Массовая доля элемента формула. Массовая доля элемента в сложном веществе — Гипермаркет знаний

Зная химическую формулу, можно вычислить массовую долю химических элементов в веществе. элемента в вещества обозначается греч. буквой «омега» - ω Э/В и рассчитывается по формуле:

где k - число атомов этого элемента в молекуле.

Какова массовая доля водорода и кислорода в воде (Н 2 О)?

Решение:

M r (Н 2 О) = 2*А r (Н) + 1*А r (О) = 2*1 + 1* 16 = 18

2) Вычисляем массовую долю водорода в воде:

3) Вычисляем массовую долю кислорода в воде. Так как в состав воды входят атомы только двух химических элементов, массовая доля кислорода будет равна:

Рис. 1. Оформление решения задачи 1

Рассчитайте массовую долю элементов в веществе H 3 PO 4 .

1) Вычисляем относительную молекулярную массу вещества:

M r (Н 3 РО 4) = 3*А r (Н) + 1*А r (Р) + 4*А r (О)= 3*1 + 1* 31 +4*16 = 98

2) Вычисляем массовую долю водорода в веществе:

3) Вычисляем массовую долю фосфора в веществе:

4) Вычисляем массовую долю кислорода в веществе:

1. Сборник задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. - М.: АСТ: Астрель, 2006.

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с.34-36)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§15)

4. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

4. Видеоурок по теме «Массовая доля химического элемента в веществе» ().

Домашнее задание

1. с.78 № 2 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. с. 34-36 №№ 3,5 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

На данный момент известно около 120 разных химических элементов, из которых в природе можно обнаружить не более 90. Многообразие же различных химических веществ вокруг нас несоизмеримо больше этого числа.
Связано это с тем, что крайне редко химические вещества состоят из отдельных, не связанных между собой атомов химических элементов. Таким строением в обычных условиях обладает лишь небольшой ряд газов называемых благородными — гелий, неон, аргон, криптон, ксенон и радон. Чаще же всего, химические вещества состоят не из разрозненных атомов, а из их объединений в различные группировки.
То есть атомы большинства химических элементов способны связываться друг с другом. Чаще всего в результате этого получаются молекулы – частицы, представляющие собой группировки из двух или более атомов. Например, химическое вещество водород состоит из молекул водорода, которые образуются из атомов следующим образом:

Рисунок 3. Образование молекулы водорода

Образовывать связи друг с другом могут и атомы разных химических элементов, так, например, при взаимодействии атома кислорода с двумя атомами водорода образуется молекула воды:

Рисунок 4. Образование молекулы воды

Поскольку каждый раз рисовать атомы химических элементов и подписывать их неудобно, для отражения состава молекул были придуманы химические формулы. Так, например, формула молекулярного водорода записывается как Н 2 , где число 2, написанное подстрочным шрифтом справа от символа атома водорода, означает количество атомов данного типа в молекуле. Таким образом, формулу воды можно записать как H 2 O. Единица, которая должна показывать количество атомов кислорода в молекуле, согласно принятым в химии правилам, не пишется. Числа, обозначающие количества атомов в составе одной молекулы называют индексами.
Рассмотрим еще несколько примеров химических формул веществ. Так, формула аммиака записывается как NH 3 , что говорит о том, что каждая молекула аммиака состоит из одного атома азота и трех атомов водорода.
Нередко встречаются молекулы, в которых можно насчитать несколько одинаковых групп атомов. Например, из формулы сульфата алюминия Al 2 (SO 4) 3 , можно сделать вывод о том, что в составе молекулы данного вещества находятся две группы атомов SO 4 .
Таким образом, химические формулы веществ однозначно характеризуют как их качественный, так и количественный состав.
Из всего вышесказанного логично вытекает закон постоянства состава вещества, установленный еще в 1808 году французским ученым Жозефом Луи Прустом, и звучит он следующим образом:

Любое чистое химическое вещество имеет постоянный качественный и количественный состав, не зависящий от способа получения этого вещества.

