Экологические факторы среды и их действие. Экологические факторы

Наше знакомство с экологией мы начинаем, пожалуй, с одного из самых разработанных и изученных разделов - аутэкологии. Внимание аутэкологии концентрируется на взаимодействии особей или групп особей с условиями окружающей их среды. Поэтому ключевым понятием аутэкологии является экологический фактор, то есть фактор окружающей среды, воздействующий на организм.

Никакие природоохранные мероприятия не возможны без изучения оптимума действия того или иного фактора на данный биологический вид. В самом деле, как охранять тот или иной вид, если не знать, какие условия жизни он предпочитает. Даже "охрана" такого вида как человек разумный требует знания санитарно-гигиенических норм, которые есть ни что иное, как оптимум различных экологических факторов применительно к человеку.

Влияние окружающей среды на организм и называется экологическим фактором. Точное научное определение звучит так:

ЭКОЛОГИЧЕСКИЙ ФАКТОР - любое условие среды, на которое живое реагирует приспособительными реакциями.

Экологический фактор - это любой элемент среды, оказывающий прямое или косвенное влияние на живые организмы хотя бы на протяжении одной из фаз их развития.

По своей природе экологические факторы делят, по крайней мере, на три группы:

абиотические факторы - влияния неживой природы;

биотические факторы - влияния живой природы.

антропогенные факторы - влияния, вызванные разумной и неразумной деятельностью человека ("антропос" - человек).

Человек видоизменяет живую и неживую природу, и берет на себя в известном смысле и геохимическую роль (например, высвобождая замурованный в виде угля и нефти на многие миллионы лет углерод и выпуская его в воздух углекислым газом). Поэтому антропогенные факторы по размаху и глобальности своего воздействия приближаются к геологическим силам.

Не редко экологические факторы подвергают и более детальной классификации, когда надо указать на какую-то конкретную группу факторов. Например, различают климатические (относящиеся к климату), эдафические (почвенные) факторы среды.

В качестве хрестоматийного примера опосредованного действия экологических факторов приводят так называемые птичьи базары, представляющие собой огромные скопления птиц. Высокая плотность птиц объясняется целой цепочкой причинно-следственных связей. Птичий помет попадает в воду, органические вещества в воде минерализуются бактериями, повышенная концентрация минеральных веществ приводит к повышению численности водорослей, а вслед за ними - и зоопланктона. Низшими ракообразными, входящими в зоопланктон, питаются рыбы, а рыбами - птицы, населяющие птичий базар. Цепочка замыкается. Птичий помет выступает в качестве экологического фактора, опосредованно повышающего численность колонии птиц.


Как же сопоставлять действие столь разных по природе факторов? Не смотря на огромное множество факторов, из самого определения экологического фактора как элемента среды, оказывающего влияние на организм, следует нечто общее. А именно: действие экологических факторов всегда выражается в изменении жизнедеятельности организмов, а в конечном итоге, - приводит к изменению численности популяции. Это и позволяет сравнивать действие различных экологических факторов.

Стоит ли говорить, что действие фактора на особь определяется не природой фактора, а его дозой. В свете сказанного выше, да и простого жизненного опыта, становится очевидным, что эффект определяет именно доза фактора. Действительно, что такое фактор "температура"? Это в достаточной степени абстракция, а вот если сказать, что температура -40 по Цельсию - тут уже не до абстракций, поскорее бы закутаться во все теплое! С другой стороны, +50 градусов нам покажутся не многим лучше.

Таким образом, фактор воздействует на организм определенной дозой, и среди этих доз можно выделить минимальные, максимальные и оптимальные дозы, а также те значения, при которых жизнь особи прекращается (их называют летальными, или смертельными).

Воздействие различных доз на популяцию вцелом весьма наглядно описывается графически:

По оси ординат откладывается численность популяции в зависимости от дозы того или иного фактора (ось абсцисс). Выделяют оптимальные дозы фактора и дозы действия фактора, при которых происходит угнетение жизнедеятельности данного организма. На графике это соответствует 5 зонам:

зона оптимума

справа и слева от нее зоны пессимума (от границы зоны оптимума до max или min)

летальные зоны (находящиеся за пределами max и min), в которых численность популяции равна 0.

Диапазон значений фактора, за границами которого нормальная жизнедеятельности особей становится невозможной, называется пределами выносливости.

На следующем уроке мы рассмотрим, как различаются организмы по отношению к различным экологическим факторам. Иными словами, речь на следующем уроке пойдет об экологических группах организмов, а также о бочке Либиха и о том, как связано все это с определением ПДК.

Глоссарий

ФАКТОР АБИОТИЧЕСКИЙ - условие или совокупность условий неорганического мира; экологический фактор неживой природы.

ФАКТОР АНТРОПОГЕННЫЙ - экологический фактор, обязанный своим происхождением деятельности человека.

ПЛАНКТОН - совокупность организмов, обитающих в толще воды и неспособных активно сопротивляться переносу течениями, то есть "парящих" в воде.

БАЗАР ПТИЧИЙ - колониальное поселение птиц, связанных с водной средой (кайр, чаек).

На какие экологические факторы из всего их многообразия прежде всего обращает внимание исследователь? Не редко перед исследователем стоит задача выявить те экологические факторы, которые угнетают жизнедеятельность представителей данной популяции, ограничивают рост и развитие. Например, необходимо выяснить причины снижения урожая или причины вымирания естественной популяции.

При всем многообразии экологических факторов и сложностях, возникающих при попытке оценить их совместное (комплексное) воздействие, важно, что составляющие естественный комплекс факторы имеют неодинаковую значимость. Еще в 19 веке Либих (Liebig, 1840), изучая влияние различных микроэлементов на рост растений, установил: рост растений ограничивается элементом, концентрация которого лежит в минимуме. Фактор, находящийся в недостатке, был назван лимитирующим. Образно это положение помогает представить так называемая "бочка Либиха".

Бочка Либиха

Представьте себе бочку, в которой деревянные рейки по бокам разной высоты, как это показано на рисунке. Понятно, какой бы высоты ни были остальные рейки, но налить воды в бочку вы сможете ровно столько, какова длина самой короткой рейки (в данном случае - 4 плашка).

Остается только "подменить" некоторые термины: высота налитой воды пусть будет какой-либо биологической или экологической функцией (например, урожайностью), а высота реек будет указывать на степень отклонения дозы того или иного фактора от оптимума.

В настоящее время закон минимума Либиха трактуется более широко. Лимитирующим фактором может быть фактор, находящийся не только в недостатке, но и в избытке.

Экологический фактор играет роль ЛИМИТИРУЮЩЕГО ФАКТОРА, если данный фактор находится ниже критического уровня или превосходит максимально выносимый уровень.

Лимитирующий фактор обуславливает ареал распространения вида или (при менее суровых условиях) сказывается на общем уровне обмена веществ. Например, содержание фосфатов в морской воде является лимитирующим фактором, определяющим развитие планктона и в целом продуктивность сообществ.

Понятие "лимитирующий фактор" применимо не только к различным элементам, но и ко всем экологическим факторам. Не редко в качестве лимитирующего фактора выступают конкурентные отношения.

У каждого организма в отношении различных экологических факторов существуют пределы выносливости. В зависимости от того, насколько широки или узки эти пределы, различают эврибионтные и стенобионтные организмы. Эврибионты способны выносить широкую амплитуду интенсивности различных экологических факторов. Скажем, ареал обитания лисицы - от лесотундры до степей. Стенобионты, напротив, переносят лишь очень узкие колебания интенсивности экологического фактора. Например, практически все растения влажных тропических лесов - стенобионты.

Не редко указывают, какой именно фактор имеется в виду. Так, можно говорить об эвритермных (переносящих большие колебания температуры) организмах (многие насекомые) и стенотермных (для растений тропических лесов колебания температуры в пределах +5... +8 градусов С может быть губительными); эври/стеногалинных (переносящих/непреносящих колебания солености воды); эври/стенобатных (живущих в широких/узких пределах глубины водоема) и так далее.

Возникновение в процессе биологической эволюции стенобионтных видов можно рассматривать как форму специализации, при которой большая эффективность достигается в ущерб адаптивности.

Взаимодействие факторов. ПДК.

При независимом действии экологических факторов достаточно оперировать понятием "лимитирующий фактор", чтобы определить совместное воздействие комплекса экологических факторов на данный организм. Однако в реальных условиях экологические факторы могут усиливать или ослаблять действие друг друга. Например, мороз в Кировской области переносится легче, что в С.-Петербурге, так как в последнем выше влажность.

Учет взаимодействия экологических факторов - важная научная проблема. Можно выделить три основные вида взаимодействия факторов:

аддитивное - взаимодействие факторов представляет собой простую алгебраическую сумму эффектов каждого из факторов при независимом действии;

синергетическое - совместное действие факторов усиливает эффект (то есть эффект при их совместном действии больше простой суммы эффектов каждого фактора при независимом действии);

антогонистическое - совместное действие факторов ослабляет эффект (то есть эффект при их совместном действии меньше простой суммы эффектов каждого фактора).

Почему так важно знать о взаимодействии экологических факторов? В основе теоретического обоснования величины предельно допустимых концентраций (ПДК) загрязнителей или предельно допустимых уровней (ПДУ) воздействия загрязнящих агентов (например, шума, радиации) лежит закон лимитирующего фактора. ПДК устанавливается экспериментально на уровне, при котором в организме еще не происходят патологические изменения. При этом существуют свои трудности (например, чаще всего приходится экстраполировать на человека данные, полученные на животных). Однако речь сейчас не о них.

Не редко приходится слышать, как природоохранные органы радостно рапортуют о том, что уровень большинства загрязнителей в атмосфере города находится в пределах ПДК. А органы госсанэпиднадзора в это же время констатируют повышенный уровень респираторных заболеваний у детей. Объяснение может быть таким. Не секрет, что многие атмосферные загрязнители обладают сходным эффектом: раздражают слизистые оболочки верхних дыхательных путей, правоцируют респираторные заболевания и т.д. И совместное действие этих загрязнителей дает аддитивный (или синергетический) эффект.

Поэтому в идеале при разработке норм ПДК и при оценке существующей экологической ситуации должно учитоваться взаимодействие факторов. К сожалению, практически это бывает очень сложно сделать: трудно спланировать такой эксперимент, трудно оценить взаимодействие, плюс ужесточение ПДК имеет отрицательные экономические эффекты.

Глоссарий

МИКРОЭЛЕМЕНТЫ - химические элементы, необходимые организмам в ничтожных количествах, но определяющие успешность их развития. М. в виде микроудобрений используют для повышения урожайности растений.

ФАКТОР ЛИМИТРИУЮЩИЙ - фактор, ставящий рамки (определяющий) для течения какого-то процесса или для существования организма (вида, сообщества).

АРЕАЛ - область распространения любой систематической группы организмов (вида, рода, семейства) или определенного типа сообщества организмов (например, ареал лишайниковых сосняков).

ОБМЕН ВЕЩЕСТВ - (применительно к организму) последовательное потребление, превращение, использование, накопление и потеря веществ и энергии в живых организмах. Жизнь возможна только благодаря обмену веществ.

ЭВРИБИОНТ - организм, проживающий в различных условиях среды

СТЕНОБИОНТ - организм, требующий строго определенных условий существования.

КСЕНОБИОТИК - чужеродное для организма химическое вещество, естественно не входящее в биотический круговорот. Как правило, ксенобиотик - антропогенного происхождения.


Экосистема

ГОРОДСКИЕ И ПРОМЫШЛЕННЫЕ ЭКОСИСТЕМЫ

Общая характеристика городских экосистем.

Городские экосистемы гетеротрофны, доля солнечной энергии, фиксированная городскими растениями или солнечными батареями, расположенными на крышах домов, незначительна. Основные источники энергии для предприятий города, отопления и освещения квартир горожан расположены за его пределами. Это - месторождения нефти, газа, угля, гидро- и атомные электростанции.

Город потребляет огромное количество воды, лишь незначительную часть которой человек использует для непосредственного употребления. Основную часть воды тратят на производственные процессы и на бытовые нужды. Личное потребление воды в городах составляет от 150 до 500 л в сутки, а с учетом промышленности на одного гражданина приходится до 1000 л в сутки. Использованная городами вода возвращается в природу в загрязненном состоянии - она насыщена тяжелыми металлами, остатками нефтепродуктов, сложными органическими веществами, подобными фенолу, и т.д. В ней могут содержаться болезнетворные микроорганизмы. Город выбрасывает в атмосферу ядовитые газы, пыль, концентрирует на свалках токсичные отходы, которые с потоками весенней воды попадают в водные экосистемы. Растения, в составе городских экосистем растут в парках, садах, на газонах, их главное назначение - регулирование газового состава атмосферы. Они выделяют кислород, поглощают диоксид углерода и очищают атмосферу от вредных газов и пыли, попадающих в неё при работе промышленных предприятий и транспорта. Растения имеют также большое эстетическое и декоративное значение.

