Электроотрицательность химических элементов уменьшается ряду. Закономерности изменения электроотрицательности элементов в группе и периоде

РАЗУМ И ЧУВСТВО. АРГУМЕНТЫ К СОЧИНЕНИЮ ПО ДОПУСКУ К ЕГЭ (ПО ПОВЕСТИ А.И.КУПРИНА «ОЛЕСЯ»)

О человеческом разуме и о человеческих чувствах люди размышляют с древних времён. И до сих пор нет ответа на вопросы: что важнее в жизни: разум или чувство? Как жить: чувством или разумом?

Ни один писатель, пожалуй, не оставлял без внимания такие картины жизни, где у героев книг происходит внутренняя борьба, борьба между разумом и чувством.

Что было важнее в жизни для Олеси, главной героини повести А.И.Куприна: чувство или рассудок? Что выбрала она, полесская колдунья: спокойную, вдали от цивилизации жизнь без Ивана Тимофеевича или радость любви? Познакомившись с городским интеллигентным человеком, она полюбила его. Это чувство стало для Олеси всепоглощающим.

Олеся - девушка разумная, рассудительная. Она обладала особыми, нетрадиционными способностями. Олеся трезво смотрела на жизнь, тем более, что предвидела свою беду, когда по просьбе любимого человека она погадала на картах. Однажды она сказала, что даже хотела попросить молодого человека, чтобы он перестал бывать у них. А когда он заболел и она не видела его долгое время, тогда она решила, что будет, то и будет, а она своей радости никому не отдаст. Когда Иван Тимофеевич после болезни появился у Олеси, он во время этого молчаливого свидания почувствовал, что она «отдает ему радостно, без всяких условий и колебаний, всё свое существо».

Иван Тимофеевич предложил ей стать его женой. Девушка сказала, что это невозможно. Она осознавала, что они не пара: он барин, умный, образованный человек, а она даже читать не умеет. Олеся считала, что ему будет стыдно за такую жену. Ещё одно препятствие - это её бабушка. Она не смогла бы её оставить одну, а в городе та не смогла бы жить.

Множество нежных, благодарных слов было сказано Олесей Ивану Тимофеевичу. Олеся заботилась о том, чтобы молодой человек после болезни снова не простыл в прохладное время. Ей хотелось сделать что-нибудь очень, очень приятное. Олеся решила сходить в церковь. Женщины её сильно избили. Разумно ли она поступила? На такой поступок она решилась сознательно, потому что любила очень сильно. После этой истории Олеся сказала, что виновата она, что зря она так поступила. Она очень не хотела, чтобы её любимый испытывал чувство вины.

Читатель понимает, что любовь Олеси победила её здравый смысл. Но она не жалеет о том, что встретилась с человеком не своего круга. Олеся жалела только о том, что у неё нет от него ребёночка. Она была бы очень рада этому.

Большинство не будет отрицать, что в ХХI веке разум преобладает над чувствами. Человеку дан разум. Но не каждому судьбой даётся такое всепоглощающее чувство, как у Олеси. Для неё оно было на первом месте.

Выяснить активность простых веществ можно с помощью таблицы электроотрицательности химических элементов. Обозначается как χ. Подробнее о понятии активности читайте в нашей статье.

Что такое электроотрицательность

Свойство атома химического элемента притягивать к себе электроны других атомов называется электроотрицательностью. Впервые понятие ввёл Лайнус Полинг в первой половине ХХ века.

Все активные простые вещества можно разделить на две группы в соответствии с физическими и химическими свойствами:

  • металлы;
  • неметаллы.

Все металлы являются восстановителями. В реакциях они отдают электроны и обладают положительной степенью окисления. Неметаллы могут проявлять свойства восстановителей и окислителей в зависимости от значения электроотрицательности. Чем выше электроотрицательность, тем сильнее свойства окислителя.

Рис. 1. Действия окислителя и восстановителя в реакциях.

Полинг составил шкалу электроотрицательности. В соответствии со шкалой Полинга наибольшей электроотрицательностью обладает фтор (4), наименьшей - франций (0,7). Это значит, что фтор является самым сильным окислителем и способен притягивать электроны большинства элементов. Напротив, франций, как и другие металлы, является восстановителем. Он стремится отдать, а не принять электроны.

Электроотрицательность является одним из главных факторов, определяющих тип и свойства образованной между атомами химической связи.

Как определить

Свойства элементов притягивать или отдавать электроны можно определить по ряду электроотрицательности химических элементов. В соответствии со шкалой элементы со значением более двух являются окислителями и проявляют свойства типичного неметалла.

Номер элемента

Элемент

Символ

Электроотрицательность

Стронций

Иттербий

Празеодим

Прометей

Америций

Гадолиний

Диспрозий

Плутоний

Калифорний

Эйнштейний

Менделевий

Цирконий

Нептуний

Протактиний

Марганец

Бериллий

Алюминий

Технеций

Молибден

Палладий

Вольфрам

Кислород

Вещества с электроотрицательностью два и меньше являются восстановителями и проявляют металлические свойства. Переходные металлы, обладающие переменной степенью окисления и относящиеся к побочным подгруппам таблицы Менделеева, имеют значения электроотрицательности в пределах 1,5-2. Ярко выраженными свойствами восстановителя обладают элементы с электроотрицательностью равной или меньше одного. Это типичные металлы.

