Явление электромагнитной индукции. Магнитный поток

В первой экспериментальной демонстрации электромагнитной индукции (август 1831) Фарадей обмотал двумя проводами противоположные стороны железного тора (конструкция похожа на современный трансформатор). Основываясь на своей оценке недавно обнаруженного свойства электромагнита, он ожидал, что при включении тока в одном проводе особого рода волна пройдёт сквозь тор и вызовет некоторое электрическое влияние на его противоположной стороне. Он подключил один провод к гальванометру и смотрел на него, когда другой провод подключал к батарее. В самом деле, он увидел кратковременный всплеск тока (который он назвал «волной электричества»), когда подключал провод к батарее, и другой такой же всплеск, когда отключал его. В течение двух месяцев Фарадей нашёл несколько других проявлений электромагнитной индукции. Например, он увидел всплески тока, когда быстро вставлял магнит в катушку и вытаскивал его обратно, он генерировал постоянный ток во вращающемся вблизи магнита медном диске со скользящим электрическим проводом («диск Фарадея ») .

Фарадей объяснил электромагнитную индукцию с использованием концепции так называемых силовых линий . Однако, большинство учёных того времени отклонили его теоретические идеи, в основном потому, что они не были сформулированы математически. Исключение составил Максвелл , который использовал идеи Фарадея в качестве основы для своей количественной электромагнитной теории. В работах Максвелла аспект изменения во времени электромагнитной индукции выражен в виде дифференциальных уравнений. Оливер Хевисайд назвал это законом Фарадея, хотя он несколько отличается по форме от первоначального варианта закона Фарадея и не учитывает индуцирование ЭДС при движении. Версия Хевисайда является формой признанной сегодня группы уравнений, известных как уравнения Максвелла .

Закон Фарадея как два различных явления

Некоторые физики отмечают, что закон Фарадея в одном уравнении описывает два разных явления: двигательную ЭДС , генерируемую действием магнитной силы на движущийся провод, и трансформаторную ЭДС , генерируемую действием электрической силы вследствие изменения магнитного поля. Джеймс Клерк Максвелл обратил внимание на этот факт в своей работе О физических силовых линиях в 1861 году. Во второй половине части II этого труда Максвелл даёт отдельное физическое объяснение для каждого из этих двух явлений. Ссылка на эти два аспекта электромагнитной индукции имеется в некоторых современных учебниках. Как пишет Ричард Фейнман:

Таким образом, «правило потока» о том, что ЭДС в цепи равна скорости изменения магнитного потока через контур, применяется независимо от причины изменения потока: то ли потому что поле изменяется, то ли потому что цепь движется (или и то, и другое).... В нашем объяснении правила мы использовали два совершенно различных закона для двух случаев  –    v × B {\displaystyle {\stackrel {\mathbf {v\times B} }{}}}   для «движущейся цепи» и   ∇ x E = − ∂ t B {\displaystyle {\stackrel {\mathbf {\nabla \ x\ E\ =\ -\partial _{\ t}B} }{}}}   для «меняющегося поля».

Мы не знаем никакого аналогичного положения в физике, когда такие простые и точные общие принципы требовали бы для своего реального понимания анализа с точки зрения двух различных явлений.

Отражение этой очевидной дихотомии было одним из основных путей, которые привели Эйнштейна к разработке специальной теории относительности :

Известно, что электродинамика Максвелла - как её обычно понимают в настоящее время - при применении к движущимся телам приводит к асимметрии, которая, как кажется, не присуща этому явлению. Возьмем, к примеру, электродинамическое взаимодействие магнита и проводника. Наблюдаемое явление зависит только от относительного движения проводника и магнита, тогда как обычное мнение рисует резкое различие между этими двумя случаями, в которых либо одно, либо другое тело находится в движении. Ибо, если магнит находится в движении, а проводник покоится, в окрестности магнита возникает электрическое поле с определенной плотностью энергии, создавая ток там, где расположен проводник. Но если магнит покоится, а проводник движется, то в окрестности магнита никакое электрическое поле не возникает. В проводнике, однако, мы находим электродвижущую силу, для которой не существует соответствующей энергии самой по себе, но которая вызывает - предполагая равенство относительного движения в двух обсуждаемых случаях - электрические токи по тому же направлению и той же интенсивности, как в первом случае.

Примеры подобного рода вместе с неудачной попыткой обнаружить какое-либо движение Земли относительно «светоносной среды» предполагают, что явления электродинамики, а также механики не обладают свойствами, соответствующими идее абсолютного покоя.