Животные в городе представлены не только обычными в естественных экосистемах видами (в парках живут птицы: горихвостка, соловей, трясогузка; млекопитающие: полевки, белки и представители других групп животных), но и особой группой городских животных - спутников человека. В её составе - птицы (воробьи, скворцы, голуби), грызуны (крысы и мыши), и насекомые (тараканы, клопы, моль). Многие животные, связанные с человеком, питаются отбросами на помойках (галки, воробьи). Это санитары города. Разложение органических отходов ускоряют личинки мух и другие животные и микроорганизмы.

Главная особенность экосистем современных городов в том, что в них нарушено экологическое равновесие. Все процессы регулирования потоков вещества и энергии человеку приходится брать на себя. Человек должен регулировать как потребление городом энергии и ресурсов - сырья для промышленности и пищи для людей, так и количество ядовитых отходов, поступающих в атмосферу, воду и почву в результате деятельности промышленности и транспорта. Наконец, он определяет и размеры этих экосистем, которые в развитых странах, а последние годы и в России, быстро«расползаются» за счет загородного коттеджного строительства. Районы низкоэтажной застройки уменьшают площадь лесов и сельскохозяйственных угодий, их «расползание» требует строительства новых шоссейных дорог, что уменьшает долю экосистем, способных производить продукты питания и осуществлять круговорот кислорода.

Промышленное загрязнение среды.

В городских экосистемах наиболее опасно для природы промышленное загрязнение.

Химическое загрязнение атмосферы. Этот фактор относится к числу наиболее опасных для жизни человека. Наиболее распространенные загрязнители

Сернистый газ, оксиды азота, оксид углерода, хлор, и др. В некоторых случаях из двух или относительно нескольких относительно не опасных веществ, выброшенных в атмосферу, под влиянием солнечного света могут образоваться ядовитые соединения. Экологи насчитывают около 2000 загрязнителей атмосферы.

Главные источники загрязнения - ТЭС. Сильно загрязняют атмосферу также котельные, нефтеперерабатывающие предприятия и автотранспорт.

Химическое загрязнение водоемов. Предприятия сбрасывают в водоемы нефтепродукты, соединения азота, фенол и многие другие отходы промышленности. При добыче нефти водоемы загрязняются засоленными видами, нефть и нефтепродукты также разливаются при транспортировке. В России от нефтяного загрязнения более всего страдают озера Севера Западной Сибири. За последние годы возросла опасность для водных экосистем бытовых стоков городской канализации. В этих стоках повысилась концентрация моющих средств, которые микроорганизмы разлагают с трудом.

Пока количество загрязнителей, выбрасываемых в атмосферу или сбрасываемых в реки, невелико, экосистемы сами в состоянии справиться с ними. При умеренном загрязнении вода в реке становится практически чистой через 3-10 км от источника загрязнения. Если загрязнителей слишком много, экосистемы не могут с ними справиться и начинаются необратимые последствия.

Вода становится непригодной для питья и опасной для человека. Не годится загрязненная вода и для многих отраслей промышленности.

Загрязнение поверхности почвы твердыми отходами. Городские свалки промышленного и бытового мусора занимают большие площади. В составе мусора могут оказаться ядовитые вещества, такие, как ртуть или другие тяжелые металлы, химические соединения, которые растворяются в дождевых и снеговых водах и затем попадают в водоемы и грунтовые воды. Могут попасть в мусор и приборы, содержащие радиоактивные вещества.

Поверхность почвы может быть загрязнена золой, оседающей из дыма ТЭЦ, работающих на угле, предприятий по производству цемента, огнеупорного кирпича и т.д. Для предотвращения этого загрязнения на трубах устанавливают специальные пылеуловители.

Химическое загрязнение грунтовых вод. Токи грунтовых вод перемещают промышленные загрязнения на большие расстояния, и не всегда можно установить их источник. Причиной загрязнения может быть вымывание токсичных веществ дождевыми и снеговыми водами с промышленных свалок. Загрязнение подземных вод происходит и при добыче нефти современными методами, когда для повышения отдачи нефтяных пластов в скважины повторно закачивают соленую воду, поднявшуюся на поверхность вместе с нефтью при её откачке.

Засоленные воды попадают в водоносные горизонты, вода в колодцах приобретает горький вкус и оказывается не пригодной для питья.

Шумовое загрязнение. Источником шумового загрязнения может быть промышленное предприятие или транспорт. Особенно сильный шум производят тяжелые самосвалы и трамваи. Шум влияет на нервную систему человека, и потому в городах и на предприятиях проводятся мероприятия по шумозащите.

Железнодорожные и трамвайные линии и дороги, по которым проходит грузовой транспорт, нужно выносить из центральных частей городов в малонаселенные районы и создавать вокруг них зеленые насаждения, хорошо поглощающие шум.

Самолеты не должны летать над городами.

Шум измеряют децибелах. Тиканье часов - 10 дб, шепот - 25, шум от оживленной магистрали - 80, шум самолета при взлете - 130 дб. Болевой порог шума - 140 дб. На территории жилой застройки днем шум не должен превышать 50-66 дб.

Также к загрязнителям относят: загрязнение поверхности почвы отвалами вскрышных пород и золы, биологическое загрязнение, тепловое загрязнение, радиационное загрязнение, электромагнитное загрязнение.

Загрязнение атмосферы. Если принять за единицу загрязненность воздуха над океаном, то над селами она выше в 10 раз, над небольшими городами - в 35 раз, а над большими городами - в 150 раз. Толщина слоя загрязненного воздуха над городом составляет 1,5 - 2 км.

Наиболее опасными загрязнителями являются бенз-а-пирен, диоксид азота, формальдегид, пыль. В Европейской части России и на Урале в среднем в течении года на 1 кв. км выпадало свыше 450 кг атмосферных загрязнителей.

По сравнению с 1980 г.. количество выбросов диоксида серы выросло в 1.5 раза; 19 млн. т атмосферных загрязнителей выбросил в атмосферу автомобильный транспорт.

Сброс сточных вод в реки составил 68,2 куб. км при постпотреблении 105,8 куб. км. Потребление воды промышленностью составляет 46%. Доля неочищенных сточных вод с 1989 г. уменьшается и составляет 28%.

Вследствие преобладания западных ветров Россия получает от западных соседей в 8-10 раз больше атмосферных загрязнителей, чем отправляет к ним.

Кислотные дожди отрицательно повлияли на половину лесов Европы, начался процесс усыхания лесов и в России. В Скандинавии из-за кислотных осадков, поступающих из Великобритании и ФРГ, погибло уже 20.000 озер. Под влиянием кислотных дождей гибнут памятники архитектуры.

Вредные вещества, выходящие из дымовой трубы высотой 100 м, рассеиваются в радиусе 20 км, высотой 250 м - до 75 км. Труба - чемпион построена на медно-никелевом комбинате в г. Садбери (Канада) и имеет высоту более 400 м.

Разрушающие озоновый слой хлорфторуглероды (ХФУ) попадают в атмосферу из газов охладительных систем (в США - 48%, а в остальных странах - 20%), от использования аэрозольных баллончиков (в США - 2%, а несколько лет назад их продажу запретили; в других странах - 35%), растворителей, используемых в химчистках (20%) и при производстве пенопластов, включая стайроформ (25-

Основной источник фреонов, разрушающих озоновый слой - промышленные холодильники - рефрижераторы. В обычном бытовом холодильнике 350 г фреона, а в промышленных - десятки килограммов. Рефрижераторное хозяйство только в

Москве ежегодно использует 120 т фреона. Значительная часть его из-за несовершенства оборудования оказывается в атмосфере.

Загрязнение пресноводных экосистем. В Ладожское озеро - резервуар питьевой воды для шестимиллионного Санкт-Петербурга - в 1989 г. было сброшено со сточными водами 1,8 т фенолов, 69,7 т сульфатов, 116,7 т синтетических поверхностно-активных веществ (ПАВ).

Загрязняет водные экосистемы и речной транспорт. На озере Байкал, например, плавают 400 судов разного размера, они сбрасывают в воду около 8 т нефтепродуктов в год.

На большинстве предприятий России токсичные отходы производства или сбрасывают в водоемы, отравляя их, или накапливают, не перерабатывая, нередко в огромных количествах. Эти скопления смертоносных отходов можно назвать «экологическими минами», при прорыве дамб они могут оказаться в водоемах. Пример такой «экологической мины» - Череповецкий химический комбинат «Аммофос». Его отстойник занимает площадь 200 га и содержит 15 млн. т отходов. Дамбу, которая огораживает отстойник, ежегодно поднимают на

4 м. К сожалению «череповецкая мина» - не единственная.

В развивающихся странах ежегодно умирает 9 млн. человек. К 2000 г. питьевой воды не будет хватать более чем 1 млрд. человек.

Загрязнение морских экосистем. В Мировой океан сброшено около 20 млрд. т мусора - от бытовых стоков до радиоактивных отходов. Каждый год на каждый 1 кв. км водной поверхности добавляют еще по 17 т мусора.

Ежегодно в океан выливается более 10 млн. т нефти, которая образует пленку, покрывающую 10-15% его поверхности; а 5 г нефтепродуктов достаточно, чтобы затянуть пленкой 50 кв. м водной поверхности. Эта пленка не только уменьшает испарение и поглощение диоксида углерода, но и вызывает кислородное голодание и гибель икры и молоди рыб.

Радиационное загрязнение. Предполагают, что к 2000 г. в мире накопится

1 млн. куб. м высокоактивных радиоактивных отходов.

Естественный радиоактивный фон воздействует на каждого человека, даже на того, который не соприкасается в работе с АЭС или ядерным оружием. Все мы за свою жизнь получаем определенную дозу радиации, 73% которой приходится на излучения природных тел (например, гранита в памятниках, облицовке домов и пр.), 14% - на медицинские процедуры (в первую очередь от посещения рентгеновского кабинета) и 14% - на космические лучи. За жизнь (70 лет) человек может без большого риска, набрать радиацию в 35 бэр (7 бэр от естественных источников, 3 бэра от космических источников и рентгеновских аппаратов). В зоне Чернобыльской АЭС в наиболее загрязненных участках можно получить до 1 бэра за час. Мощность излучения на кровле в период тушения пожара на АЭС достигала 30.000 рентген в час и потому без радиационной защиты (свинцового скафандра) смертельную дозу облучения можно было получить за 1 минуту.

Часовая доза радиации, смертельная для 50% организмов, составляет 400 бэр для человека, 1000-2000 - для рыб и птиц, от 1000 до150.000 - для растений и 100.000 бэр для насекомых. Таким образом, самое сильное загрязнение - не помеха для массового размножения насекомых. Из растений наименее устойчивы к радиации деревья и наиболее устойчивы травы.

Загрязнение бытовым мусором. Количество накапливающегося мусора постоянно растет. Сейчас его на каждого горожанина приходится от 150 до 600 кг в год. Больше всего мусора производят в США (520 кг в год на одного жителя), в Норвегии, Испании, Швеции, Нидерландах - 200-300 кг, а в Москве - 300-320 кг.

Для того чтобы в природной среде разложилась бумага, требуется от 2 до10 лет, консервная банка - более 90 лет, фильтр от сигареты - 100 лет, полиэтиленовый пакет - более 200 лет, пластмасса - 500 лет, стекло - более 1000 лет.

Способы уменьшения вреда от химических загрязнений

Самые распространенные загрязнения - химические. Существует три основных способа уменьшения вреда от них.

Разбавление. Даже очищенные стоки необходимо разбавлять в 10 раз (а неочищенные - в 100-200 раз). На предприятиях сооружают высокие трубы, чтобы выбрасываемые газы и пыль рассеивались равномерно. Разбавление - малоэффективный способ уменьшения вреда от загрязнения, допустимый лишь как временная мера.

Очистка. Это основной способ уменьшения выбросов вредных веществ в окружающую среду в России сегодня. Однако в результате очистки образуется много концентрированных жидких и твердых отходов, которые также приходится хранить.

Замена старых технологий новыми - малоотходными. За счет более глубокой переработки удается снизить количество вредных выбросов в десятки раз. Отходы от одного производства становятся сырьем для другого.

Образные названия этим трем способам уменьшения загрязнения окружающей среды дали экологи ФРГ: «удлини трубу» (разбавление рассеиванием), «заглуши трубу» (очистка) и «завяжи трубу узлом» (малоотходные технологии). Немцы восстановили экосистему Рейна, который долгие годы был сточной канавой, куда сбрасывались отходы промышленных гигантов. Это удалось сделать только в 80-е годы, когда, наконец, «завязали трубу узлом».

Уровень загрязнения среды в России еще очень высок, и экологически неблагоприятная обстановка, опасная для здоровья населения, сложилась почти в 100 городах страны.

Некоторое улучшение экологической ситуации в России достигнуто благодаря улучшению работы очистных сооружений и падению производства.

Дальнейшего уменьшения выбросов ядовитых веществ в окружающую среду можно добиться, если внедрить менее опасные малоотходные технологии. Однако, чтобы «завязать трубу узлом», необходимо обновление оборудования на предприятиях, что требует очень больших вложений и потому будет проводиться постепенно.

Города и промышленные объекты (нефтепромыслы, карьеры для разработок угля и руды, химические и металлургические комбинаты) работают за счет энергии, которая поступает из других промышленных экосистем (энергетического комплекса), и их продукция - не растительная и животная биомасса, а сталь, чугун и алюминий, различные машины и приборы, строительные материалы, пластмассы и многое другое, чего нет в природе.

