Наиболее вероятное состояние термодинамической системы. Энтропия и термодинамическая вероятность

Факторы интенсивностии экстенсивности

В ходе термодинамического процесса не только величина работы, но и величина других форм энергии могут рассматриваться как произведение двух величин - фактора интенсивности (“обобщённая сила”) и фактора экстенсивности или ёмкости (“обобщенная координата”).

В качестве таких факторов обычно рассматриваются разности значений каких-либо параметров системы, в свою очередь делящихся на экстенсивные (значения которых зависят от количества ве­щества, например, объём и масса) и интенсивные (значе­ния которых не зависят от количества вещества, например, температура, давление, плотность, концентрация).

Движущей силой процесса служит фактор интенсивности, т. е. различие значений какого-либо интенсивного параметра в разных частях системы (разность температур, перепад давлений, разность концентраций и т. п.). При этом самопроизвольный процесс может идти только в сторону усреднения интенсивного параметра.


Состояние термодинамической системы, как уже говорилось ранее, характеризуется определёнными значениями плотности, давления, температуры и других величин, характеризующих систему. Эти величины определяют состояние системы в целом, то есть её макросостояние . Однако при одной и той же плотности, температуре и т. д. частицы, из которых состоит система, могут находиться в разных местах её объёма и иметь различные значения энергии или импульса. Каждое состояние системы с определённым распределением её частиц по возможным классическим или квантовым состояниям называется микросостоянием . Число микросостояний, реализующих данное макросостояние, или иначе - число способов, которыми может быть реализовано данное состояние системы называется термодинамической вероятностью W . Из определения видно, что W ³ 1. Термодинамическая вероятность может быть равна единице только в одном случае - когда температура системы равна абсолютному нулю и в ней отсутствует тепловое движение. В обычных условиях в системах, с которыми приходится иметь дело на практике, и которые состоят из очень большого числа молекул и других частиц, W намного больше единицы.

Для идеальных газов значение W может быть довольно легко рассчитано методами статистической термодинамики, но для жидкостей и твёрдых тел такой расчёт намного более сложен.

Самопроизвольные процессы в системе идут в сторону увеличения её термодинамической вероятности. Поэтому величина W может рассматриваться в качестве одного из критериев возможности протекания тех или иных процессов. Однако даже тогда, когда значения W можно вычислить с достаточной точностью, использование их в практических расчётах затруднено поистине “астрономическими” числами, которыми они выражаются.

СТАТИСТИЧЕСКИЙ ВЕС

Понятие «статистический вес » (используется также термин термодинамическая вероятность ) является одним из основных в статистической физике. Чтобы сформулировать его определение необходимо сначала определить понятия макросостояние и микросостояние .

Одно и тоже состояние макроскопического тела можно охарактеризовать по-разному. Если состояние охарактеризовано заданием макроскопических параметров состояния (давление, объем, температура, плотность и т.п.) то такое состояние будем называть макросостоянием .

Если состояние охарактеризовано путем задания координат и скоростей всех молекул тела, то такое состояние будем называть микросостоянием .

Очевидно, что одно и то же макросостояние может быть реализовано различными способами, то есть различными микросостояниями. Число различных микросостояниий, которыми может быть реализовано данное макросостояние называется статистическим весом или термодинамической вероятностью .

Для пояснения указанных понятий рассмотрим модель (!) - сосуд, в котором находятся N молекул. Предположим, что сосуд разделен на две одинаковые части, и различные макросостояния отличаются количеством молекул в левой и правой половинах сосуда . Поэтому в рамках модели будем считать состояние молекулы заданным, если известно, в какой из половин сосуда она находится .

Различные микросостояния отличаются при этом тем, какие именно молекулы находятся справа и слева. 1,2 – 3,4 (как показано на рисунке 9.5) одно из состояний. 1,3 – 2,4 – другое микросостояние.

Каждая из молекул может с равной вероятностью находиться и слева, и справа. Поэтому вероятность i -той молекуле находиться, например, справа равна ½. Появление в левой части сосуда той молекулы наряду с той является статистически независимым событием , поэтому вероятность нахождения слева двух молекул равна ½ ½ = ¼; трех молекул – 1/8; четырех – 1/16 и т.д. Следовательно, вероятность любого размещения (микросостояния) молекул равна .

Утверждение о том, что, вероятности каждого их микросостояний равны, называются эргодической гипотезой , и оно лежит в основе статистической физики.