- Альберт Эйнштейн , К электродинамике движущихся тел

Поток через поверхность и ЭДС в контуре

Закон электромагнитной индукции Фарадея использует понятие магнитного потока Φ B через замкнутую поверхность Σ, который определён через поверхностный интеграл :

Φ = ∬ S B n ⋅ d S , {\displaystyle \Phi =\iint \limits _{S}\mathbf {B_{n}} \cdot d\mathbf {S} ,}

где dS - площадь элемента поверхности Σ(t ), B - магнитное поле, а B ·d S - скалярное произведение B и d S . Предполагается, что поверхность имеет «устье», очерченное замкнутой кривой, обозначенной ∂Σ(t ). Закон индукции Фарадея утверждает, что когда поток изменяется, то при перемещении единичного положительного пробного заряда по замкнутой кривой ∂Σ совершается работа E {\displaystyle {\mathcal {E}}} , величина которой определяется по формуле:

| E | = | d Φ d t | , {\displaystyle |{\mathcal {E}}|=\left|{{d\Phi } \over dt}\right|\ ,}

где | E | {\displaystyle |{\mathcal {E}}|} - величина электродвижущей силы (ЭДС) в вольтах , а Φ B - магнитный поток в веберах . Направление электродвижущей силы определяется законом Ленца .

На рис. 4 показан шпиндель, образованный двумя дисками с проводящими ободами, и проводники, расположенные вертикально между этими ободами. ток скользящими контактами подается на проводящие обода. Эта конструкция вращается в магнитном поле, которое направлено радиально наружу и имеет одно и то же значение в любом направлении. т.е. мгновенная скорость проводников, ток в них и магнитная индукция, образуют правую тройку, что заставляет проводники вращаться.

Сила Лоренца

В этом случае на проводники действует Сила Ампера а на единичный заряд в проводнике Сила Лоренца - поток вектора магнитной индукции B , ток в проводниках, соединяющие проводящие обода, направлен нормально к вектору магнитной индукции, тогда сила действующая на заряд в проводнике будет равна

F = q B v . {\displaystyle F=qBv\,.}

где v = скорости движущегося заряда

Следовательно, сила действующая на проводники

F = I B ℓ , {\displaystyle {\mathcal {F}}=IB\ell ,}

где l длина проводников

Здесь мы использовали B как некую данность, на самом деле она зависит от геометрических размеров ободов конструкции и это значение можно вычислить используя Закон Био - Савара - Лапласа . Данный эффект используется и в другом устройстве называемом Рельсотрон

Закон Фарадея

Интуитивно привлекательный, но ошибочный подход к использованию правила потока выражает поток через цепь по формуле Φ B = B w ℓ, где w - ширина движущейся петли.

Ошибочность такого подхода в том что это не рамка в обычном понимании этого слова. прямоугольник на рисунке образован отдельными проводниками, замкнутыми на обод. Как видно на рисунке ток по обоим проводника течет в одном направлении, т.е. здесь отсутствует понятие "замкнутый контур"

Наиболее простое и понятное объяснение этому эффекту дает понятие сила Ампера . Т.е. вертикальный проводник может быть вообще один, чтобы не вводить в заблуждение. Или же проводник конечной толщины может быть расположен на оси соединяющие обода. Диаметр проводника должен быть конечным и отличатся от нуля чтобы момент силы Ампера был не нулевой.

Уравнение Фарадея - Максвелла

Переменное магнитное поле создаёт электрическое поле, описываемое уравнением Фарадея - Максвелла:

∇ × E = − ∂ B ∂ t {\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}

∇ × {\displaystyle \nabla \times } обозначает ротор E - электрическое поле B - плотность магнитного потока .

Это уравнение присутствует в современной системе уравнений Максвелла , часто его называют законом Фарадея. Однако, поскольку оно содержит только частные производные по времени, его применение ограничено ситуациями, когда заряд покоится в переменном по времени магнитном поле. Оно не учитывает [ ] электромагнитную индукцию в случаях, когда заряженная частица движется в магнитном поле.

В другом виде закон Фарадея может быть записан через интегральную форму теоремы Кельвина-Стокса :

∮ ∂ Σ ⁡ E ⋅ d ℓ = − ∫ Σ ∂ ∂ t B ⋅ d A {\displaystyle \oint _{\partial \Sigma }\mathbf {E} \cdot d{\boldsymbol {\ell }}=-\int _{\Sigma }{\partial \over {\partial t}}\mathbf {B} \cdot d\mathbf {A} }

Для выполнения интегрирования требуется независимая от времени поверхность Σ (рассматриваемая в данном контексте как часть интерпретации частных производных). Как показано на рис. 6:

Σ - поверхность, ограниченная замкнутым контуром ∂Σ , причём, как Σ , так и ∂Σ являются фиксированными, не зависящими от времени, E - электрическое поле, d - бесконечно малый элемент контура ∂Σ , B - магнитное поле , dA - бесконечно малый элемент вектора поверхности Σ .

Элементы d и dA имеют неопределённые знаки. Чтобы установить правильные знаки, используется правило правой руки , как описано в статье о теореме Кельвина-Стокса . Для плоской поверхности Σ положительное направление элемента пути d кривой ∂Σ определяется правилом правой руки, по которому на это направление указывают четыре пальца правой руки, когда большой палец указывает в направлении нормали n к поверхности Σ.

Интеграл по ∂Σ называется интеграл по пути или криволинейным интегралом . Поверхностный интеграл в правой части уравнения Фарадея-Максвелла является явным выражением для магнитного потока Φ B через Σ . Обратите внимание, что ненулевой интеграл по пути для E отличается от поведения электрического поля, создаваемого зарядами. Генерируемое зарядом E -поле может быть выражено как градиент скалярного поля , которое является решением уравнения Пуассона и имеет нулевой интеграл по пути.