Проблемы экологии городов - это в первую очередь проблемы уменьшения выбросов в окружающую среду различных загрязнителей и защита от городов воды, атмосферы, почвы. Их решают путем создания новых малоотходных технологий и производственных процессов и эффективных очистных сооружений.

Большую роль в смягчении влияния факторов городской среды на человека играют растения. Зеленые насаждения улучшают микроклимат, улавливают пыль и газы, благотворно влияют на психическое состояние горожан.

Литература:

Миркин Б.М., Наумова Л.Г. Экология России. Учебник из Федерального комплекта для 9 - 11 классов общеобразовательной школы. Изд. 2-е, перераб.

И доп. - М.: АО МДС, 1996. - 272 с ил.

Государственное образовательное учреждение

Высшего профессионального образования.

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

СЕРВИСА И ЭКОНОМИКИ»

Дисциплина: Экология

Институт (Факультет): (ИРЭУ) «Институт Региональной Экономики и Управления»

Специальность: 080507 «Менеджмент организаций»

На тему:Экологические факторы и их классификация.

Выполнила:

Валькова Виолетта Сергеевна

Студентка 1 курса

Заочной формы обучения

Руководитель:

Овчинникова Раиса Андреевна

2008 – 2009 гг.

ВВЕДЕНИЕ ………………………………………………………… …………………………………..3

    ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ. УСЛОВИЯ СРЕДЫ … …………………………………...3

Абиотические

Биотические

Антропогенные

    БИОТИЧЕСКИЕ ВЗАИМООТНОШЕНИЯ ОРГАНИЗМОВ ……………… ……………….6

    ОБЩИЕ ЗАКОНОМЕРНОСТИ ВЛИЯНИЯ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ СРЕДЫ НА ОРГАНИЗМЫ ………………………………………………… ……………………………….7

ЗАКЛЮЧЕНИЕ ………………………………………………………………… ………………………9

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ ………… ………………………………………..10

ВВЕДЕНИЕ

Представим себе какой-нибудь один вид растений или животных и в нем одну особь , мысленно изолировав ее от остального мира живой природы. Эта особь, находясь под воздействием факторов окружающей среды , будет испытывать их влияние. Главным из них окажутся факторы, определяемые климатом. Всем хорошо известно, например, что представители того или иного вида растений и животных встречаются не повсеместно. Одни растения живут только по берегам водоемов, другие – под пологом леса. В Арктике нельзя встретить льва, в пустыне Гоби – белого медведя. Мы сознаем, что климатические факторы (температура, влажность, освещенность и др.) имеют наибольшее значение в распространении видов. Для наземных животных, особенно обитателей почвы, и растений важную роль играют физические и химические свойства почвы. Для водных организмов особое значение приобретают свойства воды как единственной среды обитания. Изучения действия различных природных факторов на отдельные организмы представляет собой первое и наиболее простое подразделение экологии.

    ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ. УСЛОВИЯ СРЕДЫ

Разнообразие экологических факторов. Экологическими факторами называют любые внешние факторы, оказывающие прямое или опосредованное влияние на численность (обилие) и географическое распространение животных и растений.

Экологические факторы очень многообразны как по своей природе, так и по воздействию на живые организмы. Условно все факторы среды подразделяют на три большие группы – абиотические, биотические и антропогенные.

Абиотические факторы – это факторы неживой природы, прежде всего климатические (солнечный свет, температура, влажность воздуха), и местные (рельеф, свойства почвы, соленость, течения, ветер, радиация и т.п.). Эти факторы могут влиять на организм прямо (непосредственно), как свет и тепло, либо косвенно , как, например, рельеф местности, который обусловливает действие прямых факторов (освещенности, увлажнения, ветра и др.).

Антропогенные факторы – это те формы деятельности человека, которые, воздействуя на окружающую среду, изменяют условия живых организмов или непосредственно влияют на отдельные виды растений и животных. Одним из наиболее важных антропогенных факторов является загрязнение.

Условия среды. Условиями среды, или экологическими условиями называют изменяющиеся во времени и пространстве абиотические факторы среды, на которые организмы реагируют по-разному в зависимости от их силы. Условия среды налагают определенные ограничения на организмы. Количеством света, проникающим через толщу воды, ограничивается жизнь зеленых растений в водоемах. Обилием кислорода ограничивается число воздуходышащих животных. Температурой определяется активность и контролируется размножение многих организмов.

К наиболее важным факторам, определяющим условия существования организмов, практически во всех средах жизни относятся температура, влажность и свет. Рассмотрим действие этих факторов подробнее.

Температура. Любой организм способен жить только в пределах определенного интервала температур: особи вида погибают при слишком высоких либо слишком низких температурах. Где-то внутри этого интервала температурные условия наиболее благоприятны для существования данного организма, его жизненные функции осуществляются наиболее активно. По мере того как температура приближается к границам интервала, скорость жизненных процессов замедляется, и наконец, они вовсе прекращаются – организм погибает.

Пределы температурной выносливости у разных организмов различны. Существуют виды, способные выносить колебания температуры в широких пределах. Например, лишайники и многие бактерии способны жить при самой различной температуре. Среди животных наибольшим диапазоном температурной выносливости характеризуются теплокровные. Тигр, например, одинаково хорошо переносит как сибирский холод, так и жару тропических областей Индии или Малайского архипелага. Но есть и такие виды, которые могут жить только в более или менее узких температурных пределах. Сюда относятся многие тропические растения, как, например, орхидеи. В умеренном поясе они могут произрастать только в теплицах и требуют тщательного ухода. Некоторые кораллы, образующие рифы, могут жить только в морях, где температура воды не нижи 21 °С. Однако кораллы отмирают и когда вода сильно перегревается.

В наземно-воздушной среде и даже во многих участках водной среды температура не остаётся постоянной и может сильно варьировать в зависимости от сезона года или от времени суток. В тропических областях годовые колебания температуры могут быть даже менее заметны, чем суточные. И на оборот, в умеренных областях температура значительно различается в различные времена года. Животные и растения вынуждены приспосабливаться к неблагоприятному зимнему сезону, в течение которого активная жизнь затруднена или просто невозможна. В тропических областях такие приспособления выражены слабее. В холодном периоде с неблагоприятными температурными условиями в жизни многих организмов как бы наступает пауза: спячка у млекопитающих, сбрасывание листвы у растений и т.д. Некоторые животные совершают длительные миграции в места с более подходящим климатом.

Влажность. На протяжении большей части своей истории живая природа была представлена исключительными водными формами организмов. Завоевав сушу, они тем не менее не утратили зависимости от воды. Вода является составной частью значительного большинства живых существ: она необходима для их нормального функционирования. Нормально развивающийся организм постоянно теряет воду и поэтому не может жить в абсолютно сухом воздухе. Рано или поздно такие потери могут привести к гибели организма.

В физике влажность измеряется количеством водяных паров в воздухе. Однако наиболее простым и удобным показателем, характеризующим влажность той или иной местности, является количество осадков, выпадающих здесь за год или иной период времени.

Растения извлекают воду из почвы при помощи корней. Лишайники могут улавливать водяной пар из воздуха. Растения обладают рядом приспособлений, обеспечивающих минимальную потерю воды. Все сухопутные животные для компенсации неизбежной потери воды за счет испарения или выделения нуждаются в ее периодическом поступлении. Многие животные пьют воду; другие, например амфибии, некоторые насекомые и клещи, через покровы тела всасывают ее в жидком или парообразном состоянии. Большая часть животных пустынь никогда не пьет. Они удовлетворяют свои потребности за счет воды, поступающей с пищей. Наконец, есть животные, получающие воду еще более сложным путем – в процессе окисления жиров. Примерами могут служить верблюд и некоторые виды насекомых, например рисовый и амбарный долгоносики, платяная моль, питающиеся жиром. У животных, как и у растений, существует множество приспособлений для экономии расходов воды.

Свет. Для животных свет, как экологический фактор, имеет несравненно меньшее значение, чем температура и влажность. Но свет совершенно необходим живой природе, поскольку служит для нее практически единственным источником энергии.

С давних пор отличаются светолюбивые растения, которые способны развиваться только под солнечными лучами, и растения теневыносливые, которые способны хорошо расти под пологом леса. Большую часть подлеска в буковом лесу, отличающемся особой тенистостью, образуют теневыносливые растения. Это имеет большое практическое значение для естественного возобновления древостоя: молодая поросль многих древесных пород способна развиваться под прикрытием больших деревьев.

У многих животных нормальные условия освещенности проявляются в положительной или отрицательной реакции на свет. Все знают, как ночные насекомые слетаются на свет или как разбегаются тараканы в поисках укрытия, если только в темной комнате зажигают свет.

Однако наибольшее экологическое значение свет имеет в смене дня и ночи. Многие животные ведут исключительно дневной образ жизни (большинство воробьиных), другие – исключительно ночной (многие мелкие грызуны, летучие мыши). Мелкие рачки, парящие в толще воды, держаться ночью в поверхностных водах, а днем опускаются на глубину, избегая слишком яркого света.

По сравнению с температурой или влажностью свет почти не оказывает непосредственного влияния на животных. Он служит лишь сигналом к перестройке протекающих в организме процессов, что позволяет им наилучшим образом отвечать на происходящие изменения внешних условий.

Перечисленными выше факторами вовсе не исчерпывается набор экологических условий, определяющих жизнь и распространение организмов. Важное значение имеют так называемые вторичные климатические факторы , например ветер, атмосферное давление, высота над уровнем моря. Ветер обладает косвенным действием: усиливая испарение, увеличивает сухость. Сильный ветер способствует охлаждению. Это действие оказывается важным в холодных местах, на высокогорьях или в полярных областях.

Антропогенные факторы. Загрязняющие вещества. Антропогенные факторы весьма разнообразны по своему составу. Человек воздействует на живую природу, прокладывая дороги, строя города, ведя сельское хозяйство, перегораживая реки и т.д. Современная деятельность человека все чаще проявляется и в загрязнении окружающей среды побочными, часто ядовитыми продуктами. Двуокись серы, летящая из труб заводов и теплоэлектростанций, соединения металлов (меди, цинка, свинца), сбрасываемые возле рудников или образующиеся в выхлопных газах автомашин, остатки нефтепродуктов, сбрасываемые в водоемы при промывании нефтеналивных судов – вот лишь некоторые из загрязняющих веществ, ограничивающих распространение организмов (особенно растений).

В промышленных районах концепции загрязняющих веществ достигают подчас пороговых, т.е. смертельных для многих организмов, значений. Однако, несмотря ни на что, почти всегда найдется хотя бы несколько особей нескольких видов, способных выжить в таких условиях. Причина состоит в том, что даже в природных популяциях изредка попадаются устойчивые особи. С повышением уровня загрязнений устойчивые особи могут оказаться единственными выжившими. Более того, они могут стать основателями устойчивой популяции, унаследовавший невосприимчивость к данному виду загрязнения. По этой причине загрязнение дает нам возможность как бы наблюдать эволюцию в действии. Разумеется, свойство противостоять загрязнению, пусть даже в лице единичных особей, наделена далеко не каждая популяция.

Таким образом, действие любого загрязняющего вещества двояко. Если это вещество появилось недавно или содержится в очень высоких концентрациях, то каждый вид, ранее встречавшийся на загрязненном участке, бывает обычно представлен лишь несколькими экземплярами – именно теми, что в силу естественной изменчивости обладали изначальной устойчивостью или их ближайшими потоками.

Впоследствии загрязненный участок оказывается заселенным намного плотнее, но как правило, куда меньшим числом видов, чем если бы загрязнения не было. Такие вновь возникшие сообщества с обедненным видовым составом стали уже неотъемлемой частью среды обитания человека.

    БИОТИЧЕСКИЕ ВЗАИМООТНОШЕНИЯ ОРГАНИЗМОВ

Два вида любых организмов, живущих на одной территории и контактирующие друг с другом, вступают в различные отношения между собой. Положение вида при разных формах взаимоотношений обозначается условными знаками. Знак «минус» (–) обозначает неблагоприятное влияние (особи вида испытывают угнетение или вред). Знак «плюс» (+) обозначает благоприятное влияние (особи вида извлекают пользу). Знак «ноль» (0) показывает, что отношения безразличны (отсутствует влияние).

Таким образом, все биотические связи можно разделить на 6 групп: ни одна из популяций не влияет на другую (00); взаимовыгодные полезные связи (+ +); отношения, вредные для обоих видов (– –); один из видов получает выгоду, другой испытывает угнетение (+ –); один вид получает пользу, другой не испытывает вреда (+ 0); один вид угнетается, другой не извлекает пользы (– 0).

Для одного из совместно обитающих видов влияние другого отрицательно (он испытывает угнетение), в то время угнетающий не получает ни вреда, ни пользы – это аменсализм (– 0). Пример аменсализма – светолюбивые травы, растущие под елью, страдающие от сильного затенения, тогда как самому дереву это безразлично.

Форма взаимоотношений, при которой один вид получает какое-либо преимущество, не принося другому ни вреда, ни пользы, называется комменсализмом (+ 0). Например, крупные млекопитающие (собаки, олени) служат разносчиками плодов и семян с зацепками (вроде репейника), не получая от этого ни вреда, ни пользы.

