Удельное сопротивление меди в ом мм2. Понятие удельного электрического сопротивления медного проводника

Содержание:

Удельным сопротивлением металлов считается их способность к противодействию электрическому току, проходящему через них. Единицей измерения данной величины служит Ом*м (Ом-метр). В качестве символа используется греческая буква ρ (ро). Высокие показатели удельного сопротивления означают плохую проводимость электрического заряда тем или иным материалом.

Технические характеристики стали

Прежде чем подробно рассматривать удельное сопротивление стали, следует ознакомиться с ее основными физико-механическими свойствами. Благодаря своим качествам, этот материал получил широкое распространение в производственной сфере и других областях жизни и деятельности людей.

Сталь представляет собой сплав железа и углерода, содержащегося в количестве, не превышающем 1,7%. Кроме углерода, сталь содержит определенное количество примесей - кремния, марганца, серы и фосфора. По своим качествам она значительно лучше чугуна, легко поддается закаливанию, ковке, прокату и другим видам обработки. Все виды сталей отличаются высокой прочностью и пластичностью.

По своему назначению сталь подразделяется на конструкционную, инструментальную, а также с особыми физическими свойствами. В каждой из них содержится различное количество углерода, благодаря которому материал приобретает те или иные специфические качества, например, жаропрочность, жаростойкость, устойчивость к действию ржавчины и коррозии.

Особое место занимают электротехнические стали, выпускаемые в листовом формате и применяющиеся в производстве электротехнических изделий. Для получения этого материала производится легирование кремнием, способным улучшить его магнитные и электрические свойства.

Для того чтобы электротехническая сталь приобрела необходимые характеристики, необходимо соблюдение определенных требований и условий. Материал должен легко намагничиваться и перемагничиваться, то есть, обладать высокой магнитной проницаемостью. Такие стали имеют хорошую , а их перемагничивание осуществляется с минимальными потерями.

От соблюдения этих требований зависят габариты и масса магнитных сердечников и обмоток, а также коэффициент полезного действия трансформаторов и величина их рабочей температуры. На выполнение условий оказывают влияние многие факторы, в том числе и удельное сопротивление стали.

Удельное сопротивление и другие показатели

Величина удельного электрического сопротивления представляет собой отношение напряженности электрического поля в металле и плотности тока, протекающего в нем. Для практических расчетов используется формула: в которой ρ является удельным сопротивлением металла (Ом*м), Е - напряженностью электрического поля (В/м), а J - плотностью электротока в металле (А/м 2). При очень большой напряженности электрического поля и низкой плотности тока, удельное сопротивление металла будет высоким.

Существует еще одна величина, называемая удельной электропроводностью, обратная удельному сопротивлению, указывающая на степень проводимости электрического тока тем или иным материалом. Она определяется по формуле и выражается в единицах См/м - сименс на метр.

Удельное сопротивление тесно связано с электрическим сопротивлением. Однако они имеют различия между собой. В первом случае - это свойство материала, в том числе и стали, а во втором случае определяется свойство всего объекта. На качество резистора влияет сочетание нескольких факторов, прежде всего, формы и удельного сопротивления материала, из которого он изготовлен. Например, если для изготовления проволочного резистора использовалась тонкая и длинная проволока, то его сопротивление будет больше, чем у резистора, изготовленного из толстой и короткой проволоки одинакового металла.

В качестве другого примера можно привести резисторы из проволоки с одинаковым диаметром и длиной. Однако, если в одном из них материал имеет высокое удельное сопротивление, а в другом низкое, то соответственно в первом резисторе электрическое сопротивление будет выше, чем во втором.

Зная основные свойства материала, можно использовать удельное сопротивление стали для определения величины сопротивления стального проводника. Для вычислений, кроме удельного электрического сопротивления потребуется диаметр и длина самого провода. Расчеты выполняются по следующей формуле: , в которой R является (Ом), ρ - удельным сопротивлением стали (Ом*м), L - соответствует длине провода, А - площади его поперечного сечения.