Интегральное уравнение справедливо для любого пути ∂Σ в пространстве и любой поверхности Σ , для которой этот путь является границей.

D d t ∫ A B d A = ∫ A (∂ B ∂ t + v div B + rot (B × v)) d A {\displaystyle {\frac {\text{d}}{{\text{d}}t}}\int \limits _{A}{\mathbf {B} }{\text{ d}}\mathbf {A} =\int \limits _{A}{\left({\frac {\partial \mathbf {B} }{\partial t}}+\mathbf {v} \ {\text{div}}\ \mathbf {B} +{\text{rot}}\;(\mathbf {B} \times \mathbf {v})\right)\;{\text{d}}}\mathbf {A} }

и принимая во внимание div B = 0 {\displaystyle {\text{div}}\mathbf {B} =0} (Ряд Гаусса), B × v = − v × B {\displaystyle \mathbf {B} \times \mathbf {v} =-\mathbf {v} \times \mathbf {B} } (Векторное произведение) и ∫ A rot X d A = ∮ ∂ A ⁡ X d ℓ {\displaystyle \int _{A}{\text{rot}}\;\mathbf {X} \;\mathrm {d} \mathbf {A} =\oint _{\partial A}\mathbf {X} \;{\text{d}}{\boldsymbol {\ell }}} (теорема Кельвина - Стокса), мы находим, что полная производная магнитного потока может быть выражена

∫ Σ ∂ B ∂ t d A = d d t ∫ Σ B d A + ∮ ∂ Σ ⁡ v × B d ℓ {\displaystyle \int \limits _{\Sigma }{\frac {\partial \mathbf {B} }{\partial t}}{\textrm {d}}\mathbf {A} ={\frac {\text{d}}{{\text{d}}t}}\int \limits _{\Sigma }{\mathbf {B} }{\text{ d}}\mathbf {A} +\oint _{\partial \Sigma }\mathbf {v} \times \mathbf {B} \,{\text{d}}{\boldsymbol {\ell }}}

Добавляя член ∮ ⁡ v × B d ℓ {\displaystyle \oint \mathbf {v} \times \mathbf {B} \mathrm {d} \mathbf {\ell } } к обеим частям уравнения Фарадея-Максвелла и вводя вышеприведённое уравнение, мы получаем:

∮ ∂ Σ ⁡ (E + v × B) d ℓ = − ∫ Σ ∂ ∂ t B d A ⏟ induced emf + ∮ ∂ Σ ⁡ v × B d ℓ ⏟ motional emf = − d d t ∫ Σ B d A , {\displaystyle \oint \limits _{\partial \Sigma }{(\mathbf {E} +\mathbf {v} \times \mathbf {B})}{\text{d}}\ell =\underbrace {-\int \limits _{\Sigma }{\frac {\partial }{\partial t}}\mathbf {B} {\text{d}}\mathbf {A} } _{{\text{induced}}\ {\text{emf}}}+\underbrace {\oint \limits _{\partial \Sigma }{\mathbf {v} }\times \mathbf {B} {\text{d}}\ell } _{{\text{motional}}\ {\text{emf}}}=-{\frac {\text{d}}{{\text{d}}t}}\int \limits _{\Sigma }{\mathbf {B} }{\text{ d}}\mathbf {A} ,}

что и является законом Фарадея. Таким образом, закон Фарадея и уравнения Фарадея-Максвелла физически эквивалентны.

Рис. 7 показывает интерпретацию вклада магнитной силы в ЭДС в левой части уравнения. Площадь, заметаемая сегментом d кривой ∂Σ за время dt при движении со скоростью v , равна:

d A = − d ℓ × v d t , {\displaystyle d\mathbf {A} =-d{\boldsymbol {\ell \times v}}dt\ ,}

так что изменение магнитного потока ΔΦ B через часть поверхности, ограниченной ∂Σ за время dt , равно:

d Δ Φ B d t = − B ⋅ d ℓ × v = − v × B ⋅ d ℓ , {\displaystyle {\frac {d\Delta \Phi _{B}}{dt}}=-\mathbf {B} \cdot \ d{\boldsymbol {\ell \times v}}\ =-\mathbf {v} \times \mathbf {B} \cdot \ d{\boldsymbol {\ell }}\ ,}

и если сложить эти ΔΦ B -вклады вокруг петли для всех сегментов d , мы получим суммарный вклад магнитной силы в закон Фарадея. То есть этот термин связан с двигательной ЭДС.