Рассмотрим N = 4. Каждое из размещений молекул в половинах сосуда является конкретным микросостоянием. Тогда макросостоянию с числом молекул слева соответствует 1 микросостояние. Статистический вес такого макросостояния равен 1, а вероятность его реализации – 1/16. Для иных макростоляний можно утверждать следующее:

Соответствует 6 микросостояний статистический вес 6, 6/16

Соответствует 4 микросостояния статистический вес 4, 4/16

Соответствует 1 микросостояние статистический вес 1, 1/16

Теперь можно видеть, что вследствие принятия эргодической гипотезы, статистический вес оказывается пропорциональным вероятности (обычной!) реализации данного макросостояния.

Если в сосуде содержится N молекул, то можно доказать, что статвес макросостояния, заключающегося в том, что слева n молекул, а справа (N – n)

(9.25)

Если для четырех молекул вероятность собраться в одной из половин сосуда составляет 1/16, то есть вполне ощутимую величину, то уже для N = 24 эта вероятность составляет порядка .

При нормальных условиях в 4 см 3 воздуха содержится около 10 20 молекул. Вероятность собраться им в одной из частей сосуда оценивается величиной .

Таким образом, с увеличением количества молекул в системе вероятность существенных отклонений от приблизительного равенства количеств молекул в частях сосуда очень быстро убывает. Это соответствует тому, что статвес состояний с приблизительно равным количеством молекул в половинах оказывается очень большим и быстро убывает по мере отклонения от равенства молекул в частях.

Если число N не очень велико, то с течением времени наблюдаются – заметные отклонения количества молекул в одной из половины от N / 2 . Случайные отклонения физической величиныx от ее среднего значения называются флуктуациям:

. (9.26)

Среднее арифметическое абсолютной флуктуации равно нулю. Поэтому в качестве характеристики флуктуаций чаще рассматривают среднюю квадратичную флуктуацию :

Более удобной и показательной является относительная флуктуация :

Причем в статистической физике доказывается соотношение:

, (9.28)

т.е. величина относительной флуктуации обратно пропорционально корню из количества частиц в системе . Это утверждение подтверждает наш качественный вывод.

Аналогично количеству молекул в одной из половин сосуда флуктуируют вблизи средних значений и другие макроскопические характеристики состояния – давление, плотность, и т.п.

Рассмотрим природу равновесных и неравновесных состояний и процессов с точки зрения статистической физики. Равновесным , по определению, является такое состояние, которое не имеет тенденции к изменению с течением времени. Ясно, что таким свойством в наибольшей мере будет обладать наиболее вероятное из всех макросостояний системы, то есть состояние, реализуемое наибольшим количеством микросостояний, а значит обладающее наибольшим статистическим весом. Поэтому равновесное состояние можно определить как состояние, статвес которого максимален .

Примером типичного необратимого процесса может служить распространение на весь объем сосуда молекул газа, первоначально сосредоточенных в одной из его половин. Этот процесс является необратимым, так как вероятность того, что в результате теплового движения все молекулы соберутся в одной из половин сосуда, очень мала. Соответственно всегда необратимым является процесс , обратный которому крайне маловероятен .


ЛЕКЦИЯ № 10 СТАТИЧЕСКАЯ ФИЗИКА И ТЕРМОДИНАМИКА

10.1. ЭНТРОПИЯ

Как мы установили, вероятность состояния системы пропорциональна ее статическому весу, поэтому в качестве характеристики вероятности состояния можно было бы использовать сам статвес W. Однако W не является аддитивной величиной. Поэтому для характеристики состояния системы используют величину

которую называют энтропией системы. Действительно, если мы рассмотрим две системы по 4 молекулы в каждой, то статистический вес состояния, когда в каждой из подсистем находится, например, по одной молекуле слева будет равен 16, т.е. . Это соотношение справедливо для любых состояний. Следовательно, статвес неаддитивен . В то же время энтропия состояния результирующей системы т.е. является величиной аддитивной .



Поскольку при протекании необратимых процессов в изолированной системе она переходит из менее вероятных в более вероятные состояния, можно утверждать, что энтропия изолированной системы возрастает при протекании в ней необратимых процессов .

Равновесное состояние является наиболее вероятным состоянием, а значит, энтропия системы перешедшей в равновесное состояние максимальна.

Поэтому можно утверждать, что энтропия изолированной системы остается постоянной, если она находится в равновесном состоянии, или возрастает, если в ней протекают необратимые процессы.

