В чем состоит метод доказательство от противного. Что такое метод доказательства «от противного»

Доказательство «от противного» (по-латински "reductio ad absurdum") характеризуется тем, что сам процесс доказательства какого-либо мнения осуществляется путем опровержения противоположного суждения. Ложность антитезиса можно доказать, установив тот факт, что он несовместим с истинным суждением.

Обычно такой метод наглядно демонстрируется с помощью формулы, где А – антитезис, а В – истина. Если при решении получается, что наличие переменной А приводит к результатам отличным от В, то доказывается ложность А.

Доказательство «от противного» без использования истины

Существует и более легкая доказательства ложности «противного» - антитезиса. Такая формула-правило гласит: «Если при решении с переменной А в формуле возникло противоречие, А – ложно». При этом не имеет значения, является ли антитезис отрицательным или утвердительным суждением. К тому же более простой способ доказательства от противного содержит в себе только два факта: тезис и антитезис, истина В не используется. В это значительно упрощает процесс доказательства.

Апагогия

В процессе доказательства от противного (которое еще называется «приведением к нелепости») часто используется апагогия. Это логический прием, цель которого доказать неверность какого-либо суждения так, чтобы непосредственно в нем или в вытекающих из него следствиях было выявлено противоречие. Противоречие может выражаться в тождестве заведомо различных предметов или в качестве выводов: конъюнкция или пары В и не В (истина и не истина).

Прием доказательства «от противного» часто используется . Во многих случаях доказать неверность суждения другим способом не представляется возможным. Кроме апагогии существует и парадоксальная форма доказательства от противного. Такая форма применялась еще в «Началах» Евклида и представляет собой следующее правило: А считается доказанным, если получается продемонстрировать и «истинность ложности» А.

Таким образом, процесс доказательства от противного (оно же зовется косвенным и апогогическим доказательством) выглядит следующим образом. Выдвигается мнение, противоположное , из этого антитезиса выводятся следствия, среди которых ищется ложное. Находят доказательства того, что среди следствий действительно имеется ложное. Из этого делается вывод, что антитезис неверен, а раз неверен антитезис, следует логичный вывод, что истина содержится именно в тезисе.

Практическое занятие № 2

Тема: Логика и доказательство. Доказательство: прямое, обратное, от противного. Метод математической индукции.

Занятие рассчитано на 2 академ. часа.

Цель: изучить различные методы доказательств (прямое рассуждение, метод «от противного» и обратное рассуждение), иллюстрирующие методологию рассуждений. Рассмотреть метод математической индукции.

Теоретический материал

Методы доказательств

При доказательстве теорем применяется логическая аргументация. Доказательства в информатике  неотъемлемая часть проверки корректности алгоритмов. Необходимость доказательства возникает, когда нам нужно установить истинность высказывания вида (А В). Существует несколько стандартных типов доказательств, включающих следующие:

  1. Прямое рассуждение (доказательство).

Предполагаем, что высказывание А истинно и показываем справедливость В. Такой способ доказательства исключает ситуацию, когда A истинно, a B  ложно, поскольку именно в этом и только в этом случае импликация (А В) принимает ложное значение (см. табл).

Таким образом, прямое доказательство идет от рассмотрения аргументов к доказательству тезиса, т. е. истинность тезиса непосредственно обосновывается аргументами. Схема этого доказательства такая: из данных аргументов (а, b, с, ...) необходимо следует доказываемый тезис q.

По этому типу проводятся доказательства в судебной практике, в науке, в полемике, в сочинениях школьников, при изложении материала учителем и т. д.

Примеры:

1. Учитель на уроке при прямом доказательстве тезиса “Народ  творец истории”, показывает; во-первых , что народ является создателем материальных благ, во-вторых , обосновывает огромную роль народных масс в политике, разъясняет, как в современную эпоху народ ведет активную борьбу за мир и демократию, в-третьих , раскрывает его большую роль в создании духовной культуры.