Пример 3: точка зрения движущегося наблюдателя

Возвращаясь к примеру на рис. 3, в движущейся системе отсчета выявляется тесная связь между E - и B -полями, а также между двигательной и индуцированной ЭДС. Представьте себе наблюдателя, движущегося вместе с петлёй. Наблюдатель вычисляет ЭДС в петле с использованием как закона Лоренца, так и с использованием закона электромагнитной индукции Фарадея. Поскольку этот наблюдатель движется с петлей, он не видит никакого движения петли, то есть нулевую величину v × B . Однако, поскольку поле B меняется в точке x , движущийся наблюдатель видит изменяющееся во времени магнитного поля, а именно:

B = k B (x + v t) , {\displaystyle \mathbf {B} =\mathbf {k} {B}(x+vt)\ ,}

где k - единичный вектор в направлении z .

Закон Лоренца

Уравнение Фарадея-Максвелла говорит, что движущийся наблюдатель видит электрическое поле E y в направлении оси y , определяемое по формуле:

∇ × E = k d E y d x {\displaystyle \nabla \times \mathbf {E} =\mathbf {k} \ {\frac {dE_{y}}{dx}}} = − ∂ B ∂ t = − k d B (x + v t) d t = − k d B d x v , {\displaystyle =-{\frac {\partial \mathbf {B} }{\partial t}}=-\mathbf {k} {\frac {dB(x+vt)}{dt}}=-\mathbf {k} {\frac {dB}{dx}}v\ \ ,} d B d t = d B d (x + v t) d (x + v t) d t = d B d x v . {\displaystyle {\frac {dB}{dt}}={\frac {dB}{d(x+vt)}}{\frac {d(x+vt)}{dt}}={\frac {dB}{dx}}v\ .}

Решение для E y с точностью до постоянной, которая ничего не добавляет в интеграл по петле:

E y (x , t) = − B (x + v t) v . {\displaystyle E_{y}(x,\ t)=-B(x+vt)\ v\ .}

Используя закон Лоренца, в котором имеется только компонента электрического поля, наблюдатель может вычислить ЭДС по петле за время t по формуле:

E = − ℓ [ E y (x C + w / 2 , t) − E y (x C − w / 2 , t) ] {\displaystyle {\mathcal {E}}=-\ell } = v ℓ [ B (x C + w / 2 + v t) − B (x C − w / 2 + v t) ] , {\displaystyle =v\ell \ ,}

и мы видим, что точно такой же результат найден для неподвижного наблюдателя, который видит, что центр масс x C сдвинулся на величину x C + v t . Однако, движущийся наблюдатель получил результат под впечатлением, что в законе Лоренца действовала только электрическая составляющая, тогда как неподвижный наблюдатель думал, что действовала только магнитная составляющая.

Закон индукции Фарадея

Для применения закона индукции Фарадея рассмотрим наблюдателя, движущегося вместе с точкой x C . Он видит изменение магнитного потока, но петля ему кажется неподвижной: центр петли x C фиксирован, потому что наблюдатель движется вместе с петлей. Тогда поток:

Φ B = − ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 B (x + v t) d x , {\displaystyle \Phi _{B}=-\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}B(x+vt)dx\ ,}

где знак минуса возникает из-за того, что нормаль к поверхности имеет направление, противоположное приложенному полю B . Из закона индукции Фарадея ЭДС равна:

E = − d Φ B d t = ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 d d t B (x + v t) d x {\displaystyle {\mathcal {E}}=-{\frac {d\Phi _{B}}{dt}}=\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}{\frac {d}{dt}}B(x+vt)dx} = ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 d d x B (x + v t) v d x {\displaystyle =\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}{\frac {d}{dx}}B(x+vt)\ v\ dx} = v ℓ [ B (x C + w / 2 + v t) − B (x C − w / 2 + v t) ] , {\displaystyle =v\ell \ \ ,}

и мы видим тот же результат. Производная по времени используется при интегрировании, поскольку пределы интегрирования не зависят от времени. Опять же, для преобразования производной по времени в производную по x используются методы дифференцирования сложной функции.

Неподвижный наблюдатель видит ЭДС как двигательную , тогда как движущийся наблюдатель думает, что это индуцированная ЭДС.

Электрический генератор

Явление возникновения ЭДС, порождённой по закону индукции Фарадея из-за относительного движения контура и магнитного поля, лежит в основе работы электрических генераторов . Если постоянный магнит перемещается относительно проводника или наоборот, проводник перемещается относительно магнита, то возникает электродвижущая сила. Если проводник подключён к электрической нагрузке, то через неё будет течь ток, и следовательно, механическая энергия движения будет превращаться в электрическую энергию. Например, дисковый генератор построен по тому же принципу, как изображено на рис. 4. Другой реализацией этой идеи является диск Фарадея , показанный в упрощённом виде на рис. 8. Обратите внимание, что и анализ рис. 5, и прямое применение закона силы Лоренца показывают, что твёрдый проводящий диск работает одинаковым образом.