Существует зависимость удельного сопротивления стали и других металлов от температуры. В большинстве расчетов используется комнатная температура - 20 0 С. Все изменения под влиянием этого фактора учитываются с помощью температурного коэффициента.

Что такое удельное сопротивление вещества? Чтобы ответить простыми словами на этот вопрос, нужно вспомнить курс физики и представить физическое воплощение этого определения. Через вещество пропускается электрический ток, а оно, в свою очередь, препятствует с какой-то силой прохождению тока.

Понятие удельного сопротивления вещества

Именно эта величина, которая показывает насколько сильно препятствует вещество току и есть удельное сопротивление (латинская буква «ро»). В международной системе единиц сопротивление выражается в Омах , умноженных на метр. Формула для вычисления звучит так: «Сопротивление умножается на площадь поперечного сечения и делится на длину проводника».

Возникает вопрос: «Почему при нахождении удельного сопротивления используется еще одно сопротивление?». Ответ прост, есть две разных величины - удельное сопротивление и сопротивление. Второе показывает насколько вещество способно препятствовать прохождению через него тока, а первое показывает практически то же самое, только речь идет уже не о веществе в общем смысле, а о проводнике с конкретной длиной и площадью сечения, которые выполнены из этого вещества.

Обратная величина, которая характеризует способность вещества пропускать электричество именуется удельной электрической проводимостью и формула по которой вычисляется удельная сопротивляемость напрямую связана с удельной проводимостью.

Применение меди

Понятие удельного сопротивления широко применяется в вычисление проводимости электрического тока различными металлами. На основе этих вычислений принимаются решения о целесообразности применения того или иного металла для изготовления электрических проводников, которые используются в строительстве, приборостроении и других областях.

Таблица сопротивления металлов

Существуют определенные таблицы? в которых сведены воедино имеющиеся сведения о пропускании и сопротивлении металлов, как правило, эти таблицы рассчитаны для определенных условий.

В частности, широко известна таблица сопротивления металлических монокристаллов при температуре двадцать градусов по Цельсию, а также таблица сопротивления металлов и сплавов.

Этими таблицами пользуются для вычисления различных данных в так называемых идеальных условиях, чтобы вычислить значения для конкретных целей нужно пользоваться формулами.

Медь. Ее характеристики и свойства

Описание вещества и свойства

Медь - это металл, который очень давно был открыт человечеством и также давно применяется для различных технических целей. Медь очень ковкий и пластичный металл с высокой электрической проводимостью, это делает ее очень популярной для изготовления различных проводов и проводников.

Физические свойства меди:

  • температура плавления - 1084 градусов по Цельсию;
  • температура кипения - 2560 градусов по Цельсию;
  • плотность при 20 градусах - 8890 килограмм деленный на кубический метр;
  • удельная теплоемкость при постоянном давлении и температуре 20 градусов - 385 кДж/Дж*кг
  • удельное электрическое сопротивление - 0,01724;

Марки меди

Данный металл можно разделить на несколько групп или марок, каждая из которых имеет свои свойства и свое применение в промышленности:

  1. Марки М00, М0, М1 - отлично подходят для производства кабелей и проводников, при ее переплавке исключается перенасыщение кислородом.
  2. Марки М2 и М3 - дешевые варианты, которые предназначены для мелкого проката и удовлетворяют большинству технических и промышленных задач небольшого масштаба.
  3. Марки М1, М1ф, М1р, М2р, М3р - это дорогие марки меди, которые изготавливаются для конкретного потребителя со специфическими требованиями и запросами.

Между собой марки отличаются по нескольким параметрам:

Влияние примесей на свойства меди

Примеси могут влиять на механические, технические и эксплуатационные свойства продукции.

В заключение следует подчеркнуть, что медь - это уникальный металл с уникальными свойствами. Она применяется в автомобилестроении, изготовлении элементов для электроиндустрии, электроприборов, предметов потребления, часов, компьютеров и многого другого. Со своим низким удельным сопротивлением данный металл является отличным материалом для изготовления проводников и прочих электрических приборов. Этим свойством медь обгоняет только серебро, но из-за более высокой стоимости оно не нашло такого же применения в электроиндустрии.