2. На уроках химии прямое доказательство о горючести сахара может быть представлено в форме категорического силлогизма: Все углеводы - горючи. Сахар - углевод. Сахар горюч.

В современном журнале мод “Бурда” тезис “Зависть - корень всех зол” обосновывается с помощью прямого доказательства следующими аргументами: “Зависть не только отравляет людям повседневную жизнь, но может привести и к более серьезным последствиям, поэтому наряду с ревностью, злобой и ненавистью, несомненно, относится к самым плохим чертам характера. Подкравшись незаметно, зависть ранит больно и глубоко. Человек завидует благополучию других, мучается от сознания того, что кому-то больше повезло”".

2. Обратное рассуждение (доказательство ) . Предполагаем, что высказывание В ложно и показываем ошибочность А. То есть, фактически, прямым способом проверяем истинность импликации ((не В) (не А)), что согласно таблицы, логически эквивалентно истинности исходного утверждения (А  В).

3. Метод «от противного».

Этот метод часто используется в математике. Пусть а - тезис или теорема, которую надо доказать. Предполагаем от противного, что а ложно, т. е. истинно не-а (или). Из допущения выводим следствия, которые противоречат действительности или ранее доказанным теоремам. Имеем, при этом - ложно, значит, истинно его отрицание, т.е. , которое по закону двузначной классической логики (→ а ) дает а. Значит, истинно а , что и требовалось доказать.

Примеров доказательства “от противного” очень много в школьном курсе математики. Так, пример, доказывается теорема о том, что из точки, лежащей вне прямой, на эту прямую можно опустить лишь один перпендикуляр. Методом “от противного” доказывается и следующая теорема: “Если две прямые перпендикулярны к одной и той же плоскости, то они параллельны”. Доказательство этой теоремы пpямо начинается словами: “Предположим противное, т. е. что прямые АВ и CD не параллельны”.

Математическая индукция

Компьютерную программу в информатике называют правильной или корректной, если она делает то, что указано в ее спецификации. Несмотря на то, что тестирование программы может давать ожидаемый результат в случае каких-то отдельных начальных данных, необходимо доказать приемами формальной логики, что правильные выходные данные будут получаться при любых вводимых начальных значениях.

Проверка корректности алгоритма, содержащего циклы, нуждается в довольно мощном методе доказательства, который называется «математическая индукция».

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному. Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Принцип математической индукции  это следующая теорема:

Пусть мы имеем бесконечную последовательность утверждений P 1 , P 2 , ..., P n занумерованных натуральными числами, причём: утверждение P 1  истинно; если некоторое утверждение P k  истинно, то следующее утверждение P k +1 тоже истинно.

Тогда принцип математической индукции утверждает, что все утверждения последовательности истинны.

Другими словами принцип математической индукции можно сформулировать так: если в очереди первой стоит женщина, и за каждой женщиной стоит женщина, то все в очереди – женщины.

Способ рассуждений, основанный на принципе математической индукции называется методом математической индукции. Для решения задач методом математической индукции необходимо:

1) сформулировать утверждение задачи в виде последовательности утверждений P 1 , P 2 , ..., P n , ... ;

2) доказать, что утверждение P 1 истинно (этот этап называется базой индукции); 3) доказать, что если утверждение P n истинно при некотором n= k, то оно истинно и при n = k + 1 (этот этап называется шагом индукции).

Ввиду недостоверности заключения индукция не может служить методом доказательства. Но она является мощным эвристическим методом , т. е. методом открытия новых истин.

Индукция может привести к ложному заключению. Так, например, вычисляя значения выражения n 2 +n+17 при n = 1,2,3, ..., 15, мы получаем неизменно простые числа, и это наводит на мысль, что значение этого выражения при любом натуральном n есть простое число. Иначе говоря, на основании пятнадцати частных посылок получено общее заключение, относящееся к бесконечному множеству частных случаев, и это заключение оказывается ложным, так как уже при n = 16 получаем составное число 16 2 +16+17=172.