Поскольку любое химическое вещество является совокупностью молекул одинакового состава, это приводит к тому, что пропорции между атомами химических элементов в любой порции вещества такие же, как и в одной молекуле данного вещества. Все различия в химических свойствах веществ зависят от количественного и качественного состава молекул и кроме того, от порядка связей атомов между собой, если таковое возможно.
Таким образом, можно дать следующее определение термина молекула:

Молекула – это наименьшая частица какого-либо химического вещества обладающая его химическими свойствами.

Аналогично относительной атомной массе, существует также и такое понятие как относительная молекулярная масса M r :

Относительная молекулярная масса (M r) вещества это отношение массы одной молекулы этого вещества к одной двенадцатой массы одного атома углерода (1 атомной единице массы).

Таким образом, очевидно, что относительная молекулярная масса складывается из относительных атомных масс элементов, каждая из которых помножена на количество атомов данного конкретного типа в одной молекуле. Так, например, относительная молекулярная масса молекулы азотной кислоты HNO 3 складывается из относительной атомной массы водорода, относительной атомной массы азота и трех относительных атомных масс кислорода:

Для описания качественного и количественного состава вещества используют такое понятие как массовая доля химического элемента w(X) .

Массовая доля элемента ω(Э) % - это отношение массы данного элемента m (Э) во взятой молекуле вещества к молекулярной массе этого вещества Mr (в-ва).


Массовую долю элемента выражают в долях от единицы или в процентах:


ω(Э) = m (Э) / Мr(в-ва) (1)


ω% (Э) = m(Э) · 100%/Мr(в-ва)


Сумма массовых долей всех элементов вещества равна 1 или 100%.


Как правило, для расчетов массовой доли элемента берут порцию вещества, равную молярной массе вещества, тогда масса данного элемента в этой порции равна его молярной массе, умноженной на число атомов данного элемента в молекуле.


Так, для вещества А x В y в долях от единицы:


ω(A) = Ar(Э) · Х / Мr(в-ва) (2)


Из пропорции (2) выведем расчетную формулу для определения индексов (х, y) в химической формуле вещества, если известны массовые доли обоих элементов и молярная масса вещества:


Х = ω%(A) · Mr(в-ва) / Аr(Э) · 100% (3)


Разделив ω% (A) на ω% (В) , т.е. преобразовав формулу (2), получим:


ω(A) / ω(В) = Х · Ar(А) / У · Ar(В) (4)


Расчетную формулу (4) можно преобразовать следующим образом:


Х: У = ω%(A) / Ar(А) : ω%(В) / Ar(В) = X(А) : У(В) (5)


Расчетные формулы (3) и (5) используют для определения формулы вещества.


Если известны число атомов в молекуле вещества для одного из элементов и его массовая доля, можно определить молярную массу вещества:


Mr(в-ва) = Ar(Э) · Х / W(A)

Примеры решения задач на вычисление массовых долей химических элементов в сложном веществе

Вычисление массовых долей химических элементов в сложном веществе

Пример 1. Определите массовые доли химических элементов в серной кислоте H 2 SO 4 и выразите их в процентах.

Решение

1. Вычисляем относительную молекулярную массу серной кислоты:


Mr (H 2 SO 4) = 1 · 2 + 32 + 16 · 4 = 98


2. Вычисляем массовые доли элементов.


Для этого численное значение массы элемента (с учетом индекса) делят на молярную массу вещества:


Учитывая это и обозначая массовую долю элемента буквой ω, вычисления массовых долей проводят так:


ω(Н) = 2: 98 = 0,0204, или 2,04%;


ω(S) = 32: 98 = 0,3265, или 32,65%;


ω(О) = 64: 98 =0,6531, или 65,31%


Пример 2. Определите массовые доли химических элементов в оксиде алюминия Al 2 O 3 и выразите их в процентах.

Решение

1. Вычисляем относительную молекулярную массу оксида алюминия:


Mr(Al 2 O 3) = 27 · 2 + 16 · 3 = 102


2. Вычисляем массовые доли элементов:


ω(Al) = 54: 102 = 0,53 = 53%


ω(O) = 48: 102 = 0,47 = 47%

Как вычислить массовую долю вещества в кристаллогидрате

Массовая доля вещества - отношение массы данного вещества в системе к массе всей системы, т.е. ω(Х) = m(Х) / m,


где ω(X) - массовая доля вещества Х,


m(X) - масса вещества Х,


m - масса всей системы


Массовая доля - безразмерная величина. Её выражают в долях от единицы или в процентах.