Утверждение о том, что энтропия изолированной системы не убывает, называетсявторым началом термодинамики или законом возрастания энтропии .

Энтропия является , очевидно, функциейсостояния и должна определятся параметрами состояния. Самыми простыми свойствами обладает одноатомный идеальный газ – его состояния полностью определяется заданием двух параметров, например, температуры и объема. Соответственно его энтропию можно определить как функцию температуры и объема: . Соответствующие вычисления показывают, что энтропия моля идеального газа определяется выражением

где - есть некоторая константа, с точностью до которой определяется энтропия.

Теперь можно выяснить вопрос о том, как изменяется энтропия неизолированной системы, например при сообщении ей некоторого количества тепла . Возьмем дифференциал (2) и умножим его на :

(3)

Но приращению внутренней энергии газа. Поскольку равенство .Тогда (3) преобразуется к виду:

Входящие в (4) являются аддитивными , и поэтому (4) справедливо для любой массы газа .

Термодинамическая вероятность

S = k lnW –

это формула Больцмана,

где S – энтропия – степень разупорядоченности системы;

k– постоянная Больцмана;

W – термодинамическая вероятность системы макросостояний.

– число микросостояний данной системы, с помощью которых можно реализовать данное макросостояние системы (Р, Т, V).

Если W = 1, то S = 0, при температуре абсолютного нуля –273°С все виды движений прекращаются.

Термодинамическая вероятность – это число способов, которыми атомы и молекулы можно распределить в объеме.

Цикл Карно

Цикл Карно – круговой тепловой процесс, в результате которого некоторое количество тепла термодинамически обратимым способом переносится от горячего тела к холодному. Процесс должен совершаться таким образом, чтобы тела, между которыми происходит непосредственный обмен энергией, находились при постоянной температуре, т. е. и горячее и холодное тела считаются настолько большими тепловыми резервуарами, что температура первого при отнятии и температура второго при прибавлении рассматриваемого количества тепла ощутимо не изменяются. Для этого необходимо «рабочее тело». Рабочим телом в этом цикле является 1 моль идеального газа. Все процессы, составляющие цикл Карно, являются обратимыми. Рассмотрим их. На рисунке 9 показано:

АВ – изотермическое расширение газа от V 1 до V 2 при температуре T 1 , количество теплоты Q 1 поглощается;

ВС – адиабатическое расширение от V 2 до V 3 , температура снижается от Т 1 до Т 2 ;

CD – сжатие изотермическое от V 3 до V 4 осуществляется при температуре Т 2 , количество теплоты Q отдается;

DA – сжатие адиабатическое от V 4 до V 1 , температура увеличивается от Т 2 до T 1 .

Проанализируем его подробно. Для процесса необходимо «рабочее тело», которое сначала при более высокой температуре Т 1 приводится в соприкосновение с горячим телом и изотермически получает от него указанное количество тепла. Затем оно адиабатически охлаждается до температуры Т 2 , отдавая при этой температуре тепло холодному телу с температурой Т 2 , а затем адиабатически возвращается в начальное состояние. В цикле Карно?U = 0. При проведении цикла «рабочее тело» получило количество теплоты Q 1 – Q 2 и произвело работу А, равную площади цикла. Итак, в соответствии с первым законом термодинамики Q 1 – Q 2 = А, получаем.

Определение 1

Вероятность термодинамическая - количество методов, благодаря которым возможно реализовать любое состояние макроскопической физической системы.

Рисунок 1. Энтропия и вероятность. Автор24 - интернет-биржа студенческих работ

В термодинамике положение концепции характеризуется конкретными значениями плотности, температуры, давлением и другими измеряемыми величинами. Перечисленные параметры определяют дальнейшее состояние системы в целом, но при одной и той же плотности, элементарные частицы могут располагаться в различных местах её объёма и иметь совершенно разные значения импульса или энергии.

Определение 2

Каждое состояние термодинамической системы с определенным разделением её частиц по вероятным квантовым или классическим положениям называют в физике микросостоянием.

Вероятность термодинамическая приравнивается количеству микросостояний, которые реализуют существующее макросостояние. Такой процесс не является вероятностью в математическом аспекте, следовательно, используется в статистической физике для определения свойств концепции, находящейся в термодинамическом, постоянном равновесии.

Для точного расчёта вероятности в термодинамике существенно, считаются ли одинаковые элементы системы неразличимыми или различными. Поэтому квантовая и классическая механика приводят к абсолютно разным выражениям для термодинамической вероятности.