В истории математики были случаи, когда известные математики ошибались в своих индуктивных выводах. Например, П. Ферма предположил, что все числа вида 22 n + 1 простые, исходя из того, что при n = 1,2,3,4 они являются таковыми, но Л. Эйлер нашел, что уже при n = 5 число 232+ 1 не является простым (оно делится на 641). Однако возможность получения с помощью индукции ложного заключения не является основанием для отрицания роли индукции в школьном обучении математике.

Методические указания

Пример 1: Покажите прямым способом рассуждений, что произведение ху двух нечетных целых чисел х и у всегда нечетно.

Решение. Любое нечетное число, и в частности х, можно записать в виде х = 2 m + 1, где m  Z . Аналогично, у = 2 n + 1, n  Z .

Значит, произведение ху = (2 m + 1)(2 n + 1) = 4mn + 2m + 2n + 1 = 2(2 mn + m + n ) + 1 тоже является нечетным числом.

Пример 2: Пусть n  N . Покажите, используя обратный способ доказательства, что если n 2 нечетно, то и n нечетно.

Решение. Отрицанием высказывания о нечетности числа n 2 служит утверждение « n 2 четно», а высказывание о четности n является отрицанием утверждения «число n нечетно». Таким образом, нужно показать прямым способом рассуждений, что четность числа n влечет четность его квадрата n 2 .

Так как n четно, то n =2 m для какого-то целого числа m . Следовательно, n 2 = 4 m 2 = 2(2 m 2 ) — четное число.

Пример 3: Методом «от противного» покажите, что решение уравнения х 2 = 2 является иррациональным числом, т. е. не может быть записано в виде дроби с целыми числителем и знаменателем.

Решение. Здесь нам следует допустить, что решение х уравнения х 2 = 2 рационально, т. е. записывается в виде дроби х = с целыми m и n , причем n  0. Предположив это, нам необходимо получить противоречие либо с предположением, либо с каким-то ранее доказанным фактом.

Как известно, рациональное число неоднозначно записывается

в виде дроби. Например, х = == и т.д. Однако можно считать, что m и n не имеют общих делителей. В этом случае неоднозначность записи пропадает.

Итак, предполагаем дополнительно, что дробь х = несократима (m и n не имеют общих делителей). По условию число х удовлетворяет уравнению х 2 = 2. Значит, () 2 = 2, откуда m 2 = 2 n 2 .

Из последнего равенства следует, что число m 2 четно. Следовательно, m тоже четно и может быть представлено в виде m = 2р для какого-то целого числа р. Подставив эту информацию в равенство m 2 = 2 n 2 , мы получим, что 4р 2 = 2 n 2 , т. е. n 2 = 2р 2 .

Но тогда n тоже является четным числом. Таким образом, мы показали, что как m , так и n  четные числа. Поэтому они обладают общим делителем 2. Если же теперь вспомнить, что мы предполагали отсутствие общего делителя у числителя и знаменателя дроби, то увидим явное противоречие.

Найденное противоречие приводит нас к однозначному выводу: решение уравнения х 2 = 2 не может быть рациональным числом, т. е. оно иррационально.

Пример 4: Докажем по индукции следующее равенство (которое, конечно, допускает и другие доказательства):

1 + 2 + 3 + ... + n = n(n + 1)/2.

База. При n = 1 равенство превращается в тождество 1 = 1·(1 + 1)/2.

Шаг. Пусть равенство выполнено при n = k: 1 + 2 + 3 + ... + k = k(k + 1)/2.

Прибавим к обеим частям этого равенства k + 1. В левой части мы получим сумму 1+2+3+...+k+(k+1), а в правой - k(k+1)/2+(k+1)=(k(k+1)+2(k+1))/2=((k+2)(k+1))/2.

Итак, 1 + 2 + 3 + ... + k + (k + 1) = (k + 1)(k + 2)/2, а это и есть требуемое равенство при n = k + 1, где n означает произвольное натуральное число.