Пример 1. Определите массовую долю кристаллизационной воды в дигидрате хлорида бария BaCl 2 ·2H 2 O.

Решение

Молярная масса BaCl 2 ·2H 2 O составляет:


М(BaCl 2 ·2H 2 O) = 137+ 2 · 35,5 + 2 · 18 = 244 г/моль


Из формулы BaCl 2 ·2H 2 O следует, что 1 моль дигидрата хлорида бария содержит 2 моль H 2 O. Отсюда можно определить массу воды, содержащейся в BaCl 2 ·2H 2 O:


m(H2O) = 2 · 18 = 36 г.


Находим массовую долю кристаллизационной воды в дигидрате хлорида бария BaCl 2 ·2H 2 O.


ω(H 2 O) = m(H 2 O)/m(BaCl 2 · 2H 2 O) = 36 / 244 = 0,1475 = 14,75%.


Пример 2. Из образца горной породы массой 25 г, содержащей минерал аргентит Ag 2 S, выделено серебро массой 5,4 г. Определите массовую долю аргентита в образце.






Определяем количество вещества серебра, находящегося в аргентите:


n(Ag) = m(Ag) / M(Ag) = 5,4 / 108 = 0,05 моль.


Из формулы Ag 2 S следует, что количество вещества аргентита в два раза меньше количества вещества серебра.


Определяем количество вещества аргентита:


n(Ag 2 S) = 0,5 · n(Ag) = 0,5 · 0,05 = 0,025 моль


Рассчитываем массу аргентита:


m(Ag 2 S) = n(Ag 2 S) · М(Ag2S) = 0,025 · 248 = 6,2 г.


Теперь определяем массовую долю аргентита в образце горной породы, массой 25 г.


ω(Ag 2 S) = m(Ag 2 S) / m = 6,2/25 = 0,248 = 24,8%.





Массовая доля - один из важных параметров, который активно используется для расчетов и не только в химии. Приготовление сиропов и рассолов, расчет внесения удобрений на площадь под ту или иную культуру, приготовление и назначение лекарственных препаратов. Для всех этих расчетов нужна массовая доля. Формула для ее нахождения будет дана ниже.

В химии она рассчитывается:

  • для компонента смеси, раствора;
  • для составной части соединения (химического элемента);
  • для примесей к чистым веществам.

Раствор - это тоже смесь, только гомогенная.

Массовая доля - это отношение массы компонента смеси (вещества) ко всей его массе. Выражают в обычных числах или в процентах.

Формула для нахождения такая:

? = (m (сост. части) · m (смеси, в-ва)) / 100% .

Нахождение массовой доли химического элемента

Массовая доля химического элемента в веществе находится по отношению атомной массы химического элемента, умноженной на количество его атомов в этом соединении, к молекулярной массе вещества.

Например, для определения w кислорода (оксигена) в молекуле углекислого газа СО2 вначале найдем молекулярную массу всего соединения. Она составляет 44. В молекуле содержится 2 атома кислорода. Значит w кислорода рассчитываем так:

w(O) = (Ar(O) · 2) / Mr(СО2)) х 100%,

w(O) = ((16 · 2) / 44) х 100% = 72,73%.

Аналогичным образом в химии определяют, например, w воды в кристаллогидрате - комплексе соединения с водой. В таком виде в природе находятся многие вещества в минералах.

Например, формула медного купороса CuSO4 · 5H2O. Чтобы определить w воды в этом кристаллогидрате, нужно в уже известную формулу подставить, соответственно, Mr воды (в числитель) и общую m кристаллогидрата (в знаменатель). Mr воды 18, а всего кристаллогидрата - 250.

w(H2O) = ((18 · 5) / 250) · 100% = 36%

Нахождение массовой доли вещества в смесях и растворах

Массовая доля химического соединения в смеси или растворе определяется по той же формуле, только в числителе будет масса вещества в растворе (смеси), а в знаменателе - масса всего раствора (смеси):

? = (m (в-ва) · m (р-ра)) / 100% .