В примере диска Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, в результате чего возникает ток в радиальном плече благодаря силе Лоренца. Интересно понять, как получается, что чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток течёт через проводящий обод, по закону Ампера этот ток создаёт магнитное поле (на рис. 8 оно подписано «индуцированное B» - Induced B). Обод, таким образом, становится электромагнитом , который сопротивляется вращению диска (пример правила Ленца). В дальней части рисунка обратный ток течёт от вращающегося плеча через дальнюю сторону обода к нижней щётке. Поле В, создаваемое этим обратным током, противоположно приложенному полю, вызывая сокращение потока через дальнюю сторону цепи, в противовес увеличению потока, вызванного вращением. На ближней стороне рисунка обратный ток течёт от вращающегося плеча через ближнюю сторону обода к нижней щётке. Индуцированное поле B увеличивает поток по эту сторону цепи, в противовес снижению потока, вызванного вращением. Таким образом, обе стороны цепи генерируют ЭДС, препятствующую вращению. Энергия, необходимая для поддержания движения диска в противовес этой реактивной силе, в точности равна вырабатываемой электрической энергии (плюс энергия на компенсацию потерь из-за трения, из-за выделения тепла Джоуля и прочее). Такое поведение является общим для всех генераторов преобразования механической энергии в электрическую.

Хотя закон Фарадея описывает работу любых электрических генераторов, детальный механизм в разных случаях может отличаться. Когда магнит вращается вокруг неподвижного проводника, меняющееся магнитное поле создаёт электрическое поле, как описано в уравнении Максвелла-Фарадея, и это электрическое поле толкает заряды через проводник. Этот случай называется индуцированной ЭДС. С другой стороны, когда магнит неподвижен, а проводник вращается, на движущиеся заряды воздействует магнитная сила (как описывается законом Лоренца), и эта магнитная сила толкает заряды через проводник. Этот случай называется двигательной ЭДС.

Электродвигатель

Электрический генератор может работать в «обратном направлении» и становиться двигателем. Рассмотрим, например, диск Фарадея. Предположим, постоянный ток течёт через проводящее радиальное плечо от какого-либо напряжения. Тогда по закону силы Лоренца на этот движущийся заряд воздействует сила в магнитном поле B , которая будет вращать диск в направлении, определённым правилом левой руки. При отсутствии эффектов, вызывающих диссипативные потери, таких как трение или тепло Джоуля , диск будет вращаться с такой скоростью, чтобы d Φ B / dt было равно напряжению, вызывающему ток.

Электрический трансформатор

ЭДС, предсказанная законом Фарадея, является также причиной работы электрических трансформаторов. Когда электрический ток в проволочной петле изменяется, меняющийся ток создаёт переменное магнитное поле. Второй провод в доступном для него магнитном поле будет испытывать эти изменения магнитного поля как изменения связанного с ним магнитного потока d Φ B / d t . Электродвижущая сила, возникающая во второй петле, называется индуцированной ЭДС или ЭДС трансформатора . Если два конца этой петли связать через электрическую нагрузку, то через неё потечёт ток.

Эмпирически М. Фарадей показал, что сила тока индукции в проводящем контуре прямо пропорциональна скорости изменения количества линий магнитной индукции, которые проходят через поверхность ограниченную рассматриваемым контуром. Современную формулировку закона электромагнитной индукции, используя понятие магнитный поток, дал Максвелл. Магнитный поток (Ф) сквозь поверхность S - это величина, равная:

где модуль вектора магнитной индукции; - угол между вектором магнитной индукции и нормалью к плоскости контура. Магнитный поток трактуют как величину, которая пропорциональна количеству линий магнитной индукции, проходящих сквозь рассматриваемую поверхность площади S.

Появление тока индукции говорит о том, что в проводнике возникает определенная электродвижущая сила (ЭДС). Причиной появления ЭДС индукции является изменение магнитного потока. В системе международных единиц (СИ) закон электромагнитной индукции записывают так:

где - скорость изменения магнитного потока сквозь площадь, которую ограничивает контур.

Знак магнитного потока зависит от выбора положительной нормали к плоскости контура. При этом направление нормали определяют при помощи правила правого винта, связывая его с положительным направлением тока в контуре. Так, произвольно назначают положительное направление нормали, определяют положительное направление тока и ЭДС индукции в контуре. Знак минус в основном законе электромагнитной индукции соответствует правилу Ленца.

На рис.1 изображен замкнутый контур. Допустим, что положительным является направление обхода контура против часовой стрелки, тогда нормаль к контуру () составляет правый винт в направлением обхода контура. Если вектор магнитной индукции внешнего поля сонаправлен с нормалью и его модуль увеличивается со временем, тогда получим:

Title="Rendered by QuickLaTeX.com">

При этом ток индукции создаст магнитный поток (Ф’), который будет меньше нуля. Линии магнитной индукции магнитного поля индукционного тока () изображены на рис. 1 пунктиром. Ток индукции будет направлен по часовой стрелке. ЭДС индукции будет меньше нуля.

Формула (2) - это запись закона электромагнитной индукции в наиболее общей форме. Ее можно применять к неподвижным контурам и движущимся в магнитном поле проводникам. Производная, которая входит в выражение (2) в общем случае состоит из двух частей: одна зависит от изменения магнитного потока во времени, другая связывается с движением (деформаций) проводника в магнитном поле.

В том случае, если магнитный поток изменяется за равные промежутки времени на одну и ту же величину, то закон электромагнитной индукции записывают как:

Если в переменном магнитном поле рассматривается контур, состоящий из N витков, то закон электромагнитной индукции примет вид:

где величину называют потокосцеплением.