Контрольные вопросы

  1. В чем разница между доказательством прямым рассуждением, обратным, от противного?
  2. Что означает математическая индукция? Объясните принцип математической индукции.

Индивидуальные задания

1. Используя методы доказательства:

1) Прямым рассуждением докажите истинность высказывания: n и m — четные числа  n + m — число четное.

2) Дайте обратное доказательство высказывания: n 2 — четное число  n — четное.

3) Методом «от противного» докажите, что n + m — нечетное число одно из слагаемых является четным, а другое — нечетным.

2. Докажите каждое из высказываний методом математической индукции.

1) 1 + 5 + 9 +…+(4 n - 3) = n (2 n  1) для всех натуральных чисел n .

2) 1 2 +2 2 +…+ n 2 = n (n +1)(2 n +1)/6 для всех натуральных чисел n .

3) д ля всех натуральных чисел n .

4) Число n 3  n делится на 3 при всех натуральных значениях числа n .

5) 1*1! + 2* 2!+…+- n * n ! = (n + 1)!  1 для всех натуральных чисел n .

(Символ n ! читается как « n факториал» и обозначает произведение всех натуральных чисел от 1 до n включительно: n ! = l *2*3*** (n  l )* n .)

Дополнительные задания:

1. Найдите ошибку в следующем «доказательстве» того, что все лошади одной масти.

Будем доказывать индукцией по n следующее утверждение: «В любом табуне из n это лошадей, все они одной масти». База (n = 1) очевидна: в этом случае все лошади - одна лошадь, она очевидно одной масти. Ш: пусть в любом табуне из k лошадей все лошади имеют одну масть. Рассмотрим табун из k + 1 лошади. Выберем в нём двух лошадей a и b и рассмотрим оставшиеся k – 1 лошадь. Составим табун из этих оставшихся лошадей, добавив к ним a. В нём k лошадей, поэтому, по предположению индукции, все они одной масти. Значит, лошадь a имеет ту же масть, что и оставшиеся лошади. Аналогично доказывается, что ту же масть имеет лошадь b. Значит, все k + 1 лошадь имеют одинаковую масть. Утверждение доказано.

2. На бесконечном клетчатом листе бумаги 100 клеток закрашены в чёрный цвет, а все остальные — в белый. За один ход разрешается перекрашивать в противоположный цвет любые четыре клетки, образующие квадрат 2x2. Докажите, что за несколько ходов можно добиться того, что все клетки окажутся белыми тогда и только тогда, когда любая горизонталь и любая вертикаль содержит чётное число чёрных клеток.

Доказательство от противного – мощный и часто используемый в математике метод. Предположив, что некоторый факт (объект) является истинным (существует), и придя к противоречию, мы заключаем, что факт ложен (объект не существует). Рассмотрим несколько примеров.

Теорема Евклида о бесконечности простых чисел является классическим и самым простым рассуждением от противного:

Не существует самого большого простого числа .

: Пусть это не так, и самое большое простое число существует. Построим число . Оно не делится ни на одно , и больше чем . Мы пришли к противоречию, следовательно, самого большого простого числа (как объекта!) не существует и простых чисел бесконечно много.

Заметим, что не обязательно простое, так как его простой множитель может находится между и , но всё равно будет большим .

Теорема об иррациональности

Не существует натуральных и , таких, что .

: Пусть это не так. Сократим общие множители у , , и возведём всё в квадрат: . Отсюда следует, что является чётным числом, поэтому тоже чётно и представимо при помощи некоторого натурального , как . Подставляя в исходное соотношение, получаем , а, следовательно, и чётно. Но это противоречит тому, что мы сократили все общие множители, а значит таких и не существует.