Следует обратить внимание , что массовая концентрация - это отношение массы вещества к массе всего раствора , а не только растворителя.

Например, растворили 10 г поваренной соли в 200 г воды. Нужно найти процентную концентрацию соли в полученном растворе.

Для определения концентрации соли нам нужна m раствора. Она составляет:

m (р-ра) = m (соли) + m (воды) = 10 + 200 = 210 (г).

Находим массовую долю соли в растворе:

? = (10 · 210) / 100% = 4,76%

Таким образом, концентрация поваренной соли в растворе составит 4,76%.

Если в условии задачи дается не m , а объем раствора, то его нужно перевести в массу. Делается это обычно через формулу для нахождения плотности:

где m - масса вещества (раствора, смеси), а V - его объем.

Такую концентрацию используют чаще всего. Именно ее имеют в виду (если нет отдельных указаний), когда пишут о процентном содержании веществ в растворах и смесях.

В задачах часто дается концентрация примесей в веществе или вещества в его минералах. Следует обратить внимание на то, что концентрация (массовая доля) чистого соединения будет определяться путем вычитания из 100% доли примеси.

Например, если говорится, что из минерала получают железо, а процент примесей 80%, то чистого железа в минерале 100 - 80 = 20%.

Соответственно, если написано, что в минерале содержится только 20% железа, то во все химические реакции и в химическом производстве будут участвовать именно эти 20%.

Например , для реакции с соляной кислотой взяли 200 г природного минерала, в котором содержание цинка 5%. Для определения массы взятого цинка пользуемся той же формулой:

? = (m (в-ва) · m (р-ра)) / 100% ,

из которой находим неизвестную m раствора:

m (Zn) = (w · 100%) / m (минер.)

m (Zn) = (5 · 100) / 200 = 10 (г)

То есть, в 200 г взятого для реакции минерала содержится 5% цинка.

Задача . Образец медной руды массой 150 г содержит сульфид меди одновалентной и примеси, массовая доля которых составляет 15%. Вычислите массу сульфида меди в образце .

Решение задачи возможно двумя способами. Первый - это найти по известной концентрации массу примесей и вычесть ее из общей m образца руды. Второй способ - это найти массовую долю чистого сульфида и по ней уже рассчитать его массу. Решим обоими способами.

  • I способ

Вначале найдем m примесей в образце руды. Для этого воспользуемся уже известной формулой:

? = (m (примесей) · m (образца)) / 100% ,

m(примес.) = (w · m (образца)) · 100% , (А)

m(примес.) = (15 · 150) / 100% = 22,5 (г).

Теперь по разности найдем количество сульфида в образце:

150 - 22,5 = 127,5 г

  • II способ

Вначале находим w соединения:

А теперь по ней, воспользовавшись той же формулой, что и в первом способе (формула А), найдем m сульфида меди:

m(Cu2S) = (w · m (образца)) / 100% ,

m(Cu2S) = (85 · 150) / 100% = 127,5 (г).

Ответ: масса сульфида меди одновалентного в образце составляет 127,5 г.

Видео

Из видео вы узнаете, как правильно производить рассчеты по химическим формулам и как найти массовую долю.

Из курса химии известно, что массовой долей называют содержание определенного элемента в каком-нибудь веществе. Казалось бы, такие знания обычному дачнику ни к чему. Но не спешите закрывать страницу, так как умение вычислять массовую долю для огородника может оказаться очень даже полезным. Однако, чтобы не запутаться, давайте поговорим обо всем по порядку.

В чем суть понятия «массовая доля»?

Массовая доля измеряется в процентах или просто в десятых. Чуть выше мы говорили о классическом определении, которое можно обнаружить в справочниках, энциклопедиях или школьных учебниках химии. Но уяснить суть из сказанного не так просто. Итак, предположим, у нас имеется 500 г какого-то сложного вещества. Сложного в данном случае означает то, что оно не однородно по своему составу. По большому счёту любые вещества, которыми мы пользуемся, являются сложными, даже простая поваренная соль, формула которой – NaCl, то есть она состоит из молекул натрия и хлора. Если продолжать рассуждения на примере поваренной соли, то можно предположить, что в 500 граммах соли содержится 400 г натрия. Тогда его массовая доля будет 80 % или 0,8.


