил, цитозин). Иногда встречаются минорные азотистые основания: псевдоурацил, метилуридин, метилцитозин, метиладенин.

Номенклатура:

Первичная структура НК – полинуклеотидная цепь со строго определенной последовательностью нуклеотидов, соединенных между собой 3’-5’-фосфодиэфирной связью.

Свойства нуклеотидов : 1) приобретают отрицательный заряд 2) обладают ярко

Выраженными кислотными свойствами.

Особенности строения, функции и распределения в клетке ДНК и РНК:

Локализована в основном в ядре, также в митохондриях и хлоропластах

Локализована в основном в цитоплазме

В структуру входят А, Т, Г, Ц + дезоксирибоза + остаток фосфорной к-ты.

В структуру входят А, У, Г, Ц + рибоза + остаток фосфорной к-ты

Двойная спираль (известно 6 типов: А-Е, Z, преобладающая B-форма)

Одноцепочечная (хотя и может сворачиваться с образованием «шпилек»). Имеет разновидности (иРНК, мРНК, тРНК)

Различаются по размерам (ДНК обычно состоит из большого количества нуклеотидов)

1. Обеспечивает синтез белка

2. Носитель наследственной информации

Обеспечивают синтез белка

Подчиняется правилам Чаргаффа

Не подчиняется правилам Чаргаффа

Метод анализа первичной структуры ДНК (Сэнджер):

Основан на ДНК-полимеразной реакции: выделение ДНК ® разрезание ее рестриктазами ® денатурация фрагментов ДНК и получение одноцепочечных молекул, используемых в качестве матрицы ® добавляют праймер и субстраты для синтеза ДНК ® смесь делят на четыре пробирки, в каждую добавляют один из стоп-нуклеотидов (дидезоксинуклеотидов) и ДНК-полимеразу ® синтез останавливается при встрече ДНК-полимеразой стоп-нуклеотида ® после окончания в каждой пробирке находятся фрагменты, заканчивающиеся на определенный нуклеотидов ® фрагменты разделяют электрофорезом в агарозном геле и анализируют.