Большинство законов физики основано на экспериментах. Имена экспериментаторов увековечены в названиях этих законов. Одним из них был Георг Ом.

Опыты Георга Ома

Он установил в ходе экспериментов по взаимодействию электричества с различными веществами, в том числе металлами фундаментальную взаимосвязь плотности , напряжённости электрического поля и свойства вещества, которое получило название «удельная проводимость». Формула, соответствующая этой закономерности, названная как «Закон Ома» выглядит следующим образом:

j= λE , в которой

  • j — плотность электрического тока;
  • λ — удельная проводимость, именуемая также как «электропроводность»;
  • E – напряжённость электрического поля.

В некоторых случаях для обозначения удельной проводимости используется другая буква греческого алфавита — σ . Удельная проводимость зависит от некоторых параметров вещества. На её величину оказывают влияние температура, вещества, давление, если это газ, и самое главное структура этого вещества. Закон Ома соблюдается только для однородных веществ.

Для более удобных расчётов используется величина обратная удельной проводимости. Она получила название «удельное сопротивление», что так же связано со свойствами вещества, в котором течёт электрический ток, обозначается греческой буквой ρ и имеет размерность Ом*м. Но поскольку для различных физических явлений применяются разные теоретические обоснования, для удельного сопротивления могут быть использованы альтернативные формулы. Они являются отображением классической электронной теории металлов, а также квантовой теории.

Формулы

В этих утомительных, для простых читателей, формулах появляются такие множители, как постоянная Больцмана, постоянная Авогадро и постоянная Планка. Эти постоянные применяются для расчетов, которые учитывают свободный пробег электронов в проводнике, их скорость при тепловом движении, степень ионизации, концентрацию и плотность вещества. Словом, всё довольно сложно для не специалиста. Чтобы не быть голословным далее можно ознакомиться с тем, как всё выглядит на самом деле:

Особенности металлов

Поскольку движение электронов зависит от однородности вещества, ток в металлическом проводнике течёт соответственно его структуре, которая влияет на распределение электронов в проводнике с учётом его неоднородности. Она определяется не только присутствием включений примесей, но и физическими дефектами – трещинами, пустотами и т.п. Неоднородность проводника увеличивает его удельное сопротивление, которое определяется правилом Маттисена.

Это несложное для понимания правило, по сути, говорит о том, что в проводнике с током можно выделить несколько отдельных удельных сопротивлений. А результирующим значением будет их сумма. Слагаемыми будут удельное сопротивления кристаллической решётки металла, примесей и дефектов проводника. Поскольку этот параметр зависит от природы вещества, для вычисления его определены соответствующие закономерности, в том числе и для смешанных веществ.

Несмотря на то, что сплавы это тоже металлы, они рассматриваются как растворы с хаотической структурой, причём для вычисления удельного сопротивления имеет значение, какие именно металлы входят в состав сплава. В основном большинство сплавов из двух компонентов, которые не принадлежат к переходным, а также к редкоземельным металлам попадают под описание законом Нодгейма.

Как отдельная тема рассматривается удельное сопротивление металлических тонких плёнок. То, что его величина должна быть больше чем у объёмного проводника из такого же металла вполне логично предположить. Но при этом для плёнки вводится специальная эмпирическая формула Фукса, которая описывает взаимозависимость удельного сопротивления и толщины плёнки. Оказывается, в плёнках металлы проявляют свойства полупроводников.

А на процесс переноса зарядов оказывают влияние электроны, которые перемещаются в направлении толщины плёнки и мешают перемещению «продольных» зарядов. При этом они отражаются от поверхности плёночного проводника, и таким образом один электрон достаточно долго совершает колебания между его двумя поверхностями. Другим существенным фактором увеличения удельного сопротивления является температура проводника. Чем выше температура – тем сопротивление больше. И наоборот, чем ниже температура, тем сопротивление меньше.