Зачем это нужно дачнику?

Думаю, ответ на этот вопрос вы уже знаете. Приготовление всевозможных растворов, смесей и т. п. является неотъемлемой частью хозяйственной деятельности любого огородника. В виде растворов используются удобрения, различные питательные смеси, а также другие препараты, например, стимуляторы роста «Эпин», «Корневин» и т.д. Кроме того, часто приходится смешивать сухие вещества, например, цемент, песок и другие компоненты, или обычную садовую землю с приобретенным субстратом. При этом рекомендуемая концентрация указанных средств и препаратов в приготовленных растворах или смесях в большинстве инструкций приводится именно в массовых долях.

Таким образом, знание как вычислить массовую долю элемента в веществе поможет дачнику правильно приготовить необходимый раствор удобрения или питательной смеси, а это, в свою очередь, обязательно отразится на будущем урожае.

Алгоритм вычисления

Итак, массовая доля отдельного компонента – это отношение его массы к общей массе раствора или вещества. Если полученный результат нужно перевести в проценты, то надо умножить его на 100. Таким образом, формулу для вычисления массовой доли можно записать так:

W = Масса вещества / Масса раствора

W = (Масса вещества / Масса раствора) х 100 %.

Пример определения массовой доли

Предположим, что мы имеем раствор, для приготовления которого в 100 мл воды было добавлено 5 г NaCl, и теперь необходимо вычислить концентрацию поваренной соли, то есть ее массовую долю. Масса вещества нам известна, а масса полученного раствора представляет собой сумму двух масс – соли и воды и равняется 105 г. Таким образом, делим 5 г на 105 г, умножаем результат на 100 и получаем искомую величину 4,7 %. Именно такую концентрацию будет иметь соляной раствор.

Более практичная задача

На практике же дачнику чаще приходится сталкиваться с задачами другого рода. Например, необходимо приготовить водный раствор какого-либо удобрения, концентрация которого по массе должна быть 10 %. Чтобы точно соблюсти рекомендуемые пропорции, нужно определить, какое понадобится количество вещества и в каком объеме воды его нужно будет растворить.

Решение задачи начинается в обратном порядке. Сначала следует разделить выраженную в процентах массовую долю на 100. В результате получим W= 0,1 – это массовая доля вещества в единицах. Теперь обозначим количество вещества как х, а конечную массу раствора – М. При этом последнюю величину составляют два слагаемых – масса воды и масса удобрения. То есть М = Мв + х. Таким образом, мы получаем простое уравнение:

W = х / (Мв + х)

Решая его относительно х, получим:

х = W х Мв / (1 – W)

Подставляя имеющиеся данные, получаем следующую зависимость:

х = 0,1 х Мв / 0,9

Таким образом, если для приготовления раствора мы возьмем 1 л (то есть 1000 г) воды, то для приготовления раствора нужной концентрации понадобиться примерно 111-112 г удобрения.

Решение задач с разбавлением или добавлением

Предположим, мы имеем 10 л (10 000 г) готового водного раствора с концентрацией в нем некого вещества W1 = 30 % или 0,3. Сколько понадобится добавить в него воды, чтобы концентрация снизилась до W2 = 15 % или 0,15? В этом случае поможет формула:

Мв = (W1х М1 / W2) – М1

Подставив исходные данные, получим, что количество добавляемой воды должно быть:
Мв = (0,3 х 10 000 / 0,15) – 10 000 = 10 000 г

То есть добавить нужно те же 10 л.

Теперь представим обратную задачу – имеется 10 л водного раствора (М1 = 10 000 г) концентрацией W1 = 10 % или 0,1. Нужно получить раствор с массовой долей удобрения W2 = 20 % или 0,2. Сколько нужно будет добавить исходного вещества? Для этого нужно воспользоваться формулой:

х = М1 х (W2 – W1) / (1 – W2)

Подставив исходные значение, получим х = 1 125 г.

Таким образом, знание простейших основ школьной химии поможет огороднику правильно приготовить растворы удобрений, питательные субстраты из нескольких элементов или смеси для строительных работ.