Комменсализм – одностороннее использование одного вида другим без нанесения ему ущерба. Проявления комменсализма разнообразны, поэтому в нем выделяют ряд вариантов.

«Нахлебничество» – потребление остатков пищи хозяина.

«Сотрапезничество» – потребление разных веществ или частей одной и той же пищи.

«Квартиранство» – использование одними видами других (их тел, их жилищ(в качестве убежища или жилища.

В природе часто встречаются взаимовыгодные связи видов, при некоторых организмы получают обоюдную пользу от этих отношений. К этой группе взаимополезных биологических связей относятся многообразные симбиотические взаимоотношения организмов. Примером симбиоза являются лишайники, представляющие собой тесное взаимовыгодное сожительство грибов и водорослей. Широко известный пример симбиоза – сожительство зеленых растений (прежде всего деревьев) и грибов.

Одним из типов взаимополезных связей является протокооперация (первичное сотрудничество) (+ +). При этом совместное, хотя и не обязательное существование выгодно для обоих видов, но не является непременным условием выживания. Примером протокооперации можно назвать распространение муравьями семян некоторых растений леса, опыление пчелами разных луговых растений.

Если два или более вида обладают сходными экологическими требованиями и обитают совместно, между ними могут возникнуть взаимоотношения отрицательного типа, которые называются конкуренцией (соперничество, соревнование) (– –). Например, все растения конкурируют за свет, влагу, питательные вещества почвы и, следовательно, за расширение своей территории. Животные борются за пищевые ресурсы, убежища и также за территорию.

Хищничество (+ –) – такой тип взаимодействий организмов, при котором представители одного вида убивают и поедают представителей другого.

Таковы основные типы биотических взаимодействий в природе. Следует помнить, что тип взаимоотношений конкретной пары видов может изменяться в зависимости от внешних условий или стадии жизни взаимодействующих организмов. К тому же в природе в биотические взаимоотношения одновременно оказываются вовлеченными вовсе не пара видов, а гораздо большее их число.

    ОБЩИЕ ЗАКОНОМЕРНОСТИ ВЛИЯНИЯ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ СРЕДЫ НА ОРГАНИЗМЫ

На примере температуры видно, что этот фактор переносится организмом лишь в определенных пределах. Организм погибает, если температура среды слишком низка или слишком высока. В среде, где температура близка к этим крайним значениям, живые обитатели встречаются редко. Однако их число увеличивается, по мере того как температура приближается к среднему значению, которое является наилучшим (оптимальным) для данного вида.

Данная закономерность может быть перенесена на любой другой фактор, которым определяется скорость тех или иных жизненных процессов (влажность, сила ветра, скорость течения и т.д.).

Если нарисовать на графике кривую, характеризующую интенсивность того или иного процесса (дыхания, движения, питания и др.) в зависимости от одного из факторов внешней среды (конечно, при условии, что этот фактор оказывает влияние на основные жизненные процессы), то эта кривая почти всегда будет иметь форму колокола.

Эти кривые, называют кривыми толерантности (от греч. толеранция – терпение, устойчивость). Положение вершины кривой указывает на такие условия, которые являются оптимальными для данного процесса.

Для некоторых особей и видов характерны кривые с очень острыми пиками. Это означает, что диапазон условий, при которых активность организма достигает максимума, очень узок. Пологие кривые соответствуют широкому диапазону толерантности.

Организмы с широкими границами устойчивости, конечно, имеют шансы на более широкое распространение. Однако, широкие границы выносливости по одному фактору вовсе не означают широких границ по всем факторам. Растение может быть выносливым к большим колебаниям температуры, но обладать узкими диапазонами стойкости по отношению к воде. Животное, подобное форели, может быть очень требовательным к температуре, но питаться разнообразной пищей.

Иногда в течение жизни особи ее толерантность может измениться (соответственно изменится и положение кривой), ели особь попадает в иные внешние условия. Попадая в такие условия, организм через некоторое время как бы привыкает, адаптируется к ним. Следствием этого является изменение физиологического оптимума, или сдвиги купола кривой толерантности. Такое явление называют адаптацией , или акклиматизацией.

У видов с широким географическим распространением обитатели географических или климатических зон часто оказываются приспособленными наилучшим образом именно к тем условиям, которые характерны для данной местности. Это связано со способностями некоторых организмов образовывать местные (локальные) формы, или экотипы, характеризующиеся различными границами стойкости к температуре, свету или другим факторам.

Рассмотрим в качестве примера экотипы одного из видов медуз. Медузы передвигаются в воде при помощи ритмических сокращений мышц, выталкивающих воду из центральной полости тела, подобно движению ракеты. Оптимальная частота такой пульсации – 15-20 сокращений в минуту. Особи, живущие в морях северных широт, передвигаются с такой же скоростью, как и медузы этого же вида в морях южных широт, хотя температура воды на севере может быть на 20 °С ниже. Следовательно, и та и другая формы организмов одного вида смогли наилучшим образом приспособиться к местным условиям.

Закон минимума. Интенсивность тех или иных биологических процессов часто оказывается чувствительной к двум или большему числу факторов окружающей среды. В этом случае решающее значение будет принадлежать такому фактору, который имеется в минимальном, с точки зрения потребностей организма, количестве. Это правило было сформулированного основоположником науки о минеральных удобрениях Юстусом Либихом (1803-1873 гг.) и получило название Закона минимума . Ю.Либих обнаружил, что урожай растений может ограничиваться любым из основных элементов питания, если только этот элемент находится в недостатке.

Известно, что разные факторы среды могут взаимодействовать, то есть недостаток одного вещества может приводить к дефициту других веществ. Поэтому в целом закон минимума можно сформулировать следующим образом: успешное выживание живых организмов зависит от комплекса условий; ограничивающим, или лимитирующим, фактором является любое состояние среды, приближающееся или выходящее за границу устойчивости для организмов данного вида.

Положение о лимитирующих факторах существенно облегчает изучение сложных ситуаций. При всей сложности взаимоотношений организмов и среды их обитания не все факторы имеют одинаковое экологическое значение. Так, например, кислород является фактором физиологической необходимости для всех животных, но с экологической точки зрения он становится лимитирующим лишь в определенных местообитаниях. Если в реке гибнет рыба, то в первую очередь должна быть измерена концентрация кислорода в воде, так как она сильно изменчива, запасы кислорода легко истощаются и его часто не хватает. Если в природе наблюдается гибель птиц, необходимо искать другую причину, так как содержание кислорода в воздухе относительно постоянно и достаточно с точки зрения требования наземных организмов.

ЗАКЛЮЧЕНИЕ

Экология – жизненно важная для человека наука, изучающая его непосредственное природное окружение. Человек, наблюдая природу и присущую ей гармонию, невольно стремился внести эту гармонию в свою жизнь. Это желание стало особенно острым лишь сравнительно недавно, после того как сделались очень заметными последствия неразумной хозяйственной деятельности, приводящие к разрушению природной среды. А это в конечном итоге оказало неблагоприятное влияние на самого человека.

Следует помнить, что экология – фундаментальная научная дисциплина, идеи которой имеют очень важное значение. И если мы признаем важность этой науки, нам надо научиться правильно пользоваться ее законами, понятиями, терминами. Ведь они помогают людям определять свое место в окружающей их среде, правильно и рационально использовать природные богатства. Доказано, что использование человеком природных богатств при полном незнании законов природы часто приводит к тяжелым, непоправимым последствиям.

Основы экологии как науки о нашем общем доме – Земле, должен знать каждый человек планеты. Знания основ экологии помогут разумно строить свою жизнь и обществу, и отдельному человеку; они помогут каждому ощутить себя частью великой Природы, достичь гармонии и комфорта там, где ранее шла неразумная борьба с природными силами.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ факторы окружающей среды (Биотические факторы ; Биотические экологические факторы ; Biotic factors; ... .5 Вопрос № 67 Природные ресурсы, их классификация . Ресурсный цикл ПРИРОДНЫЕ РЕСУРСЫ (естественные...

Это любые факторы среды, на которые организм реагирует приспособительными реакциями.

Среда - одно из основных экологнческих понятий, под которым подразумевается комплекс окружающих условий, влияющих на жизнедеятельность организмов. В широком смысле под окружающей средой понимают совокупность материальных тел, явлений и энергии, влияющих на организм. Возможно и более конкретное, пространственное понимание среды как непосредственного окружения организма - его среда обитания. Среда обитания - это все то, среди чего живет организм, это часть природы, окружающая живые организмы и оказывающая на них прямое или косвенное влияние. Т.е. элементы среды обитания, которые для данного организма или вида не безразличны и так или иначе влияют па него, являются по отношению к нему факторами.

Составные части среды многообразны и изменчивы, поэтому живые организмы постоянно приспосабливаются и регулируют свою жизнедеятельность в соответствии с происходящими вариациями параметров внешнего окружения. Такие приспособления организмов носят название адаптации и позволяют им выживать и размножаться.

Все экологические факторы делят на

  • Абиотические факторы - прямо или косвенно действующие на организм факторы неживой природы - свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т. е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).
  • Биотические факторы - все формы влияния на организм со стороны окружающих живых существ (микроорганизмов, влияние животных на растения и наоборот).
  • Антропогенные факторы - разнообразные формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни.

Экологические факторы воздействуют на живые организмы

  • как раздражители, вызывающие приспособительные изменения физиологических и биохимических функций;
  • как ограничители, обусловливающие невозможность существования в данных условиях;
  • как модификаторы, вызывающие структурно-функциональные изменения в организмах, и как сигналы, свидетельствующие об изменениях других факторов среды.

При этом можно установить общий характер воздействия экологических факторов на живой организм.

Любой организм имеет специфический комплекс приспособлений к факторам среды и благополучно существует лишь в определенных границах их изменяемости. Наиболее благоприятный для жизнедеятельности уровень фактора называется оптимальным.

При небольших значениях или при чрезмерном воздействии фактора жизненная активность организмов резко падает (заметно угнетается). Диапазон действия экологического фактора (область толерантности) ограничен точками минимума и максимума, соответствующими крайним значениям данного фактора, при которых возможно существование организма.

Верхний уровень фактора, за пределами которого жизнедеятельность организмов становится невозможной, называется максимумом, а нижний - минимумом (рис.). Естественно, для каждого организма характерны свои максимумы, оптимумы и минимумы экологических факторов. Например, комнатная муха выдерживает колебание температуры от 7 до 50° С, а человеческая аскарида живет только при температуре тела человека.

Точки оптимума, минимума и максимума составляют три кардинальные точки, определяющие возможности реакции организма на данный фактор. Крайние точки кривой, выражающие состояние угнетения при недостатке или избытке фактора, называют областями пессимума; им соответствуют пессимальные значения фактора. Вблизи критических точек лежат сублетальные величины фактора, а за пределами зоны толерантности - летальные зоны фактора.

Условия среды, при которых какой-либо фактор или их совокупность выходит за пределы зоны комфорта и оказывает угнетающее действие, в экологии часто называют крайними, граничными (экстремальными, трудными). Они характеризуют не только экологические ситуации (температура, соленость), но и такие местообитания, где условия близки к пределам возможности существования для растений и животных.

На любой живой организм одновременно воздействует комплекс факторов, но лишь один из них является ограничивающим. Фактор, ставящий рамки для существования организма, вида или сообщества, называется лимитирующим (ограничивающим). Например, распространение многих животных и растений к северу ограничивается недостатком тепла, тогда как на юге ограничивающим фактором для тех же видов может оказаться недостаток влаги или необходимой пищи. Однако границы выносливости организма по отношению к лимитирующему фактору зависят от уровня других факторов.

Для жизни некоторых организмов требуются условия, ограниченные узкими пределами, т. е. диапазон оптимума не является постоянным для вида. Оптимум действия фактора различен и у разных видов. Размах кривой, т. е. расстояние между пороговыми точками, показывает зону действия экологического фактора на организм (рис. 104). В условиях, близких к пороговому действию фактора, организмы чувствуют себя угнетенно; они могут существовать, но не достигают полного развития. Растения обычно не плодоносят. У животных, наоборот, ускоряется половая зрелость.

Величина диапазона действия фактора и особенно зоны оптимума позволяет судить о выносливости организмов по отношению к данному элементу среды, свидетельствует об их экологической амплитуде. В связи с этим организмы, которые могут жить в довольно разнообразных условиях внешней среды, называются зврибионтными (от греч. "эврос" - широкий). Например, медведь бурый живет в условиях холодного и теплого климата, в сухих и влажных районах, питается разнообразной растительной и животной пищей.

По отношению к частным факторам среды употребляют термин, начинающийся с той же приставки. Например, животные, способные существовать в широком диапазоне температур, называются эвритермными, а организмы, способные жить лишь в узких температурных интервалах, относятся к стенотермным. По этому же принципу организм может быть эвригидридным или стеногидридным в зависимости от его реакции на колебания влажности; эвригалинным или стеногалинным - в зависимости от способности переносить разные значения солености среды и т. п.

Существуют также понятия экологической валентности, которая представляет собой способность организма заселять разнообразные среды, и экологической амплитуды, отражающей ширину диапазона фактора или ширину зоны оптимума.