Металлы являются веществами с наименьшим удельным сопротивлением при так называемой «комнатной» температуре. Единственным неметаллом, который оправдывает своё применение как проводник, является углерод. Графит, являющийся одной из его разновидностей, широко используется для изготовления скользящих контактов. Он имеет очень удачное сочетание таких свойств как удельное сопротивление и коэффициент трения скольжения. Поэтому графит является незаменимым материалом для щёток электродвигателей и других скользящих контактов. Величины удельных сопротивлений основных веществ, используемых для промышленных целей, приведены в таблице далее.

Сверхпроводимость

При температурах соответствующих сжижению газов, то есть вплоть до температуры жидкого гелия, которая равна – 273 градуса по Цельсию удельное сопротивление уменьшается почти до полного исчезновения. И не только у хороших металлических проводников, таких как серебро, медь и алюминий. Практически у всех металлов. При таких условиях, которые называются сверхпроводимостью, структура металла не имеет тормозящего влияния на движение зарядов под действием электрического поля. Поэтому ртуть и большинство металлов становятся сверхпроводниками.

Но, как выяснилось, относительно недавно в 80-х годах 20-го века, некоторые разновидности керамики тоже способны к сверхпроводимости. Причём для этого не надо использовать жидкий гелий. Такие материалы назвали высокотемпературными сверхпроводниками. Однако уже прошло несколько десятков лет, и ассортимент высокотемпературных проводников существенно расширился. Но массового использования таких высокотемпературных сверхпроводящих элементов не наблюдается. В некоторых странах сделаны единичные инсталляции с заменой обычных медных проводников на высокотемпературные сверхпроводники. Для поддержания нормального режима высокотемпературной сверхпроводимости необходим жидкий азот. А это получается слишком дорогим техническим решением.

Поэтому, малое значение удельного сопротивления, дарованное Природой меди и алюминию, по-прежнему делает их незаменимыми материалами для изготовления разнообразных проводников электрического тока.

  • проводники;
  • диэлектрики (с изоляционными свойствами);
  • полупроводники.

Электроны и ток

В основе современного представления об электрическом токе лежит предположение о том, что он состоит из материальных частиц - зарядов. Но различные физические и химические опыты дают основания утверждать, что эти носители заряда могут быть различного типа в одном и том же проводнике. И эта неоднородность частиц влияет на плотность тока. Для вычислений, которые связаны с параметрами электротока, применяются определенные физические величины. Среди них важное место занимают проводимость вместе с сопротивлением.

  • Проводимость связана с сопротивлением взаимной обратной зависимостью.

Известно, что при существовании некоторого напряжения, приложенного к электрической цепи, в ней появляется электрический ток, величина которого связана с проводимостью этой цепи. Это фундаментальное открытие сделал в свое время немецкий физик Георг Ом. С тех пор в ходу закон, называемый законом Ома. Он существует для разных вариантов цепей. Поэтому формулы для них могут быть непохожими друг на друга, поскольку соответствуют совсем разным условиям.

В любой электрической цепи имеется проводник. Если в нем находится один тип частиц-носителей заряда, ток в проводнике подобен потоку жидкости, который имеет определенную плотность. Она определяется по такой формуле:

Большинство металлов соответствуют однотипности заряженных частиц, благодаря которым существует электрический ток. Для металлов вычисление удельной электрической проводимости производится по такой формуле:

Поскольку можно вычислить проводимость, определить удельное электрическое сопротивление теперь труда не составит. Выше уже было упомянуто, что удельное сопротивление проводника - это величина, обратная проводимости. Следовательно,

В этой формуле буква греческого алфавита ρ (ро) используется для обозначения удельного электрического сопротивления. Такое обозначение наиболее часто используется в технической литературе. Однако можно встретить и несколько иные формулы, с помощью которых вычисляется удельное сопротивление проводников. Если для расчетов применять классическую теорию металлов и электронную проводимость в них, удельное сопротивление вычисляется по такой формуле:

Однако есть одно «но». На состояние атомов в металлическом проводнике влияет продолжительность процесса ионизации, которое осуществляется электрическим полем. При однократном ионизирующем воздействии на проводник атомы в нем получат однократную ионизацию, которая создаст баланс между концентрацией атомов и свободных электронов. И величины этих концентраций получатся равными. В этом случае имеют место такие зависимости и формулы:

Девиации удельных проводимостей и сопротивлений

Далее рассмотрим, от чего зависит удельная проводимость, связанная обратной зависимостью с удельным сопротивлением. Удельное сопротивление вещества - это довольно-таки абстрактная физическая величина. Каждый проводник существует в виде конкретного образца. Для него характерно наличие различных примесей и дефектов внутренней структуры. Они учитываются как отдельные слагаемые выражения, определяющего удельное сопротивление в соответствии с правилом Маттиссена. Это правило также учитывает рассеяние движущегося потока электронов на колеблющихся в зависимости от температуры узлах кристаллической решетки образца.

Наличие внутренних дефектов, таких как вкрапление различных примесей и микроскопические пустоты, также увеличивает удельное сопротивление. Для определения количества примесей в образцах удельное сопротивление материалов измеряется для двух значений температуры материала образца. Одна температурная величина - комнатная, а другая соответствует жидкому гелию. По отношению результата измерения при комнатной температуре к результату при температуре жидкого гелия получают коэффициент, который иллюстрирует структурное совершенство материала и его химическую чистоту. Коэффициент обозначается буквой β.

Если в качестве проводника электрического тока рассматривается металлический сплав со структурой твердого раствора, которая неупорядочена, величина остаточного удельного сопротивления может быть существенно больше удельного сопротивления. Такая особенность металлических сплавов из двух составляющих, не относящихся к редкоземельным элементам, так же, как и к переходным элементам, охватывается специальным законом. Его называют законом Нордгейма.

Современные технологии в электронике все больше стремятся в сторону миниатюризации. Причем настолько, что вскоре появится слово «наносхема» взамен микросхемы. Проводники в таких устройствах настолько тонкие, что правильным будет называть их пленками из металла. Вполне понятно то, что пленочный образец своим удельным сопротивлением будет отличаться в большую сторону от более крупного проводника. Малая толщина металла в пленке приводит к появлению в нем свойств полупроводников.

Начинает проявляться соразмерность толщины металла со свободным пробегом электронов в этом материале. Места для движения электронов остается мало. Потому они начинают мешать друг другу двигаться упорядоченно, что и приводит к увеличению удельного сопротивления. Для пленок из металла удельное сопротивление рассчитывают по специальной формуле, полученной на основе экспериментов. Формула названа именем Фукса - ученого, который изучал удельное сопротивление пленок.

Пленки - это весьма специфические образования, которые сложно повторить так, чтобы свойства нескольких образцов были одинаковыми. Для приемлемой точности в оценке пленок применяют специальный параметр - удельное поверхностное сопротивление.

Из металлических пленок на подложке микросхем формируются резисторы. По этой причине расчеты удельного сопротивления - это весьма востребованная задача в микроэлектронике. Величина удельного сопротивления, очевидно, имеет влияние со стороны температуры и связана с ней зависимостью прямой пропорциональности. Для большинства металлов эта зависимость имеет некоторый линейный участок в определенном температурном диапазоне. В таком случае удельное сопротивление определяется формулой:

В металлах электроток возникает по причине большого числа свободных электронов, концентрация которых относительно велика. Причем, электроны так же определяют и большую теплопроводность металлов. По этой причине между удельной электрической проводимостью и удельной теплопроводностью установлена связь особым законом, который был обоснован экспериментальным путем. Этот закон Видемана-Франца характерен такими формулами:

Заманчивые перспективы сверхпроводимости

Однако самые удивительные процессы происходят при минимальной технически достижимой температуре жидкого гелия. При таких условиях охлаждения все металлы практически утрачивают свое удельное сопротивление. Провода из меди, охлажденные до температуры жидкого гелия, оказываются способными проводить токи многократно большие по сравнению с обычными условиями. Если бы на практике такое стало возможным, экономический эффект получился бы неоценимо большим.

Еще более удивительным оказалось открытие высокотемпературных проводников. Эти разновидности керамики при обычных условиях были очень далеки по своему удельному сопротивлению от металлов. Но при температуре примерно на три десятка градусов выше жидкого гелия они становились сверхпроводниками. Открытие такого поведения неметаллических материалов стало мощным стимулом для исследований. Из-за величайших экономических последствий практического применения сверхпроводимости на это направление были брошены весьма значительные финансовые ресурсы, начались масштабные исследования.