Примеры решения задач

ПРИМЕР 1

Задание Какова скорость изменения магнитного потока в соленоиде, который имеет N=1000 витков, если в нем возбуждается ЭДС индукции равная 200 В?
Решение Основой для решения данной задачи служит закон электромагнитной индукции в виде:

где - скорость изменения магнитного потока в соленоиде. Следовательно, искомую величину найдем как:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Квадратная проводящая рамка находится в магнитном поле, которое изменяется по закону: (где и постоянные величины). Нормаль к рамке составляет угол с направлением вектора магнитной индукции поля. Стона рамки b. Получите выражение для мгновенного значения ЭДС индукции ().
Решение Сделаем рисунок.

За основу решения задачи примем основной закон электромагнитной индукции в виде:

>>Физика и астрономия >>Физика 11 класс >> Закон электромагнитной индукции

Закон Фарадея. Индукция

Электромагнитной индукцией называют такое явление, как возникновение электрического тока в замкнутом контуре, при условии изменения магнитного потока, который проходит через этот контур.

Закон электромагнитной индукции Фарадея записывается такой формулой:

И гласит, что:



Каким же образом ученым удалось вывести такую формулу и сформулировать этот закон? Мы с вами уже знаем, что вокруг проводника с током всегда существует магнитное поле, а электричество обладает магнитной силой. Поэтому в начале 19го века и возникла задача о необходимости подтверждения влияния магнитных явлений на электрические, которую пытались решить многие ученые, и английский ученый Майкл Фарадей был в их числе. Почти 10 лет, начиная с 1822 года, он потратил на различные опыты, но безуспешно. И только 29 августа 1831 года наступил триумф.

После напряженных поисков, исследований и опытов, Фарадей пришел к выводу, что только меняющееся со временем магнитное поле может создать электрический ток.

Опыты Фарадей

Опыты Фарадей состояли в следующем:

Во-первых, если взять постоянный магнит и двигать его внутри катушки, к которой присоединен гальванометр, то в цепи возникал электрический ток.
Во-вторых, если этот магнит выдвигать из катушки, то мы наблюдаем, что гальванометр так же показывает ток, но этот ток имеет противоположное направление.



А теперь давайте попробуем этот опыт немного изменить. Для этого мы попробуем на неподвижный магнит одевать и снимать катушку. И что мы в итоге видим? А мы с вами наблюдаем то, что во время движения катушки относительно магнита в цепи снова появляется ток. А если в катушке прекратилось, то и ток сразу же исчезает.



Теперь давайте проделаем еще один опыт. Для этого мы с вами возьмем и поместим в магнитное поле плоский контур без проводника, а его концы попробуем соединить с гальванометром. И что мы наблюдаем? Как только контур гальванометр поворачивается, то мы наблюдаем появление в нем индукционного тока. А если попробовать вращать магнит внутри него и рядом с контуром, то в этом случае также появится ток.



Думаю, вы уже заметили, ток появляется в катушке тогда, когда изменяется магнитный поток, который пронизывает эту катушку.

И тут возникает вопрос, при всяких ли движениях магнита и катушки, может возникнуть электрический ток? Оказывается не всегда. Ток не возникнет в том случае, когда магнит вращается вокруг вертикальной оси.

А из этого следует, что при любом изменении магнитного потока, мы наблюдаем то, что в этом проводнике возникает электрический ток, который существовал в течении всего процесса, пока происходили изменения магнитного потока. Именно в этом и заключается явление электромагнитной индукции. А индукционным током является тот ток, который был получен данным методом.

Если мы с вами проанализируем данный опыт, то увидим, что значение индукционного тока совершенно не зависит от причины изменения магнитного потока. В данном случае, первостепенное значение имеет лишь скорость, которая влияет на изменения магнитного потока. Из опытов Фарадея следует, что чем быстрее двигается магнит в катушке, тем больше отклоняется стрелка гальванометра.



Теперь мы можем подвести итог данного урока и сделать вывод, что закон электромагнитной индукции является одним из основных законом электродинамики. Благодаря изучению явлений электромагнитной индукции, учеными разных стран были созданы различные электродвигатели и мощные генераторы. Огромный вклад в развитие электротехники внесли и такие известные ученые, как Ленц, Якоби, и другие.

Федун В.И. Конспект лекций по физике Электромагнетизи

Лекция 26.

Электромагнитная индукция. Открытие Фарадея .

В 1831 г. М. Фарадеем было сделано одно из важнейших фундаментальных открытий в электродинамике – обнаружено явлениеэлектромагнитной индукции .

В замкнутом проводящем контуре при изменении магнитного потока (потока вектора ), охватываемого этим контуром, возникает электрический ток .

Этот ток получил название индукционного .

Появление индукционного тока означает, что при изменении магнитного

потока в контуре возникает э.д.с. индукции (работа по перенесению единичного заряда по замкнутому контуру). Отметим, что значениесовершенно не зависит от того, каким образом осуществляется изменение магнитного потока, и определяется лишь скоростью его изменения, т.е. величиной
. Изменение знака производной
приводит к изменению знакаэ.д.с. индукции .