Количественные закономерности реакции организмов на действие экологического фактора различаются в соответствии с условиями их обитания. Стенобионтность или эврибионтность не характеризует специфичность вида по отношению к любому экологическому фактору. Например, некоторые животные приурочены к узкому диапазону температур (т. е. стенотермны) и одновременно могут существовать в широком диапазоне солености среды (эвригалинные).

Факторы внешней среды воздействуют на живой организм одновременно и совместно, причем действие одного из них в определенной мере зависит от количественного выражения других факторов - света, влажности, температуры, окружающих организмов и т. п. Эта закономерность получила название взаимодействия факторов. Иногда недостаток одного фактора частично компенсируется усилением деятельности другого; проявляется частичная заменяемость действия экологических факторов. В то же время ни один из необходимых организму факторов не может быть полностью заменен другим. Фототрофные растения не могут произрастать без света при самых оптимальных режимах температуры или питания. Поэтому если значение хотя бы одного из необходимых факторов выходит за пределы диапазона толерантности (ниже минимума или выше максимума), то существование организма становится невозможным.

Факторы среды, имеющие в конкретных условиях пессимальное значение, т. е. наиболее удаляющиеся от оптимума, особенно затрудняют возможность существования вида в данных условиях, несмотря на оптимальное сочетание остальных условий. Эта зависимость получила название закона ограничивающих факторов. Такие уклоняющиеся от оптимума факторы приобретают первостепенное значение в жизни вида или отдельных особей, определяя их географический ареал.

Выявление ограничивающих факторов очень важно в практике сельского хозяйства для установления экологической валентности, особенно в наиболее уязвимые (критические) периоды онтогенеза животных и растений.

Экологические факторы — это комплекс окружающих условий, воздействующих на живые организмы. Различают факторы неживой природы — абиотические (климатические, эдафические, орографические, гидрографические, химические, пирогенные), факторы живой природы — биотические (фитогенные и зоогенные) и факторы антропогенные (воздействие человеческой деятельности). К лимитирующим относятся любые факторы, ограничивающие рост и развитие организмов. Приспособление организма к среде обитания называется адаптацией. Внешний облик организма, отражающий его приспособленность к условиям среды, называется жизненной формой.

Понятие об экологических факторах среды, их классификация

Отдельные компоненты среды обитания, воздействующие на живые организмы, на которые они реагируют приспособительными реакциями (адаптациями), называются факторами среды, или экологическими факторами. Иначе говоря, комплекс окружающих условий, влияющих на жизнедеятельность организмов, носит название экологические факторы среды.

Все экологические факторы делят на группы:

1. включают компоненты и явления неживой природы, прямо или косвенно воздействующие на живые организмы. Среди множества абиотических факторов главную роль играют:

  • климатические (солнечная радиация, свет и световой режим, температура, влажность, атмосферные осадки, ветер, атмосферное давление и др.);
  • эдафические (механическая структура и химический состав почвы, влагоемкость, водный, воздушный и тепловой режим почвы, кислотность, влажность, газовый состав, уровень грунтовых вод и др.);
  • орографические (рельеф, экспозиция склона, крутизна склона, перепад высот, высота над уровнем моря);
  • гидрографические (прозрачность воды, текучесть, проточность, температура, кислотность, газовый состав, содержание минеральных и органических веществ и др.);
  • химические (газовый состав атмосферы, солевой состав воды);
  • пирогенные (воздействие огня).

2. — совокупность взаимоотношений живых организмов, а также их взаимовлияний на среду обитания. Действие биотических факторов может быть не только непосредственным, но и косвенным, выражаясь в корректировке абиотических факторов (например, изменение состава почвы, микроклимата под пологом леса и т.д.). К биотическим факторам относятся:

  • фитогенные (влияние растений друг на друга и на окружающую среду);
  • зоогенные (влияние животных друг на друга и на окружающую среду).

3. отражают интенсивное влияние человека (непосредственно) или человеческой деятельности (опосредованно) на окружающую среду и живые организмы. К таким факторам относятся все формы деятельности человека и человеческого общества, которые приводят к изменению природы как среды обитания и других видов и непосредственно сказываются на их жизни. Каждый живой организм испытывает влияние неживой природы, организмов других видов, в том числе человека, и в свою очередь оказывает воздействие на каждую из этих составляющих.

Влияние антропогенных факторов в природе может быть как сознательным, так и случайным, или неосознанным. Человек, распахивая целинные и залежные земли, создает сельскохозяйственные угодья, выводит высокопродуктивные и устойчивые к заболеваниям формы, расселяет одни виды и уничтожает другие. Эти воздействия (сознательные) часто носят отрицательный характер, например необдуманное расселение многих животных, растений, микроорганизмов, хищническое уничтожение целого ряда видов, загрязнение среды и др.

Биотические факторы среды проявляются через взаимоотношения организмов, входящих в одно сообщество. В природе многие виды тесно взаимосвязаны, их отношения друг с другом как компонентами окружающей среды могут носить чрезвычайно сложный характер. Что касается связей между сообществом и окружающей неорганической средой, то они всегда являются двусторонними, обоюдными. Так, характер леса зависит от соответствующего типа почв, но сама почва в значительной мере формируется под влиянием леса. Подобно этому температура, влажность и освещенность в лесу определяются растительностью, но сформировавшиеся климатические условия в свою очередь влияют на сообщество обитающих в лесу организмов.

Воздействие экологических факторов на организм

Воздействие среды обитания воспринимается организмами через посредство факторов среды, называемых экологическими. Следует отметить, что экологическим фактором является только изменяющийся элемент окружающей среды , вызывающий у организмов при своем повторном изменении ответные приспособительные эколого-физиологические реакции, наследственно закрепляющиеся в процессе эволюции. Они подразделяются на абиотические, биотические и антропогенные (рис. 1).

Называют всю совокупность факторов неорганической среды, влияющих на жизнь и распространение животных и растений. Среди них различают: физические, химические и эдафические.

Физические факторы - те, источником которых служит физическое состояние или явление (механическое, волновое и др.). Например, температура.

Химические факторы — те, которые происходят от химического состава среды. Например, соленость воды, содержание кислорода и т.п.

Эдафические (или почвенные) факторы представляют собой совокупность химических, физических и механических свойств почв и горных пород, оказывающих воздействие как на организмы, для которых они являются средой обитания, так и на корневую систему растений. Например, влияние биогенных элементов, влажности, структуры почвы, содержание гумуса и т.п. на рост и развитие растений.

Рис. 1. Схема воздействия среды обитания (окружающей среды) на организм

— факторы деятельности человека, воздействующие на окружающую природную среду ( и гидросферы, эрозия почв, уничтожение лесов и т.п.).

Лимитирующими (ограничивающими) экологическими факторами называют такие факторы, которые ограничивают развитие организмов из-за недостатка или избытка питательных веществ по сравнению с потребностью (оптимальным содержанием).

Так, при выращивании растений при различных температурах точка, при которой наблюдается максимальный рост, и будет оптимумом. Весь интервал температур, от минимальной до максимальной, при которых еще возможен рост, называют диапазоном устойчивости (выносливости), или толерантности. Ограничивающие его точки, т.е. максимальная и минимальная пригодные для жизни температуры, — пределы устойчивости. Между зоной оптимума и пределами устойчивости по мере приближения к последним растение испытывает все нарастающий стресс, т.е. речь идет о стрессовых зонах, или зонах угнетения, в рамках диапазона устойчивости (рис. 2). По мере удаления от оптимума вниз и вверх по шкале не только усиливается стресс, но по достижении пределов устойчивости организма происходит его гибель.

Рис. 2. Зависимость действия экологического фактора от его интенсивности

Таким образом, для каждого вида растений или животных существуют оптимум, стрессовые зоны и пределы устойчивости (или выносливости) в отношении каждого фактора среды обитания. При значении фактора, близкого к пределам выносливости, организм обычно может существовать лишь непродолжительное время. В более узком интервале условий возможно длительное существование и рост особей. Еще в более узком диапазоне происходит размножение, и вид может существовать неограниченно долго. Обычно где-то в средней части диапазона устойчивости имеются условия, наиболее благоприятные для жизнедеятельности, роста и размножения. Эти условия называют оптимальными, в которых особи данного вида оказываются наиболее приспособленными, т.е. оставляют наибольшее число потомков. На практике выявить такие условия сложно, поэтому оптимум обычно определяют отдельные показатели жизнедеятельности (скорость роста, выживаемость и т.п.).

Адаптация состоит в приспособлении организма к условиям среды обитания.

Способность к адаптациям — одно из основных свойств жизни вообще, обеспечивающее возможность ее существования, возможность организмов выживать и размножаться. Адаптации проявляются на разных уровнях — от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Все приспособления организмов к существованию в различных условиях выработались исторически. В результате сформировались специфические для каждой географической зоны группировки растений и животных.

Адаптации могут быть морфологическими, когда меняется строение организма вплоть до образования нового вида, и физиологическими, когда происходят изменения в функционировании организма. К морфологическим адаптациям близко примыкает приспособительная окраска животных, способность менять ее в зависимости от освещенности (камбала, хамелеон и др.).

Широко известны примеры физиологической адаптации — зимняя спячка животных, сезонные перелеты птиц.

Весьма важными для организмов являются поведенческие адаптации. Например, инстинктивное поведение определяет действие насекомых и низших позвоночных: рыб, земноводных, пресмыкающихся, птиц и др. Такое поведение генетически запрограммировано и передается по наследству (врожденное поведение). Сюда относится: способ построения гнезда у птиц, спаривание, выращивание потомства и др.

Существует также и приобретенное повеление, полученное индивидом в процессе его жизни. Обучение (или научение) - главный способ передачи приобретенного поведения от одного поколения к другому.

Способность индивида управлять своими познавательными способностями, чтобы выжить при неожиданных изменениях среды обитания, является интеллектом. Роль научения и интеллекта в поведении возрастает с совершенствованием нервной системы — увеличением коры головного мозга. Для человека — это определяющий механизм эволюции. Свойство видов адаптироваться к тому или иному диапазону факторов среды обозначается понятием экологическая мистичность вида.

Совместное действие экологических факторов на организм

Экологические факторы обычно действуют не по одному, а комплексно. Действие одного какого-либо фактора зависит от силы воздействия других. Сочетание разных факторов оказывает заметное влияние на оптимальные условия жизни организма (см. рис. 2). Действие одного фактора не заменяет действие другого. Однако при комплексном воздействии среды часто можно наблюдать «эффект замещения», который проявляется в сходстве результатов воздействия разных факторов. Так, свет не может быть заменен избытком тепла или обилием углекислого газа, но, воздействуя изменениями температуры, можно приостановить, например фотосинтез растений.

В комплексном влиянии среды воздействие различных факторов для организмов неравноценно. Их можно подразделить на главные, сопутствующие и второстепенные. Ведущие факторы различны для разных организмов, если даже они живут в одном месте. В роли ведущего фактора на разных этапах жизни организма могут выступать то одни, то другие элементы среды. Например, в жизни многих культурных растений, таких, как злаки, в период прорастания ведущим фактором является температура, в период колошения и цветения — почвенная влага, в период созревания — количество питательных веществ и влажность воздуха. Роль ведущего фактора в разное время года может меняться.

Ведущий фактор может быть неодинаков у одних и тех же видов, живущих в разных физико-географических условиях.

Понятие о ведущих факторах нельзя смешивать с понятием о . Фактор, уровень которого в качественном или количественном отношении (недостаток или избыток) оказывается близким к пределам выносливости данного организма, называется лимитирующим. Действие лимитирующего фактора будет проявляться и в том случае, когда другие факторы среды благоприятны или даже оптимальны. Лимитирующими могут выступать как ведущие, так и второстепенные экологические факторы.

Понятие лимитирующих факторов было введено в 1840 г. химиком 10. Либихом. Изучая влияние на рост растений содержания различных химических элементов в почве, он сформулировал принцип: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени». Этот принцип известен под названием закона минимума Либиха.

Лимитирующим фактором может быть не только недостаток, на что указывал Либих, но и избыток таких факторов, как, например, тепло, свет и вода. Как отмечалось ранее, организмы характеризуются экологическим минимумом и максимумом. Диапазон между этими двумя величинами принято называть пределами устойчивости, или толерантности.

В общем виде всю сложность влияния экологических факторов на организм отражает закон толерантности В. Шелфорда: отсутствие или невозможность процветания определяется недостатком или, наоборот, избытком любого из ряда факторов, уровень которых может оказаться близким к пределам, переносимым данным организмом (1913 г.). Эти два предела называют пределами толерантности.

По «экологии толерантности» были проведены многочисленные исследования, благодаря которым стали известны пределы существования многих растений и животных. Таким примером является влияние загрязняющего атмосферный воздух вещества на организм человека (рис. 3).