Но пока что, как говорится, «воз и ныне там»… Керамические материалы оказались непригодными для практического применения. Условия поддержания состояния сверхпроводимости требовали таких больших расходов, что уничтожалась вся выгода от ее использования. Но эксперименты со сверхпроводимостью продолжаются. Прогресс налицо. Уже получена сверхпроводимость при температуре 165 градусов Кельвина, однако для этого требуется высокое давление. Создание и поддержание таких особых условий опять-таки отрицает коммерческое использование этого технического решения.

Дополнительные факторы влияния

В настоящее время все продолжает идти своим путем, и для меди, алюминия и некоторых других металлов удельное сопротивление продолжает обеспечивать их промышленное использование для изготовления проводов и кабелей. В заключение стоит добавить еще немного информации о том, что не только удельное сопротивление материала проводника и температура окружающей среды влияют на потери в нем при прохождении электротока. Весьма значима геометрия проводника при использовании его на повышенной частоте напряжения и при большой силе тока.

В этих условиях электроны стремятся сосредотачиваться вблизи поверхности провода, и его толщина как проводника утрачивает смысл. Поэтому можно оправданно уменьшить в проводе количество меди, изготовив из нее только наружную часть проводника. Еще одним фактором увеличения удельного сопротивления проводника является деформация. Поэтому, несмотря на высокие показатели некоторых электропроводящих материалов, в определенных условиях они могут не проявиться. Следует правильно подбирать проводники для конкретных задач. В этом помогут таблицы, показанные далее.

Электрический ток возникает в результате замыкания цепи с разностью потенциалов на зажимах. Силы поля воздействуют на свободные электроны и они перемещаются по проводнику. В процессе этого путешествия, электроны встречаются с атомами и передают им часть своей накопившейся энергии. В результате этого их скорость уменьшается. Но, из-за воздействия электрического поля, она снова набирает обороты. Таким образом, электроны постоянно испытывают на себе сопротивление, именно поэтому электрический ток нагревается.

Свойство вещества, превращать электроэнергию в тепло во время воздействия тока, и является электрическим сопротивлением и обозначается, как R, его измерительной единицей является Ом. Величина сопротивления зависит, главным образом от способности различных материалов проводить ток.
Впервые, о сопротивляемости заявил немецкий исследователь Г. Ом.

Для того, чтобы узнать зависимость силы тока от сопротивления, известный физик провел множество экспериментов. Для опытов он использовал различные проводники и получал различные показатели.
Первое, что определил Г. Ом — это то, что удельное сопротивление зависит от длинны проводника. То есть, если увеличивалась длинна проводника, сопротивление тоже увеличивалось. В результате, эта связь была определена, как прямо пропорциональная.

Вторая зависимость — это площадь поперечного сечения. Её можно было определить путем поперечного среза проводника. Площадь той фигуры, что образовалась на срезе и есть площадь поперечного сечения. Здесь связь получилась обратно пропорциональная. То есть чем больше была площадь поперечного сечения, тем меньше становилось сопротивление проводника.

И третья, важная величина, от которой зависит сопротивление, это материал. В результате того, что Ом использовал в опытах различные материалы, он обнаружил различные свойства сопротивляемости. Все эти опыты и показатели были сведены в таблицу из которой видно, различное значение удельной сопротивляемости у различных веществ.

Известно, что самые лучшие проводники — металлы. А какие из металлов лучшие проводники? В таблице показано, что наименьшей сопротивляемостью обладают медь и серебро. Медь используется чаще из-за меньшей стоимости, а серебро применяют в наиболее важных и ответственных приборах.

Вещества с высоким удельным сопротивлением в таблице, плохо проводят электрический ток, а значит могут быть прекрасными изоляционными материалами. Вещества обладающие этим свойством в наибольшей степени, это фарфор и эбонит.