Рисунок 26.1.

Фарадей обнаружил, что индукционный ток можно вызвать двумя различными способами, которые удобно объяснить с помощью рисунка.

1-й способ: перемещение рамки в магнитном поле неподвижной катушки(см. рис.26.1).

2-й способ: изменение магнитного поля , создаваемого катушкой, за счет ее движения или вследствие изменения силы токав ней (или того и другого вместе). Рамкапри этом неподвижна.

В обоих этих случаях гальванометр будет показывать наличие индукционного тока в рамке.

Направление индукционного тока и, соответственно, знак э.д.с. индукции определяются правилом Ленца.

Правило Ленца.

Индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей .

Правило Ленца выражает важное физическое свойство – стремление системы противодействовать изменению ее состояния. Это свойство называют электромагнитной инерцией .

Закон электромагнитной индукции (закон Фарадея).

Какова бы ни была причина изменения магнитного потока, охватываемого замкнутым проводящим контуром, возникающая в контуре э.д.с. индукции определяется формулой

Природа электромагнитной индукции .

С целью выяснения физических причин, которые приводят к возникновению э.д.с. индукции, последовательно рассмотрим два случая.

1. Контур движется в постоянном магнитном поле.

действовать сила

Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции . В нашем случае

.

Здесь знак «минус» поставлен потому, что стороннее поле направлено против положительного обхода контура, определяемого правилом правого винта. Произведениеесть скорость приращения площади контура (приращение площади в единицу времени), поэтому

,

где
- приращение магнитного потока сквозь контур.

.

Полученный результат можно обобщить на случай произвольной ориентации вектора индукции магнитного поля относительно плоскости контура и на любой контур, движущийся (и/или деформируемый) произвольным образом в постоянном неоднородном внешнем магнитном поле.

Итак, возбуждение э.д.с. индукции при движении контура в постоянном магнитном поле объясняется действием магнитной составляющей силы Лоренца, пропорциональной
, которая возникает при перемещении проводника.

2. Контур покоится в переменном магнитном поле.

Наблюдаемое на опыте возникновение индукционного тока свидетельствует о том, что и в этом случае в контуре появляются сторонние силы, которые теперь связаны с изменяющимся во времени магнитным полем. Какова же их природа? Ответ на этот принципиальный вопрос был дан Максвеллом.

Поскольку проводник покоится, то скорость упорядоченного движения электрических зарядов
и, следовательно, магнитная сила, пропорциональная
, также равна нулю и уже не может привести заряды в движение. Однако кроме магнитной силы на электрический заряд может действовать только сила со стороны электрического поля, равная. Поэтому остается заключить, чтоиндукционный ток обусловлен электрическим полем , возникающим при изменении во времени внешнего магнитного поля . Именно это электрическое поле и ответственно за появление э.д.с. индукции в неподвижном контуре. Согласно Максвеллу,изменяющееся во времени магнитное поле порождает в окружающем пространстве электрическое поле . Возникновение электрического поля не связано с наличием проводящего контура, который лишь позволяет обнаружить по возникновению в нем индукционного тока существование этого поля.

Формулировка закона электромагнитной индукции , данная Максвеллом, принадлежит к числу наиболее важных обобщений электродинамики.

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле .

Математическая формулировка закона электромагнитной индукции в понимании Максвелла имеет вид:

Циркуляция вектора напряженности этого поля по любому неподвижному замкнутому контуруопределяется выражением

,

где - магнитный поток, пронизывающий контур.

Используемый для обозначения скорости изменения магнитного потока знак частной производной указывает на то, что контур является неподвижным.

Поток вектора через поверхность, ограниченную контуром, равен
, поэтому выражение закона электромагнитной индукции можно переписать следующим образом:

Это одно из уравнений системы уравнений Максвелла.

Тот факт, что циркуляция электрического поля, возбуждаемого переменным во времени магнитным полем, отлична от нуля, означает, что рассматриваемое электрическое поле не потенциальное .Оно, как и магнитное поле, являетсявихревым .

В общем случае электрическое поле может быть представлено векторной суммой потенциального (поля статических электрических зарядов, циркуляция которого равна нулю) и вихревого (обусловленного изменяющимся во времени магнитным полем) электрических полей.

В основе рассмотренных нами явлений, объясняющих закон электромагнитной индукции, не просматривается общего принципа, позволяющего установить общность их физической природы. Поэтому эти явления следует рассматривать как независимые, а закон электромагнитной индукции - как результат их совместного действия. Тем более удивительным оказывается тот факт, что э.д.с. индукции в контуре всегда равна скорости изменения магнитного потока сквозь контур. В тех случаях, когда меняется и поле и расположение или конфигурация контура в магнитном поле, э.д.с. индукции следует рассчитывать по формуле

Выражение, стоящее в правой части этого равенства, представляет собой полную производную магнитного потока по времени: первое слагаемое связано с изменением магнитного поля во времени, второе – с движением контура.