Рис. 3. Влияние загрязняющего атмосферный воздух вещества на организм человека. Макс — максимальная жизненная активность; Доп — допустимая жизненная активность; Опт — оптимальная (не влияющая на жизненную активность) концентрация вредного вещества; ПДК — предельно допустимая концентрация вещества, существенно не изменяющая жизненную активность; Лет — летальная концентрация

Концентрация влияющего фактора (вредного вещества) на рис. 5.2 обозначена символом С. При значениях концентрации С = С лет человек погибнет, но необратимые изменения в его организме произойдут при значительно меньших значениях С = С пдк. Следовательно, диапазон толерантности ограничивается именно значением С пдк = С лим. Отсюда, С пдк необходимо определить экспериментально для каждого загрязняющего или любого вредного химического соединения и не допускать превышения его С плк в конкретной среде обитания (жизненной среде).

В охране окружающей среды важны именно верхние пределы устойчивости организма к вредным веществам.

Таким образом, фактическая концентрация загрязняющего вещества С факт не должна превышать С пдк (С факт ≤ С пдк = С лим).

Ценность концепции лимитирующих факторов (С лим) состоит в том, что она дает экологу отправную точку при исследовании сложных ситуаций. Если для организма характерен широкий диапазон толерантности к фактору, отличающемуся относительным постоянством, и он присутствует в среде в умеренных количествах, то такой фактор вряд ли является лимитирующим. Наоборот, если известно, что тот или иной организм обладает узким диапазоном толерантности к какому-то изменчивому фактору, то именно этот фактор и заслуживает внимательного изучения, так как он может быть лимитирующим.

Среда, которая окружает живые существа, состоит из многих элементов. Они по-разному влияют на жизнедеятельность организмов. Последние неодинаково реагируют на различные факторы среды. Отдельные элементы среды, взаимодействующие с организмами, называют экологическими факторами. Условия существования - это совокупность жизненно необходимых факторов среды, без которых живые организмы не могут существовать. Относительно организмов они выступают как экологические факторы.

Классификация экологических факторов.

Все экологические факторы принято классифицировать (распределять) на следующие основные группы: абиотические, биотические и антропические. в Абиотические (абиогенные) факторы - это физико-химические факторы неживой природы. Биотические, или биогенные, факторы - это прямое или опосредованное влияние живых организмов как друг на друга, так и на окружающую среду. Антропические (антропогенные) факторы в последние годы выделяют в самостоятельную группу факторов среди биотических, в связи с их большим значением. Это факторы прямого или косвенного воздействия человека и его хозяйственной деятельности на живые организмы и среда.

Абиотические факторы.

К абиотических факторов относятся элементы неживой природы, которые действуют на живой организм. Виды абиотических факторов представлены в табл. 1.2.2.

Таблица 1.2.2. Основные виды абиотических факторов

Климатические факторы.

Все абиотические факторы проявляются и действуют в пределах трех геологических оболочек Земли: атмосферы, гидросферы и литосферы. Факторы, проявляющиеся (действуют) в атмосфере и при взаимодействии последней с гидросферой или же с литосферой, называют климатическими. их проявление зависит от физико-химических свойств геологических оболочек Земли, от количества и распределения солнечной энергии, проникающей и поступает к ним.

Солнечная радиация.

Наибольшее значение среди всего многообразия экологических факторов имеет солнечная радиация (солнечное излучение). Это непрерывный поток элементарных частиц (скорость 300-1500 км/с) и электромагнитных волн (скорость 300 тыс. км/с), что несет к Земле огромное количество энергии. Солнечная радиация - это основной источник жизни на нашей планете. Под непрерывным потоком солнечного излучения на Земле зародилась жизнь, прошло долгий путь своей эволюции и продолжает существовать и зависеть от солнечной энергии. Основные свойства лучистой энергии Солнца как экологического фактора определяется длиной волн. Волны, проходящие атмосферу и достигают Земли, измеряются в пределах от 0,3 до 10 мкм.

По характеру воздействия на живые организмы этот спектр солнечной радиации разделяют на три части: ультрафиолетовое излучение, видимый свет и инфракрасное излучение.

Коротковолновые ультрафиолетовые лучи почти полностью поглощаются атмосферой, а именно ее озоновым экраном. Незначительное количество ультрафиолетовых лучей проникает к поверхности земли. Длина их волн лежит в пределах 0,3-0,4 мкм. На их долю приходится 7% энергии солнечной радиации. Коротковолновые лучи губительно действуют на живые организмы. Они могут вызвать изменения наследственного материала - мутации. Поэтому в процессе эволюции организмы, которые длительное время находятся под влиянием солнечной радиации, выработали приспособления защиты от ультрафиолетовых лучей. У многих из них в покровах вырабатывается дополнительное количество черного пигмента - меланина, который защищает от проникновения нежелательных лучей. Именно поэтому люди приобретают загара, долгое время находясь на открытом воздухе. Во многих индустриальных регионах наблюдается так называемый индустриальный меланизм - потемнение окраски животных. Но это происходит не под воздействием ультрафиолетового излучения, а из-за загрязнения сажей, пылью окружающей среды, элементы которого обычно становятся темнее. На таком темном фоне выживают (хорошо маскируются) более темные формы организмов.

Видимый свет проявляется в пределах длин волн от 0,4 до 0,7 мкм. На его долю приходится 48% энергии солнечной радиации.

Оно тоже неблагоприятно влияет на живые клетки и их функции в целом: меняет вязкость протоплазмы, величину электрического заряда цитоплазмы, нарушает проницаемость мембран и меняет движение цитоплазмы. Свет влияет на состояние коллоидов белков и протекания энергетических процессов в клетках. Но несмотря на это, видимый свет было, есть и впредь будет одним из важнейших источников энергии для всего живого. Его энергия используется в процессе фотосинтеза и накапливается в виде химических связей в продуктах фотосинтеза, а затем передается как еда всем другим живым организмам. В целом можно сказать, что все живое в биосфере, и даже человек, зависят от солнечной энергии, от фотосинтеза.

Свет для животных - это необходимое условие восприятия информации об окружающей среде и его элементы, видения, зрительной ориентации в пространстве. В зависимости от условий существования животные приспособились к различной степени освещенности. Одни виды животных ведут дневной образ жизни, другие - наиболее активны в сумерках или ночью. Большинство млекопитающих и птиц, ведут сумеречный образ жизни, плохо различают цвета и все видят в черно-белом изображении (собачьи, кошачьи, хомяки, совы, козодои и др.). Жизнь в сумерках или при недостаточной освещенности часто приводит к гипертрофии глаз. Относительно огромные глаза, способные улавливать ничтожные доли света, свойственные ночным животным или же тем, которые живут в полной темноте и ориентируются на органы свечения других организмов (лемуры, обезьяны, совы, глубоководные рыбы и др.). Если же в условиях полной темноты (в пещерах, под землей в норах) нет никаких других источников света, тогда животные, живущие там, как правило, утрачивают органы зрения (европейский протей, слепыш и др.).

Температура.

Источниками создания фактора температуры на Земле является солнечная радиация и геотермальные процессы. Хотя ядро нашей планеты характеризуется чрезвычайно высокой температурой, влияние его на поверхность планеты незначительный, кроме зон вулканической деятельности и выхода геотермальных вод (гейзеры, фумаролы). Следовательно, основным источником тепла в пределах биосферы можно считать солнечную радиацию, а именно, инфракрасные лучи. Те лучи, которые достигают поверхности Земли, поглощаются литосферой и гидросферой. Литосфера, как твердое тело, быстрее нагревается и так же быстро охлаждается. Гидросфера более теплоемкая, чем литосфера: она медленно нагревается и медленно же остывает, а потому длительное время удерживает тепло. Приземные слои тропосферы нагреваются благодаря излучению тепла гидросферой и поверхностью литосферы. Земля поглощает солнечную радиацию и излучает энергию обратно в безвоздушное пространство. И все же атмосфера Земли способствует удержанию тепла в приземных слоях тропосферы. Благодаря ее свойствам, атмосфера пропускает коротковолновые инфракрасные лучи и задерживает длинноволновые инфракрасные лучи, испускаемые нагретой поверхностью Земли. Это явление атмосферы имеет название парникового эффекта. именно Благодаря ему на Земле стало возможным жизнь. Парниковый эффект способствует удержанию тепла в приземных слоях атмосферы (здесь сосредоточено большинство организмов) и сглаживает колебания температуры в течение дня и ночи. На Луне, например, что размещается почти в тех же условиях космоса, и Земля, и на котором нет атмосферы, суточные колебания температуры на его экваторе проявляются в пределах от 160° С до + 120° С.

Диапазон имеющихся в окружающей среде температур достигает тысяч градусов (раскаленная магма вулканов и максимально низкие температуры Антарктиды). Пределы, в которых может существовать известное нам жизнь, довольно узкие и равны приблизительно 300° С, от -200° С (замораживание в сжиженных газах) до + 100° С (точка кипения воды). На самом деле, большинство видов и большая часть их активности привязана к еще более узкому диапазону температур. Общий температурный диапазон активной жизни на Земле ограничивается следующими значениями температур (табл. 1.2.3):

Таблица 1.2.3 Температурный диапазон жизни на Земле

Растения приспосабливаются к различным температурам и даже к экстремальным. Те, что переносят высокие температуры, называются жаровитривалими растениями. Они способны переносить перегрев до 55-65° С (некоторые кактусы). Виды, растущие в условиях высоких температур, легче их переносят благодаря значительному укорочению размеров листьев, развития войлочного (опушеного) или, наоборот, воскового покрытия и др. Растения без ущерба для их развития способны выдерживать длительное воздействие низких температур (от 0 до -10° С), называются холодостойкими.

Хотя температура является важным экологическим фактором, влияющим на живые организмы, однако ее действие сильно зависит от сочетания с другими абиотическими факторами.

Влажность.

Влажность - это важный абиотический фактор, что предопределяется наличием воды или водяного пара в атмосфере или литосфере. Сама же вода является необходимым неорганическим соединением для жизнедеятельности живых организмов.

Вода в атмосфере всегда присутствует в виде водяной пары. Фактическую массу воды на единицу объема воздуха называют абсолютной влажностью, а процентное содержание пары относительно максимального ее количества, которое воздух может содержать, - относительной влажностью. Температура является основным фактором, влияющим на способность воздуха удерживать водяной пар. Например, при температуре +27°С воздух может содержать в два раза больше влаги, чем при температуре +16°С. Это означает, что абсолютная влажность при 27°С в 2 раза больше, чем при 16°С, в то время когда относительная влажность в обоих случаях будет равна 100%.

Вода как экологический фактор крайне необходима живым организмам, ибо без нее не может осуществляться метаболизм и много других связанных с ним процессов. Обменные процессы организмов проходят при наличии воды (в водных растворах). Все живые организмы являются открытыми системами, поэтому в них постоянно наблюдаются потери воды и всегда есть потребность в пополнении ее запасов. Для нормального существования растения и животные должны поддерживать определенный баланс между поступлением воды в организм и ее потерей. Большие потери воды организмом (дегидратация) приводят к снижению его жизнедеятельности, а в дальнейшем - и к гибели. Растения удовлетворяют свои потребности в воде за счет атмосферных осадков, влажности воздуха, а животные - еще и за счет пищи. Устойчивость организмов к наличию или отсутствию влаги в окружающей среде различна и зависит от приспособленности вида. В связи с этим все наземные организмы разделяют на три группы: гигрофильные (или влаголюбивые), мезофильные (или умеренно влаголюбивые) и ксерофильные (или сухолюбивые). Относительно растений и животных отдельно этот раздел будет иметь такой вид:

1) гигрофильые организмы:

- гигрофиты (растения);

- гигрофилы (животного);

2) мезофильные организмы:

- мезофиты (растения);

- мезофилы (животного);

3) ксерофильные организмы:

- ксерофиты (растения);

- ксерофилы, или гигрофобиы (животные).

Больше всего влаги нуждаются гигрофильные организмы. Среди растений это будут те, что живут на избыточно увлажненных почвах при высокой влажности воздуха (гигрофиты). В условиях средней полосы к ним относятся среди травянистых растений, которые растут в затененных лесах (кислица, папоротники, фиалки, разрыв-трава и др.) и на открытых местах (калужница, росянка и т.д.).

К гигрофильных животных (гигрофилы) относятся такие, экологически связанные с водной средой или с переувлажненными местностями. Они нуждаются в постоянной наличии большого количества влаги в окружающей среде. Это животные влажных тропических лесов, болот, увлажненных лугов.

Мезофильные организмы требуют умеренного количества влаги и обычно связаны с умеренными теплыми условиями и хорошими условиями минерального питания. Это могут быть лесные растения и растения открытых мест. Среди них встречаются деревья (липа, береза), кустарники (лещина, крушина) и еще больше трав (клевер, тимофеевка, овсяница, ландыш, копытень и др). В общем мезофиты - это широкая экологическая группа растений. К мезофильных животных (мезофилы) принадлежит большинство организмов, которые обитают в умеренных и субарктических условиях или в определенных горных регионах суши.

Ксерофильные организмы - это довольно разнообразная экологическая группа растений и животных, которые приспособились к засушливым условиям существования с помощью таких средств: ограничение испарения, усиления добывания воды и создания запасов воды на длительный период отсутствия водоснабжения.