Особенности вероятности в термодинамике

Рисунок 2. Термодинамическая вероятность. Автор24 - интернет-биржа студенческих работ

Замечание 1

Основное достоинство термодинамики заключается в том, что она помогает рассмотреть общие свойства концепции при равновесии и общие закономерности определения плотности, получить важные сведения о самом веществе, не зная в полной мере его начальную внутреннюю структуру.

Ее законы и методы применимы к любому материальному телу, к любым системам, которые включают магнитные и электрические поля, поэтому они стали основами в таких сферах:

  • газовых и конденсированных сред;
  • химии и техники;
  • необходимыми в физике Вселенной и геофизике;
  • биологии и управлений физическими процессами.

Исследователь Больцман считал атомистическую теорию вполне обоснованной. Бесконечное или огромное количество частиц делает невозможным механический эффект, нуждается в статистическом описании. Математическим инструментом современной статистики является исчисление и определение вероятностей. Больцман доказал, что поскольку базой термодинамических процессов выступают кинетические обратимые процессы, то необратимость в измеряемой термодинамикой энтропии, не может быть на практике абсолютной. Поэтому и энтропия должна быть непосредственно связана с возможностью осуществления данного микросостояния.

Понятие вероятности, неявно применяемого Максвеллом, Больцман использовал для преодоления трудностей, имеющих отношение к пониманию второго начала термодинамики и теории «тепловой смерти Вселенной». Вершиной научной работы Больцмана стало установление взаимосвязи между термодинамической вероятностью и энтропией. Планк представил эту связь через введение константы $k = R / N$, которая носит название постоянной Больцмана.

Таким образом, необратимый физический процесс есть плавный переход из менее вероятного положения в более вероятное, а логарифм изменения начального состояния с точностью до стабильного множителя полностью совпадает с перемещением энтропии. Этот эффект Больцман использовал для идеального газа.

Чем выше уровень беспорядка в скоростях и координатах частиц системы, тем больше возможность того, что концепция будет в состоянии хаоса. Формула Больцмана может рассматриваться как основное определение энтропии.

Расчет вероятности в системах

В случае, если система очень большая, а исходное положение ее не слишком близко к состоянию равновесия, то переходы веществ в менее вероятные состояния будут практически невозможны, что на практике они не имеют совершенно никакого значении. Тогда закон увеличения энтропии оправдывается экспериментально с абсолютной достоверностью.

Рассчитаем точную вероятность таких физических процессов. Пусть в определенном сосуде находится всего одна молекула. Тогда, в случае отсутствия внешних силовых полей, элементарная частица с равной вероятностью может оказаться либо в часть 1, либо в часть 2. Вероятности такого попадании одинаковые и записываются так:

После того, как в сосуд попадает вторая молекулу, их попадания будут всегда независимыми состояниями, так как элементы идеального газа не взаимодействуют между собой. В случае, если в течение длительного времени фотографировать распределение атомов в сосуде через равные промежуточные положения, то на каждые 1000 кадров придется в среднем примерно один кадр, на котором будут зафиксированы все молекулы только в части сосуда 1. Аналогичное явление можно наблюдать в части 2.

По гипотезе сложения вероятностей, получится в среднем 2 кадра на каждую тысячу с элементарными частицами, сосредоточенными в любой части системы. Все это не только принципиально вполне возможно, но и фактически доступно обычному наблюдению. Практически нет никаких шансов зафиксировать соответствующую флуктуацию. При равном количеству Авогадро показателю температуры для соответствующей вероятности получается настолько малая величина, что с такого рода возможностями и соответствующими им условиям можно совершенно не считаться.

Различие термодинамической и математической систем

На сегодняшний день ученые разделяют две основные вероятности в термодинамике:

  • математическую;
  • термодинамическую.

Термодинамической вероятностью называется определенной число микросостояний, посредством которых можно провести необходимое макросостояние концепции. Чтобы найти термодинамическую вероятность ее начального состояния, следует подсчитать количество комбинаций, которые помогут осуществить любое пространственное распределение элементарных частиц.

Математическая вероятность состояния равна отношению термодинамической возможности к общей величине возможных микросостояний. Математическая вероятность всегда меньше одной единицы, между тем как вероятность в термодинамике выражается большими числами. Вероятность в математике не аддитивна и непосредственно связана не с термическими особенностями системы, а с механическими, например, с движением молекул в среде и их скоростью. 