Можно сказать, что во всех случаях индукционный ток вызывается полной силой Лоренца

.

Какая часть индукционного тока вызывается электрической, а какая магнитной составляющей силы Лоренца - зависит от выбора системы отсчета .

О работе сил Лоренца и Ампера .

Из самого определения работы следует, что сила, действующая в магнитном поле на электрический заряд и перпендикулярная его скорости, не может совершать работы. Однако при движении проводника с током, увлекающего за собой заряды, сила Ампера все же работу совершает. Наглядным подтверждением этого служат электромоторы.

Это противоречие исчезает, если принять во внимание, что движение проводника в магнитном поле неизбежно сопровождается явлением электромагнитной индукции. Поэтому наряду с силой Ампера работу над электрическими зарядами совершает и возникающая в проводнике электродвижущая сила индукции. Т.о., полная работа сил магнитного поля складывается из механической работы, обусловленной силой Ампера, и работы э.д.с., индуцируемой при движении проводника. Обе работы равны по модулю и противоположны по знаку, поэтому их сумма равна нулю. Действительно, работа амперовой силы при элементарном перемещении проводника с током в магнитном поле равна
, за это же время э.д.с. индукции совершает работу

,

тогда полная работа
.

Силы Ампера совершают работу не за счет энергии внешнего магнитного поля, которое может оставаться постоянным, а за счет источника э.д.с., поддерживающего ток в контуре.

В 1821 году Майкл Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена. В 1831 г. Майкл Фарадей установил, что во всяком замкнутом проводящем контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром, возникает электрический ток. Это явление называется электромагнитной индукцией , а возникающий ток – индукционным (рис. 3.27).

Рис. 3.27 Опыты Фарадея

Индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Сила индукционного тока не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения.

Закон Фарадея: сила индукционного тока, возникающего в замкнутом проводящем контуре (ЭДС индукции, возникающая в проводнике), пропорциональна скорости изменения магнитного потока, сцепленного с контуром (проникающего через поверхность, ограниченную контуром), и не зависит от способа изменения магнитного потока.

Ленц установил правило, с помощью которого можно найти направление индукционного тока. Правило Ленца: индукционный ток направлен таким образом, что собственным магнитным полем препятствует изменению внешнего магнитного потока, пересекающего поверхность контура (рис. 3.28).

Рис. 3.28 Иллюстрация правила Ленца

Согласно закону Ома электрический ток в замкнутой цепи может возникать только в том случае, если в этой цепи появится ЭДС. Поэтому обнаруженный Фарадеем индукционный ток свидетельствует о том, что в замкнутом контуре, находящемся в переменном магнитном поле возникает ЭДС индукции. Дальнейшее исследование показало, что ЭДС электромагнитной индукции в контуре пропорционально изменению магнитного потока сквозь поверхность, ограниченную этим контуром.

Мгновенное значение ЭДС индукции выражается законом Фарадея-Ленца )

где – потокосцепление замкнутого проводящего контура.

Открытие явления электромагнитной индукции:

1. показало взаимосвязь между электрическим и магнитным полем;

2. предложило способ получения электрического тока с помощью магнитного поля.

Таким образом, возникновение ЭДС индукции возможно и в случае неподвижного контура , находящегося в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому с ее помощью нельзя объяснить возникновение ЭДС индукции.

Опыт показывает, что ЭДС индукции не зависит от рода вещества проводника, от состояния проводника, в частности от его температуры, которая может быть даже неодинаковой вдоль проводника. Следовательно, сторонние силы связаны не с изменением свойств проводника в магнитном поле, а обусловлены самим магнитным полем.

Английский физик Максвелл для объяснения ЭДС индукции в неподвижных проводниках предположил, что переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле , которое и является причиной возникновения индукционного тока в проводнике. Вихревое электрическое поле не является электростатическим (т. е. потенциальным).

ЭДС электромагнитной индукции возникает не только в замкнутом проводнике с током, но и в отрезке проводника, пересекающем при своем движении линии магнитной индукции (рис. 3.29).

Рис. 3.29 Образование ЭДС индукции в движущемся проводнике

Пусть прямолинейный отрезок проводника длиной l движется слева направо скоростью v (рис. 3.29). Индукция магнитного поля В направлена от нас. Тогда на электроны, движущиеся со скоростью v действует сила Лоренца

Под действием этой силы электроны будут смещаться к одному из концов проводника. Следовательно, возникает разность потенциалов и электрическое поле внутри проводника с напряженностью E . Со стороны возникшего электрического поля на электроны будет действовать сила qE , направление которой противоположно силе Лоренца. Когда эти силы уравновесят друг друга, то движение электронов прекратится.

Цепь разомкнута, значит , но в проводнике нет гальванического элемента или других источников тока, значит, это будет ЭДС индукции

.

При перемещении в магнитном поле замкнутого проводящего контура ЭДС индукции находится во всех его участках, пересекающих линии магнитной индукции. Алгебраическая сумма этих ЭДС равна общей ЭДС индукции замкнутого контура.