Растения, обитающие в засушливых условиях, по-разному преодолевают их. У некоторых нет структурных приспособлений для переноски недостачи влажности. их существование возможно в засушливых условиях только благодаря тому, что в критический момент они находятся в состоянии покоя в виде семян (ефемери) или луковиц, корневищ, клубней (эфемероиды), очень легко и быстро переходят к активной жизнедеятельности и за короткий период времени полностью проходят годичный цикл развития. Ефемери в основном распространены в пустынях, полупустынях и степях (веснянка, крестовник весенний, реп"яшок т.д.). Эфемероиды (от греч. ефемери и выглядеть) - это многолетние травянистые, в основном весенние, растения (осоки, злаки, тюльпан и т.д.).

Весьма своеобразными категориями растений, которые приспособились переносить условия засухи, является суккуленты и склерофиты. Суккуленты (от греч. сочный) способны накапливать в себе большое количество воды и постепенно ее тратить. Например, некоторые кактусы североамериканских пустынь могут содержать в себе от 1000 до 3000 л воды. Вода накапливается в листьях (алоэ, очиток, агава, молодило) или стеблях (кактусы и кактусоподобные молочаи).

Животные получают воду тремя основными путями: непосредственно выпивши или поглощая через покровы, вместе с пищей и в результате метаболизма.

Много видов животных, пьют воду и в достаточно большом количестве. Например, гусениц китайского дубового шелкопряда может выпить до 500 мл воды. Отдельные виды зверей и птиц требуют регулярного потребления воды. Поэтому они выбирают определенные источники и регулярно посещают их как места водопоя. Пустынные виды птиц ежедневно летают до оазисов, пьют там воду и приносят воду птенцам.

Часть видов животных, не употребляет воду путем прямого питья, может употреблять ее, всасывая всей поверхностью кожи. У насекомых и личинок, обитающих в почве, увлажненной трухой деревьев, их покровы проницаемы для воды. Австралийская ящерица молох воспринимает влагу осадков кожей, что является чрезвычайно гигроскопичным. Много животных получают влагу с сочной пищей. Такими сочными кормами может быть трава, сочные плоды, ягоды, луковицы и клубни растений. Степная черепаха, обитающая в центральноазиатских степях, потребляет воду только из сочной пищей. В этих регионах, в местах посадки овощей или на бахчах, черепахи наносят большой ущерб, питаясь дынями, арбузами, огурцами. Так же получают воду некоторые хищные животные, за счет поедания своей жертвы. Это свойственно, например, африканской лисы-фенеку.

Виды, которые питаются исключительно сухой пищей и не имеют возможности потреблять воду, получают ее путем метаболизма, то есть химическим путем в ходе переваривания пищи. Метаболическая вода может образовываться в организме вследствие окисления жиров и крахмала. Это важный способ получения воды особенно для животных, которые населяют жаркие пустыни. Так, червонохвоста песчанка иногда питается только сухими семенами. Известны эксперименты, когда в условиях неволи североамериканская оленья мышь прожила около трех лет, питаясь лишь сухими зернами ячменя.

Едафические факторы.

Поверхность литосферы Земли составляет отдельное среда жизни, что характеризуется своим комплексом экологических факторов. Эту группу факторов называют едафическими (от греч. едафос - почвы). Почвам свойственны своя строение, состав и свойства.

Почвы характеризуются определенной влажностью, механическим составом, содержанием органических, неорганических и органо-минеральных соединений, определенной кислотностью. От показателей зависят многие свойства самого грунта и распространение живых организмов в нем.

Например, отдельные виды растений и животных любят почвы с определенной кислотностью, а именно: сфагновые мхи, дикая смородина, ольха растут на кислых почвах, а зеленые лесные мхи - на нейтральных.

Реагируют на определенную кислотность почвы также и личинки жуков, наземные моллюски и много других организмов.

Химический состав почвы очень важен для всех живых организмов. Для растений наиболее важны не только те химические элементы, которые используются ими в большом количестве (азот, фосфор, калий и кальций), но и те, что являются редкими (микроэлементы). Некоторые из растений избирательно накапливают определенные редкие элементы. Крестоцветные и зонтичные растения, например, в 5-10 раз больше накапливают в своем теле серы, чем другие растения.

Избыточное содержание некоторых химических элементов в почве может негативно (патологически) влиять на животных. Например, в одной из долин Тувы (Россия) было замечено, что овцы болеют какую-то специфическую болезнь, которая проявлялась в выпадении шерсти, деформации копыт и т. п. Позже выяснилось, что в этой долине в почве, воде и некоторых растениях было повышенное содержание селена. Попадая в организм овец в избыточном количестве, этот элемент вызвал хронический селеновый токсикоз.

Для почвы характерен свой тепловой режим. Вместе с влажностью он влияет на почвообразование, на различные процессы, проходящие в почве (физико-химические, химические, биохимические и биологические).

Благодаря своей малой теплопроводности почвы способны сглаживать температурные колебания с глубиной. На глубине чуть более 1 м суточные температурные колебания почти не ощутимы. Например, в пустыне Каракумы, которая характеризуется резко континентальным климатом, летом, когда температура поверхности почвы достигает +59°С, в норах грызунов песчанок на расстоянии 70 см от входа температура была на 31°С ниже и составляла +28°С. Зимой же, в течение морозной ночи, температура в норах песчанок составляла +19°С.

Почва является уникальным сочетанием физико-химических свойств поверхности литосферы и живых организмов, его населяющих. Грунт невозможно представить без живых организмов. Недаром известный геохимик В.И. Вернадский называл почвы биокосным телом.

Орографические факторы (рельеф).

Рельеф не относится к таким непосредственно действующих экологических факторов, как вода, свет, тепло, почва. Однако характер рельефа в жизни многих организмов оказывает косвенное влияние.

в Зависимости от величины форм достаточно условно различают рельеф нескольких порядков: макрорельєф (горы, низины, межгорные впадины), мезорельєф (холмы, овраги, гряды и т.п.) и микрорельеф (небольшие впадины, неровности и прочее). Каждый из них играет определенную роль в формировании комплекса экологических факторов для организмов. В частности, рельеф влияет на перераспределение таких факторов, как влага и тепло. Так, даже незначительные понижения, в несколько десятков сантиметров, создают условия повышенной влажности. С повышенных участков вода стекает в более низкие, где создаются благоприятные условия для влаголюбивых организмов. Северные и южные склоны имеют разное освещение, тепловой режим. В горных условиях на относительно небольших площадях создаются значительные амплитуды высот, что приводит к формированию различных климатических комплексов. В частности, типичными их чертами являются пониженные температуры, сильные ветры, изменения режима увлажнения, газового состава воздуха и др.

Например, с поднятием над уровнем моря температура воздуха понижается на 6° С на каждые 1000 м. Хотя это является характеристикой тропосферы, но благодаря рельефа (возвышенности, горы, горные плато и т.п.), наземные организмы могут оказаться в условиях, не похожих на те, что есть в соседних регионах. Например, горный вулканический массив Килиманджаро в Африке у подножья окружен саваннами, а выше по склонам идут плантации кофе, бананов, леса и альпийские луга. Вершины Килиманджаро покрытые вечными снегами и ледниками. Если температура воздуха на уровне моря равна +30° С, то отрицательные температуры будут проявляться уже на высоте 5000 м. В умеренных зонах снижение температуры на каждые 6° С соответствует перемещению на 800 км в сторону высоких широт.

Давление.

Давление проявляется как в воздушном, так и в водной средах. В атмосферном воздухе давление меняется посезонно, в зависимости от состояния погоды и высоты над уровнем моря. Особый интерес представляют приспособления организмов, которые живут в условиях пониженного давления, разреженного воздуха высокогорья.

Давление в водной среде изменяется в зависимости от глубины: он растет примерно на 1 атм на каждые 10 м. Для многих организмов есть свои пределы изменения давления (глубины), к которым они приспособились. Например, абисальные рыбы (рыбы мировых глубин) способны переносить большое давление, но они никогда не поднимаются к поверхности моря, потому что для них это является смертельным. И наоборот, не все морские организмы способны погружаться в воду на большие глубины. Кашалот, например, может нырять на глубину до 1 км, а морские птицы - до 15-20 м, где они добывают свою пищу.

Живые организмы суши и водной среды четко реагируют на изменения давления. В свое время было отмечено, что рыбы могут воспринимать даже незначительные изменения давления. их поведение меняется при изменении атмосферного давления (напр., перед грозой). В Японии некоторых рыб специально содержат в аквариумах и за изменением их поведения судят о возможных изменениях погоды.

Наземные животные, воспринимая незначительные изменения давления, своим поведением могут прогнозировать изменения состояния погоды.

Неравномерность давления, что является результатом неравномерного прогрева Солнцем и распределения тепла как в воде, так и в атмосферном воздухе, создает условия для смешения водных и воздушных масс, т.е. образование течений. При определенных условиях течения является мощным экологическим фактором.

Гидрологические факторы.

Вода как составная часть атмосферы и литосферы (включая почвы) играет большую роль в жизни организмов как один из экологических факторов, который называют влажностью. В то же время, вода в жидком состоянии может быть фактором, образует собственную среду, - водное. Благодаря своим свойствам, которые отличают воду от всех других химических соединений, она в жидком и свободном состоянии создает комплекс условий водной среды, так называемые гидрологические факторы.

Такие характеристики воды, как теплопроводность, текучесть, прозрачность, соленость, по-разному проявляются в водоемах и являются экологическими факторами, которые в этом случае называют гидрологическими. Например, водяные организмы по-разному приспособились к различной степени солености воды. Различают пресноводные и морские организмы. Пресноводные организмы не поражают своим видовым разнообразием. Во-первых, жизнь на Земле зародилась в морских водах, а во-вторых, пресные водоемы занимают мизерную часть земной поверхности.

Морские же организмы более разнообразны и являются количественно многочисленнее. Одни из них приспособились к низкой солености и обитающие в опресненных участках моря и других солоноватых водоемах. У многих видов таких водоемов наблюдается уменьшение размеров тела. Так, например, створки моллюсков, съедобной мидии (Mytilus edulis) и серцевидки Ламарка (Cerastoderma lamarcki), которые обитают в заливах Балтийского моря при солености 2-6%о, в 2-4 раза мельче, чем особи, которые живут в том самом море, только при солености 15%о. Краб Carcinus moenas в Балтийском море имеет мелкие размеры, тогда, как в опресненных лагунах и эстуариях он намного больше. Морские ежи в лагунах вырастают более мелкими, чем в море. Рачок артемия (Artemia salina) при солености 122%о имеет размеры до 10 мм, но при 20%о он вырастает до 24-32 мм. Соленость может влиять и на продолжительность жизни. Та же серцевидка Ламарка в водах Северной Атлантики живет до 9 лет, а в менее соленых водах Азовского моря - 5.

Температура водоемов является более постоянным показателем, чем температура суши. Это обусловлено физическими свойствами воды (теплоемкость, теплопроводность). Амплитуда годовых колебаний температуры в верхних слоях океана не превышает 10-15° С, а в континентальных водоемах - 30-35° С. Что уж говорить о глубинные слои воды, которым присуще постоянство теплового режима.

Биотические факторы.

Организмы, которые живут на нашей планете, нуждаются не только абиотических условий для своей жизни, они взаимодействуют между собой и часто очень зависят друг от друга. Совокупность факторов органического мира, влияющие на организмы прямо или косвенно, называют биотическими факторами.

Биотические факторы весьма разнообразны, но, несмотря на это, они также имеют свою классификацию. Согласно простейшей классификации биотические факторы подразделяют на три группы, которые вызываются: растениями, животными и микроорганизмами.

Клементс и Шелфорд (1939) предложили свою классификацию, в которой учтены наиболее типичные формы взаимодействия двух организмов - коакции. Все коакции разделяют на две большие группы, в зависимости от того, взаимодействуют организмы одного вида или двух разных. Типы взаимодействий организмов, принадлежащих к одному и тому же виду, является гомотиповые реакции. Гетеротиповими реакциями называют формы взаимодействия двух организмов разных видов.

Гомотиповые реакции.

Среди взаимодействии организмов одного вида можно выделить такие коакции (взаимодействия): групповой эффект, массовый эффект и внутривидовая конкуренция.

Групповой эффект.

Много живых организмов, которые могут жить одиночно, образуют группы. Часто в природе можно наблюдать, как группами растут некоторые виды растений. Это дает им возможность ускорить свой рост. В группы объединяются и животные. При таких условиях они лучше выживают. При совместном образе жизни животным легче защищаться, добывать пищу, охранять свое потомство, переживать неблагоприятные факторы окружающей среды. Таким образом, групповой эффект имеет положительное влияние для всех участников группы.

Группы, в которые объединяются животные, могут быть разными по размерам. Например, бакланы, которые на побережьях Перу образуют огромные колонии, могут существовать только при условии, если в колонии не меньше 10 тысяч птиц, а на 1 квадратный метр территории приходится три гнезда. Известно, что для выживания африканских слонов стадо должно состоять минимум из 25 особей, а стадо северных оленей - с 300-400 голов. Стая волков может насчитывать до десятка особей.

Простые скопления (временные или постоянные) могут превратиться в сложные группировки, состоящие из специализированных особей, которые выполняют присущую им функцию в этой группе (семьи пчел, муравьев или термитов).

Массовый эффект.