Одному и тому макросостоянию может соответствовать множество второстепенных микросостояний. По Л. Больцману, чем большим числом таких положений может реализоваться конкретное макросостояние, тем оно на практике более вероятно. Термодинамической вероятностью состоянию концепции называется число микросостояний, реализующих в итоге макросостояние.

При пользовании указанных способов необходимо иметь в виду, что основанные на ней выводы считаются наиболее вероятными только в термодинамическом вопросе, и указывают только на возможность или невозможность того или иного физического процесса. В реальных условиях не исключены незначительные отклонения от сделанных выводов, и протекающие явления могут при отдельных обстоятельствах быть иными, чем те, которые действовали исходя из общих термодинамических соображений.

Cтраница 1


Термодинамическая вероятность состояния W и энтропия изолированной системы 5 являются различными мерами стремления системы к равновесию. Обе величины возрастают при необратимых процессах, приближающих систему к равновесию, и достигают максимума при равновесном состоянии системы. Между величинами W и S имеется количественная связь. Общий вид этой связи нетрудно установить, если учесть аддитивность энтропии, которая является суммой энтропии отдельных частей равновесной системы, и мультипликативность вероятности сложного события, которая является произведением вероятностей отдельных независимых событий.  

Термодинамическая вероятность состояния W и энтропия изолированной системы 5 являются различными мерами стремления системы к равновесию. Обе величины возрастают при необратимых процессах, приближающих систему к равновесию, и достигают максимума при равновесном состоянии системы. Между величинами W и S имеется количественная связь. Общий вид этой связи нетрудно установить, если учесть аддитивность энтропии, которая является суммой энтропии - отдельных частей равновесной системы, и мультипликативность вероятности сложного события, которая является произведением вероятностей отдельных независимых событий.  

Термодинамическая вероятность состояния W и энтропия изолированной системы S являются различными мерами стремления системы к равновесию. Обе величины возрастают при необратимых процессах, приближающих систему к равновесию, и достигают максимума при равновесном состоянии системы. Между величинами W и 5 имеется количественная связь. Обший вид этой связи нетрудно установить, если учесть аддитивность энтропии, которая является суммой энтропии отдельных частей равновесной системы, и мультипликативность вероятности сложного события, которая является произведением вероятностей отдельных независимых событий.  

Термодинамической вероятностью состояния называется число микросостояний системы, соответствующих данному макросостоянию (стр. Величина Р для химически однородной системы показывает, сколькими способами может быть реализовано заданное количественное распределение частиц по ячейкам фазового пространства безотносительно к тому, в какой ячейке находится та или иная конкретная частица.  

Термодинамической вероятностью состояния системы называется число микросостояний, посредством которых данное состояние может осуществиться. Применяя теорию вероятностей, законы которой в сочетании с законами механики образуют статистическую механику, можно, с одной стороны, определить связь термодинамической вероятности с энтропией, а с другой - определить термодинамическую вероятность состояния.  

Определяем термодинамическую вероятность W состояния системы из ЗА / осцилляторов, получивших всего п квантов энергии. Эти п квантов могут распределиться между 3N степенями свободы разными способами.  

Под термодинамической вероятностью состояния подразумевается числитель дроби, выражающей вероятность этого состояния в обычном ее понимании.  

Количественной мерой термодинамической вероятности состояния w является число различных микросостояний, которыми может быть осуществлено макросостояние, характеризуемое заданными термодинамическими параметрами.  

Что называется термодинамической вероятностью состояния и как она связана с энтропией.  

Исходным понятием является термодинамическая вероятность состояния системы W .  

Рассмотрим теперь связь термодинамической вероятности состояния системы с энтропией.  

Больцмана; W - термодинамическая вероятность состояния, определяемая числом микросостояний, реализующих данное микросостояние. Соотношение (3.49) выражает принцип Болъцмана. Односторонний характер изменения энтропии в замкнутой системе определяется переходом системы из менее вероятного состояния в более вероятное.  

Больцмана; ш - термодинамическая вероятность состояния, определяемая числом микросостояний, реализующих данное макросостояние. Соотношение (3.49) выражает принцип Больцмана. Односторонний характер изменения энтропии - в замкнутой системе определяется переходом системы из менее вероятного состояния в более вероятное.  

Энтропия S связана с термодинамической вероятностью состояния W известным соотношением Sk nW, где k - постоянная Больцмана.  

Статистическим весом О или термодинамической вероятностью состояния термодинамической системы называется число микросостояний, с помощью которых реализуется данное макросостояние.