Психологическая убедительность обоих доказательств не вызывает сомнений. Тем не менее, необходимо помнить, что получив противоречие, мы не всегда доказываем то, что хотим доказать. Противоречие не обязательно свидетельствует об ошибочности исходной посылки. Его может дать любое из утверждений использовавшихся при доказательстве. Особенно их много в теореме об иррациональности . Однако, они на столько "очевидны", что мы считаем ошибочной именно исходную посылку.

Видно, что схема доказательства приведенных теорем одинаковая. Мы показываем, что некоторый объект не существует, если предположение о его существовании приводит к противоречию.

Проблема Брадобрея . В некоторой деревне все мужчины бреются либо сами, либо у брадобрея. Брадобрей (мужчина) бреет только тех, кто сам не бреется. Сформулируем теорему:

Брадобрей бреет себя сам.

Пусть это не так, и брадобрей себя не бреет. Тогда он должен бриться у брадобрея. Значит брадобрей бреет себя.

Сделав отрицание теоремы, и получив противоречие, мы должны прийти к выводу, что теорема верна. Но совершенно ясно, что это не так, и мы можем построить не только обратное доказательство, но и прямое: "если брадобрей бреется сам, то он не может бриться у брадобрея...". В этом случае вновь получается противоречие.

Приведенное описание деревни со строгими правилами принадлежит Бертрану Расселу, как популярная формулировка проблем, возникающих в попытке определить "множество всех тех множеств, которые не содержат себя в качестве своего элемента". Мы умышленно явный парадокс представили в виде теоремы, чтобы продемонстрировать простой факт:

Получение противоречия в доказательстве от противного может свидетельствовать не об истинности теоремы, а о противоречивости объектов которые участвуют в её формулировке.
Другими словами, нельзя сказать: "возьмём множество всех множеств..." и докажем "теорему о том, что..." Сначала необходимо убедиться, что объект, о котором будет идти речь в теореме, существует. В частности, деревня, описанная Расселом, существовать не может. Конечно, возникает вопрос – "а что значит существовать или не существовать, и где не существовать?" Есть объект, определённый выше, и мы можем использовать его при построении новых объектов и теорем о них...

Дело в том, что математическое рассуждение явно или не явно исходит из некоторых аксиом. Именно аксиомы задают свойства объекта. Если в фиксированной системе аксиом поменять хотя бы одну аксиому, может получиться объект с совершенно другими свойствами. Понятно, что произвольно задавать аксиомы нельзя. Они не должны быть противоречивыми , иначе никакого объекта определять не будут. Или, другими словами, – объект определяемый при помощи противоречивых аксиом не существует.

Подробнее мы обсудим элементы формальных аксиоматических систем в следующем разделе, где снова проанализируем проблему брадобрея. Сейчас же рассмотрим ещё одну версию того же парадокса.

Проблема Библиотекаря . Существует Библиотека с книгами. Любая книга внутри своего текста может упомянуть сама себя (например, в списке литературы привести свое название). Соответственно все книги можно разделить на две группы. В первую попадают книги, которые на себя не ссылаются, а во вторую – ссылающиеся на себя книги. Кроме этого, существуют две книги, являющиеся каталогами всех книг Библиотеки. Первый каталог перечисляет все те книги, которые на себя не ссылаются, а второй, наоборот – все ссылающиеся на себя книги:

Сформулируем теперь теорему:

Первый каталог содержит

в списке книг себя.

Пусть это не так. Тогда первый каталог содержится во втором (все книги перечислены в обоих каталогах и каталог есть книга). Но во втором каталоге перечисляются только самоссылающиеся книги, и первого каталога там быть не может. Мы пришли к противоречию, следовательно теорема верна.

Если мы остановимся на этом этапе, то получим заведомо неверный вывод. Понятно, что первый каталог на себя ссылаться не может (он является каталогом не самоссылающихся книг). Как и в случае с брадобреем, мы можем провести как обратное доказательство (от противного), так и прямое. И оба раза получить противоречие.

О чём оно говорит? Понятно, что не об истинности или ложности теоремы. Веря в то, что два различных доказательства должны всегда приводить к одному и тому же, мы вынуждены сделать вывод: объект Библиотека , c заданными свойствами, существовать не может .