Массовый эффект - это явление, возникающее при перенаселении какого жизненного пространства. Естественно, что при объединении в группы, особенно больших размеров, тоже возникает некоторое перенаселение, но между групповым и массовым эффектами существует большая разница. Первый дает преимущества каждому члену объединения, а другой, наоборот, подавляет жизнедеятельность всех, то есть имеет негативные последствия. Например, массовый эффект проявляется при скоплении позвоночных животных. Если в одной клетке содержать подопытных крыс в большом количестве, то в их поведении будут проявляться акты агрессивности. При длительном содержании животных в таких условиях у беременных самок рассасываются эмбрионы, агрессивность возрастает настолько, что крысы отгрызают друг другу хвосты, уши, конечности.

Массовый эффект высокоорганизованных организмов приводит к стрессовому состоянию. У человека это может вызвать психические расстройства и нервные срывы.

Внутривидовая конкуренция.

Между особями одного вида всегда происходит своеобразное соревнование в получении лучших условий существования. Чем больше плотность поселения той или иной группы организмов, тем более напряженное соревнование. Такое соревнование организмов одного вида между собой за те или иные условия существования называют внутривидовой конкуренцией.

Массовый эффект и внутривидовая конкуренция не являются тождественными понятиями. Если первое явление возникает на относительно короткое время и впоследствии завершается разрежением группировки (смертность, людоедство, снижение плодовитости и др.), то внутривидовая конкуренция существует постоянно и в конце концов приводит к более широкому приспособления вида к условиям среды. Вид становится более экологически приспособленным. В результате внутривидовой конкуренции сам вид сохраняется и сам себя не уничтожает в результате такой борьбы.

Внутривидовая конкуренция может проявляться в чем угодно, на что могут претендовать организмы одного вида. У растений, густо растут, конкуренция может происходить за свет, минеральное питание и т.д. Например, дуб, когда он растет отдельно, имеет шаровидную крону, он довольно разлапистый, поскольку нижние боковые ветви получают достаточное количество света. В посадках дуба в лесу нижние ветки затеняются верхними. Ветви, что получают недостаточное количество света, отмирают. С ростом дуба в высоту нижние ветви быстро опадают, и дерево приобретает лесной формы - длинный цилиндрический ствол и крона ветвей на верхушке дерева.

У животных конкуренция возникает за определенную территорию, пищу, за места гнездования и т.д. Подвижным животным легче избежать жесткой конкуренции, но все равно она на них сказывается. Как правило, те, что избегают конкуренции, часто оказываются в неблагоприятных условиях, они вынуждены тоже, как растения (или прикрепленные виды животных), приспосабливаться к тем условиям, которыми им приходится довольствоваться.

Гетеротиповые реакции.

Таблица 1.2.4. Формы межвидовых взаимодействий

Виды занимают

Виды занимают

Форма взаимодействия (коакций)

одну территорию (живут вместе)

различные территории (живут отдельно)

Вид А

Вид Б

Вид А

Вид Б

Нейтрализм

Коменсализм (вид А - коменсал)

Протокооперация

Мутуализм

Аменсализм (вид А - аменсал, вид Б - ингибитор)

Хищничество (вид А - хищник, вид Б - жертва)

Конкуренция

0 - взаимодействие между видами не дает выигрыша и не наносит ущерба ни одной стороне;

Взаимодействие между видами дает положительные последствия; --взаимодействие между видами дает негативные последствия.

Нейтрализм.

Чаще всего встречается такая форма взаимодействия, когда организмы разных видов, занимая одну территорию, никак не влияют друг на друга. В лесу обитает большое количество видов и многие из них поддерживают нейтральные взаимоотношения. Например, белка и еж населяют один и тот же лес, но они имеют нейтральные взаимоотношения, как и множество других организмов. Однако эти организмы входят в состав одной экосистемы. Они являются элементами одного целого, и поэтому при детальном изучении все же можно найти не прямые, а опосредованные, довольно тонкие и с первого взгляда незаметные связи.

Есть. В дум в своей "Популярной экологии" приводит шутливый, но очень меткий пример таких связей. Он пишет, что в Англии старые одинокие женщины поддерживают мощь королевских гвардейцев. А связь между гвардейцами и женщинами довольно простой. Одинокие женщины, как правило, разводят котов, коты же охотятся на мышей. Чем больше кошек, тем меньше мышей на полях. Мыши являются врагами шмелей, ибо разрушают их норы, где они живут. Чем меньше мышей, тем больше шмелей. Шмели, как известно, не единственные опылители клевера. Больше шмелей на полях - больший урожай клевера. На клевере выпасают лошадей, а гвардейцы любят употреблять в пищу конское мясо. Вот за таким примером в природе можно найти множество скрытых связей между различными организмами. Хотя в природе, как видно из примера, коты имеют нейтральные отношения с лошадьми или джмелями, однако они косвенно связаны с ними.

Коменсализм.

Многие виды организмов вступают во взаимоотношения, которые дают пользу только одной стороне, а другая от этого не страдает и ничего нет полезного. Такую форму взаимодействия организмов называют коменсализмом. Коменсализм часто проявляется в виде сосуществования различных организмов. Так, насекомые часто живут в норах млекопитающих или в гнездах птиц.

Часто можно наблюдать и такое совместное поселение, когда в гнездах крупных хищных птиц или аистов вьют гнезда воробьи. Для хищных птиц соседство воробьев не мешает, а для самих воробьев - это надежная охрана их гнезд.

В природе существует даже вид, что так и назван - краб-коменсал. Этот маленький, изящный краб охотно селится в мантийной полости устриц. Этим он не мешает моллюску, а сам получает убежище, свежие порции воды и питательные частицы, попадающие с водой к нему.

Протокооперация.

Следующим шагом совместной позитивной коакции двух организмов разных видов есть протокооперация, при которой оба вида выигрывают от взаимодействия. Естественно, что эти виды могут отдельно существовать без каких-либо потерь. Эту форму взаимодействия еще называют первичной кооперации, или сотрудничеством.

В море такая взаимовыгодная, но не обязательная форма взаимодействия возникает при объединении крабов и кишковопорожнистих. Актинии, например, часто поселяются на спинной стороне крабов, замасковуючи и защищая их своими жалючими щупальцами. В свою очередь, актинии получают от крабов кусочки пищи, которые остаются от их еды, и используют крабов как транспортное средство. И крабы, и актинии способны свободно и независимо существовать в водоеме, но когда они поблизости, то краб даже сам клешней пересаживает актинию на себя.

Совместное гнездование птиц разных видов в одной колонии (цапли и бакланы, кулики и крачки разных видов и т.д.) тоже является примером сотрудничества, при котором выигрывают обе стороны, например, при защите от хищников.

Мутуализм.

Мутуализм (или облигатный симбиоз) является следующим этапом взаимовыгодного приспособления разных видов друг к другу. Он отличается от протокооперации своей зависимостью. Если при протокооперации организмы, которые вступают в связь, могут существовать отдельно и независимо друг от друга, то при мутуализме существования этих организмов отдельно невозможно.

Такого типа коакции часто возникают в достаточно разных организмов, отдаленных в систематическом плане, с разными потребностями. Примером этому может быть связь между азотфиксирующими бактериями (пузырьковые бактерии) и бобовыми растениями. Вещества, выделяемые корневой системой бобовых, стимулируют рост пузырьковых бактерий, а продукты жизнедеятельности бактерий приводят к деформации корневых волосков, с чего начинается образование пузырьков. Бактерии обладают способностью усваивать атмосферный азот, который является дефицитом в почве, но необходимым макроэлементом для растений, что в этом случае дает большую пользу бобовым растениям.

В природе достаточно распространенным является взаимоотношения грибов и корней растений, называются микоризой. Грибница, взаимодействуя с тканями корня, образует своеобразный орган, который помогает растению более эффективно усваивать минеральные вещества из почвы. Грибы от этого взаимодействия получают продукты фотосинтеза растения. Многие виды деревьев не могут расти без микоризы, и определенные виды грибов образуют микоризу с корнями определенных видов деревьев (дуб и белый гриб, береза и подберезовик и др.).

Классическим примером мутуализма являются лишайники, которые сочетают в себе симбиотическая связь грибов и водорослей. Функциональные и физиологические связи между ними настолько тесные, что их рассматривают как отдельную группу организмов. Гриб в этой системе обеспечивает водоросль водой и минеральными солями, а водоросль, в свою очередь, дает грибу органические вещества, которые сама синтезирует.

Аменсализм.

В естественной среде не все организмы положительно влияют друг на друга. Есть много случаев, когда для обеспечения своей жизнедеятельности один вид вредит другому. Такая форма коакций, при которой один вид организма подавляет рост и размножение организма другого вида, не теряя ничего, имеет название аменсализму (антибиозу). Подавленный вид в паре, что взаимодействует, называют аменсалом, а того, который подавляет, - ингибитором.

Аменсализм лучше всего изучен у растений. В процессе жизни растения выделяют в окружающую среду химические вещества, которые и являются факторами влияния на другие организмы. Относительно растений аменсализм имеет свое название - аллелопатия. Известно, что благодаря выделению корнями токсичных веществ нечуйвитер волохатенький вытесняет другие однолетние растения и образует сплошные одновидовые заросли на больших площадях. На полях пырей и другие сорняки вытесняют или подавляют культурные растения. Орех и дуб угнетают травянистую растительность под своими кронами.

Растения могут выделять алелопатични вещества не только корнями, но и надземной частью своего тела. Летучие алелопатичные вещества, выделяемые растениями в воздух, называют фитонцидами. в Основном они уничтожающе действуют на микроорганизмы. Всем хорошо известна антимикробная профилактическое действие чеснока, лука, хрена. Много фитонцидов продуцируют хвойные породы деревьев. Один гектар насаждений можжевельника обыкновенного за год производит более 30 кг фитонцидов. Часто хвойные породы применяются в населенных пунктах для создания санитарно-защитных полос вокруг различных производств, что способствует очищению воздуха.

Фитонциды негативно влияют не только на микроорганизмы, но и на животных. В быту издавна применяли различные растения для борьбы с насекомыми. Так, баглиця и лаванда является хорошим средством для борьбы с молью.

Антибиоз известен и у микроорганизмов. Его впервые было открыто Бы. Бабешом (1885) и переоткрыто А. Флемингом (1929). Было показано, что грибы пеницилу выделяют вещество (пенициллин), что подавляет рост бактерий. Широко известно, что некоторые молочнокислые бактерии окисляют свое окружение так, что в нем не могут существовать гнилостные бактерии, которые нуждаются в щелочной или нейтральной среды. Алелопатичные химические вещества микроорганизмов известны под названием антибиотики. Уже описано свыше 4 тысячи антибиотиков, но лишь около 60 их разновидностей широко применяются в медицинской практике.

Защита животных от врагов может осуществляться и с помощью выделения веществ, имеющих неприятный запах (напр., среди рептилий - грифе черепахи, ужи; птиц - птенцы удодов; млекопитающих - скунсы, хорьки).

Хищничество.

Хищением в широком понимании этого слова считается способ добывания пищи и питания животных (иногда и растений), при котором они ловят, умерщвляют и поедают других животных. Иногда под этим термином понимают любое съедания одних организмов другими, т.е. такие взаимоотношения между организмами, при которых одни используют других как еду. При таком понимании заяц является хищником относительно травы, которую он потребляет. Но мы будем пользоваться более узким пониманием хищничества, при котором один организм питается другим, что близок к первому в систематическом плане (например, насекомые, которые питаются насекомыми; рыбы, которые питаются рыбами; птицы, которые питаются пресмыкающимися, птицами и млекопитающими; млекопитающие, которые питаются птицами и млекопитающими). Крайний случай хищничества, при котором вид питается организмами своего вида, имеет название каннибализма.

Иногда хищник отбирает жертву в таком количестве, что это не влияет негативно на численность ее популяции. Этим хищник способствует лучшему состояния популяции жертвы, которая к тому же уже приспособилась к прессу хищника. Рождаемость в популяциях жертвы выше, чем это требуется для обычного поддержания ее численности. Образно говоря, популяция жертвы учитывает то, что должен отобрать хищник.

Межвидовой конкуренция.

Между организмами разных видов, так же, как и между организмами одного вида, возникают взаимодействия, благодаря которым они пытаются получить один и тот же ресурс. Такие коакции между различными видами имеют название межвидовой конкуренции. Другими словами можно сказать, что межвидовой конкуренция - это любое взаимодействие между популяциями разных видов, которая неблагоприятно влияет на их рост и выживание.

Последствиями такой конкуренции может быть вытеснение одного организма другим с определенной экологической системы (принцип конкурентного исключения). В то же время конкуренция способствует возникновению в процессе отбора многих адаптаций, что ведет к многообразию видов, которые существуют в определенном сообществе или регионе.

Конкурентное взаимодействие может касаться пространства, пищи или биогенных элементов, света и многих других факторов. Межвидовой конкуренция, в зависимости от того, на чем она базируется, может привести либо к установлению равновесия между двумя видами, или, при более жесткой конкуренции, к замене популяции одного вида популяцией другого. Также результатом конкуренции может стать и такое, что один вид вытеснит другой в иное место или же заставит его перейти на другие ресурсы.