Вообще, удельное электрическое сопротивление является очень важным фактором, ведь, определив его показатель, мы можем узнать из какого вещества сделан проводник. Для этого необходимо измерить площадь сечения, узнать силу тока с помощью вольтметра и амперметра, а также измерить напряжение. Таким образом мы узнаем значение удельного сопротивления и, с помощью таблицы легко выйдем на вещество. Получается, что удельное сопротивление — это в роде отпечатков пальцев вещества. Кроме этого, удельное сопротивление важно при планировании длинных электрических цепей: нам необходимо знать этот показатель, чтобы соблюдать баланс между длинной и площадью.

Есть формула, определяющая, что сопротивление равно 1 ОМ, если при напряжении 1В, его сила тока равняется 1А. То есть, сопротивление единичной площади и единичной длинны, сделанного из определенного вещества и есть удельное сопротивление.

Надо отметить также, что показатель удельного сопротивления напрямую зависит от частоты вещества. То есть от того имеет ли он примеси. Та, добавление всего одного процента марганца увеличивает сопротивляемость самого проводящего вещества — меди, в три раза.

Эта таблица демонстрирует величину удельного электрического сопротивления некоторых веществ.



Материалы с высокой проводимостью

Медь
Как мы уже говорили медь чаще всего применяется в качестве проводника. Это объясняется не только её низкой сопротивляемостью. Медь имеет такие преимущества, как высокая прочность, стойкость к коррозии, легкость в использовании и хорошая обрабатываемость. Хорошими марками меди считается М0 и М1. В них количество примесей не превышает 0,1%.

Высокая стоимость металла и его преобладающая в последнее время дефицитность побуждает производителей применять в качестве проводника алюминий. Также, используются сплавы меди с различными металлами.
Алюминий
Этот металл значительно легче меди, но алюминий обладает большими значениями теплоемкости и температуры плавления. В связи с этим для того, что довести его до расплавленного состояния требуется больше энергии, чем меди. Тем не менее нужно учитывать факт дефицитности меди.
В производстве электротехнических изделий применяется, как правило, алюминий марки А1. Он содержит не более 0,5% примесей. А металл наивысшей частоты — это алюминий марки АВ0000.
Железо
Дешевизна и доступность железа омрачается его высокой удельной сопротивляемостью. Кроме того, она быстро подвергается коррозии. По этой причине стальные проводники часто покрывают цинком. Широко используется так называемый биметалл — это сталь покрытая для защиты медью.
Натрий
Натрий, тоже доступный и перспективный материал, но его сопротивляемость почти в три раза больше меди. Кроме того, металлический натрий обладает высокой химической активностью, что обязывает покрывать такой проводник герметичной защитой. Она же должна защищать проводник от механических повреждений, так как натрий очень мягкий и достаточно непрочный материал.

Сверхпроводимость
В таблице ниже, указано удельное сопротивление веществ при температуре 20 градусов. Указание температуры неслучайно, ведь удельное сопротивление напрямую зависит от этого показателя. Это объясняется тем, что при нагревании, повышается и скорость атомов, а значит вероятность встречи их с электронами тоже увеличится.


Интересно, что происходит с сопротивляемостью в условиях охлаждения. Впервые поведение атомов при очень низких температурах заметил Г. Камерлинг-Оннес в 1911 году. Он охладил ртутную проволоку до 4К и обнаружил падение её сопротивляемости до нуля. Изменение показателя удельной сопротивляемости у некоторых сплавов и металлов в условиях низкой температуры, физик назвал сверхпроводимостью.

Сверхпроводники переходят в состояние сверхпроводимости при охлаждении, и, при этом их оптические и структурные характеристики не меняются. Главное открытие состоит в том, что электрические и магнитные свойства металлов в сверхпроводящем состоянии сильно отличаются от их же свойств в обычном состоянии, а также от свойств других металлов, которые при понижении температуры не могут переходить в это состояние.
Применение сверхпроводников осуществляется, главным образом, в получении сверхсильного магнитного поля, сила которого достигает 107 А/м. Также разрабатываются системы сверхпроводящих линий электропередач.

Похожие материалы.