Любая ссылка на "естественность" или "видимую не противоречивость" исходных определений не достойна математика, так как это уже эмоции. Единственный путь – попытаться уйти от психологических формулировок и доказательств к формальным.

Парадокс лжеца . Вся математика состоит из логических утверждений. При этом логика математики бинарна. Утверждение "" или истинно или ложно. Третьего не дано. Именно эта бинарность придаёт математическому доказательству ту чудесную убедительность, ради которой всё и затевалось. Введем обозначение того, что некое логическое утверждение является истинным:

.

На самом деле обозначение излишне, так как записывая в качестве аксиомы или посылки некоторое утверждение , мы предполагаем его истинность. Однако, такое обозначение будет удобно для дальнейшего. Определим высказывание:

где "" – знак логического отрицания, а после двоеточия идёт определение утверждения . Оно является вариантом парадокса лжеца: " – истинно, если не истинно ". Сформулируем следующую теорему:
Утверждение L является истинным: L=И.
пусть L=Л => True(L)=Л => L=True(L)=И.

(Далее "" означает логический вывод; "И" – истина, "Л" – ложь). В доказательстве от противного, мы пришли к противоречию. Поэтому исходная посылка не верна и, следовательно, теорема верна. Однако понятно, что это не так. Мы можем провести доказательство и в прямом направлении.


МЕТОД ОТ ПРОТИВНОГО (далее МОП) - научно-прикладной метод, названный по имени выдающегося украинского просветителя, основателя целого ряда научных школ и направлений Василия Козьмича Противного. В.К.Противный родился 29 февраля 1513 г по старому стилю в селе Нижние Лопухи близ Чернигова. Вася с детства был слабым и хлипким мальчиком и постоянно, начиная с детского сада, подвергался насмешкам сверстников, что в дальнейшем предопределило его скверный характер.

В дальнейшем слова "делать все назло окружающим" фактически стали девизом жизни В.К.Противного. Так, назло всем он покинул родные Холмогоры и поступил в МГУ им. Ломоносова (а не в суворовское училище, как хотел его отец), назло всем никогда ни на ком не женился (хотя его бабушка Василиса Противная нашла ему за всю жизнь как минимум 14 невест), назло всем, сославшись на грибной сезон, не стал получать медаль Филдса - высшую награду в области математики.

Суть метода от Противного можно передать следующими пунктами:
1. Делается неверное предположение.
2. Выясняется, что следует из этого предположения на основании известных знаний.
3. Осуществляется заход в тупик.
4. Делается верный вывод о том, что неверное предположение неверно.

Многие ученые, философы, исследователи и даже деятели искусств стали ярыми приверженцами идей украинского просветителя. Например, так впервые в медицинской практике была использована лоботомия, когда была сделана попытка разрешить извечный философский спор о первичности материи или сознания с помощью медицинского эксперимента. Так ученик В.К.Противного Лобачевский создал неевклидову геометрию, так его почитатель Чайковский написал гимн альтернативной любви - вальс "Голубой Дунай", и так далее.

Метод от Противного часто применяется в настоящее время в самых разных областях человеческой жизни. Например, для воспитания художественного вкуса москвичей им с успехом пользуется московский мэр Лужков, устанавливая в городе скульптуры Церетели. Руководство ГУВД, пользуясь этим методом, решило найти убийц известной журналистки Политковской, так как другие методы в виду особой сложности дела результатов не дают. Вооруженные МОП московские милиционеры знают - последовательно выявив всех непричастных, они автоматически выйдут на след убийц.

Вся жизнь и даже смерть В.К.Противного явилась яркой иллюстрацией его метода. Ученый трагически ушел из жизни 29 февраля 1613 г в возрасте 112 лет, повесившись назло своей бабушке Василисе Противной, не давшей Василию Козьмичу попробовать варенье из холодильника. Несмотря на двоякое отношение к В.К.Противному из-за его скверного характера, большинство ученых и исследователей все-таки считают МОП одним из наиболее мощных орудий современной науки в целом и математики в частности.
____________________________________

Василий Козьмич Противный, выдающийся украинский просветитель (1513 - 1613)

Выражаю благодарность

Урок можно начать с рассказа учителя.

Ващенко Н.М., на уроке

В Древней Греции всех ораторов учили геометрии. На дверях школы было написано: «Не знающий геометрии, да не войдет сюда». Почему? Да потому, что геометрия учит доказывать. А речь человека убедительна только тогда, когда он доказывает свои выводы. В своих рассуждениях люди часто пользуются способом доказательства, который называется "от противного".

Приведем примеры таких доказательств.

Пример 1. Разведчики получили задание: выяснить, находится ли в данном селе танковая колонна противника. Командир разведки докладывает: если бы в селе была танковая колонна, го тогда бы были следы гусениц, а их мы не обнаружили.

Схема рассуждений. Требуется доказать: нет колонны. Предположим, есть колонна. Тогда должны быть следы. Противоречие - следов нет. Вывод: предположение неверно, значит, танковой колонны нет.

Пример 2. Врач после осмотра больного ребенка говорит:

«У ребенка нет кори. Если бы у него была корь, то тогда была бы сыпь на теле, но сыпи нет».

Рассуждения врача тоже выполнялись по указанной выше схеме.

Задается вопрос: «В чем же сущность способа доказательства от противного?»- и вывешивается таблица (табл. 5).

Способом от противного можно решить уже известные до этого задачи.

1. Дано: а||b, прямые с и а пересекаются. Докажите: прямые с и b пересекаются.

Доказательство.

1) Предположим, что b||с.

2) Тогда получается, что через точку О (точка пересечения прямых а и с) проходят две различные прямые а и b, которые параллельны прямой b.

3) Это противоречит аксиоме параллельных прямых.

Вывод : значит, наше предположение неверно, а верно то, что и требовалось доказать, т. е. что прямые бис пересекаются.

2. Дано: A, В, С - точки прямой а, АВ = 5 см, АС = 2 см, ВС = 7 см. Докажите:

Доказательство.

1) Предположим, что точка С лежит между точками А и В.

2) Тогда по аксиоме измерения отрезков АВ = АС + СВА

3) Это противоречит условию: АВ = АС + СВ, так как АВ = 5 см, АС+ С5 = 9 см.

Вывод: точка С не лежит между точками А и В.

3. Дано: АВ - полупрямая, С АВ, АС < АВ. Докажите:

Доказательство.

1) Предположим, что точка В лежит между точками А и С.

2) Тогда по аксиоме измерения отрезков АВ + ВС = АС, т. е. AB

3) Это противоречит условию задачи: АС<АВ.

Вывод: точка В не лежит между точками А и С.

Решение задач оформляется в тетрадях. Для усвоения учащимися сущности способа доказательства от противного, а также с целью экономии времени при решении задач можно использовать карточки-подсказки, которые сделаны из плотной бумаги и вставлены в полиэтиленовые мешочки. Ученик должен на полиэтиленовой пленке заполнить пропущенные места. Записи на пленке легко стираются, и поэтому карточки можно использовать неоднократно.

Карточка имеет вид:

Предположим противоположное тому, что требуется доказать, т.е.

Из предположения следует, что (на основании ……

Получаем противоречие с.

Значит, наше предположение неверно, а верно то, что требовалось доказать, т.е.

Задание на дом:

п. «Доказательство от противного» § 2 до слов: «Поясним это...».

1. Докажите, что если MN = 8 м, МК = 5 м, NK- 10 м, то точки М, N и К не лежат на одной прямой.

2. Докажите, что если <(ab) = 100°, <(be) - 120°, то луч с не проходит между сторонами угла (ab).

3. Докажите теорему 1.1 способом от противного.