В ряде электроотрицательности металлические и восстановительные свойства увеличиваются справа налево, а окислительные и неметаллические свойства - слева направо.

Рис. 2. Ряд электроотрицательности.

Помимо шкалы Полинга узнать, насколько выражены окислительные или восстановительные свойства элемента можно с помощью периодической таблицы Менделеева. Электроотрицательность увеличивается в периодах слева направо с увеличением порядкового номера. В группах значение электроотрицательности уменьшается сверху вниз.

Рис. 3. Таблица Менделеева.

Что мы узнали?

Электроотрицательность показывает способность элементов отдавать или принимать электроны. Эта характеристика помогает понять, насколько выражены свойства окислителя (неметалла) или восстановителя (металла) у конкретного элемента. Для удобства Полингом была разработана шкала электроотрицательности. Согласно шкале максимальными окислительными свойствами обладает фтор, минимальными - франций. В периодической таблице свойства металлов увеличиваются справа налево и сверху вниз.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 117.

Периодическая система химических элементов Д. И. Менделеева - это классификация химических элементов в виде таблицы, в которой четко видна зависимость различных свойств элементов от заряда атомного ядра. Данная система является графическим отображением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Создана была в 1869-1871 годах им же. Таблица состоит из столбцов (группы) и строк (периоды). Группы определяют основные физико-химические свойства элементов в связи с одинаковыми электронными конфигурациями на внешних электронных оболочках. В периодах химические элементы выстроены также в определенном порядке: возрастает заряда ядра, и заполняется электронами внешняя электронная оболочка. Хоть для групп и характерны более существенные тенденции и закономерности, но есть области, где горизонтальное направление более значимо и показательно, чем вертикальное. Это относится к блоку лантаноидов и актиноидов.

Понятие об электроотрицательности

Электроотрицательность является основополагающим химическим свойством атома. Этим термином обозначают относительную способность атомов в молекуле оттягивать к себе общие электронные пары. Электроотрицательность определяет тип и свойства химической связи, и таким образом влияет на характер взаимодействия между атомами в химических реакциях. Самая высокая степень электроотрицательности у галогенов и сильных окислителей (F, O, N, Cl), а низкая - у активных металлов (I группа). Современное понятие ввел американский химик Л. Полинг. Теоретическое же определение электроотрицательности предложил американский физик Р. Малликен.

Электроотрицательность химических элементов в периодической системе Д. И. Менделеева увеличивается вдоль периода слева направо, а в группах - снизу вверх. Электроотрицательность зависит от:

  • атомного радиуса;
  • количества электронов и электронных оболочек;
  • энергии ионизации.

Так, в направлении слева направо радиус атомов обычно сокращается в связи с тем, что у каждого последующего элемента увеличивается количество заряженных частиц, поэтому электроны притягиваются сильнее и ближе к ядру. Это ведет к увеличению энергии ионизации, так как сильная связь в атоме требует большей энергии на изъятие электрона. Соответственно, увеличивается и электроотрицательность.

На этом уроке вы узнаете о закономерностях изменения электроотрицательности элементов в группе и периоде. На нём вы рассмотрите, от чего зависит электроотрицательность химических элементов. На примере элементов второго периода изучите закономерности изменения электроотрицательности элемента.

Тема: Химическая связь. Электролитическая диссоциация

Урок: Закономерности изменений электроотрицательности химических элементов в группе и периоде

Закономерности изменений значений относительной электроотрицательности в периоде

Рассмотрим на примере элементов второго периода, закономерности изменений значений их относительной электроотрицательности. Рис.1.

Рис. 1. Закономерности изменений значений электроотрицательности элементов 2 периода

Относительная электроотрицательность химического элемента зависит от заряда ядра и от радиуса атома. Во втором периоде находятся элементы: Li, Be, B, C, N, O, F, Ne. От лития до фтора увеличивается заряд ядра и количество внешних электронов. Число электронных слоев остается неизменным. Значит, сила притяжения внешних электронов к ядру будет возрастать, и атом будет как бы сжиматься. Радиус атома от лития до фтора будет уменьшаться. Чем меньше радиус атома, тем сильнее внешние электроны притягиваются к ядру, а значит больше значение относительной электроотрицательности.

В периоде с увеличением заряда ядра радиус атома уменьшается, а значение относительной электроотрицательности увеличивается.

Рис. 2. Закономерности изменений значений электроотрицательности элементов VII-A группы.

Закономерности изменений значений относительной электроотрицательности в главных подгруппах

Рассмотрим закономерности изменений значений относительной электроотрицательности в главных подгруппах на примере элементов VII-A группы. Рис.2. В седьмой группе главной подгруппе расположены галогены: F, Cl, Br, I, At. На внешнем электроном слое у этих элементов одинаковое число электронов - 7. С возрастанием заряда ядра атома при переходе от периода к периоду, увеличивается число электронных слоев, а значит, увеличивается атомный радиус. Чем меньше радиус атома, тем больше значение электроотрицательности.

В главной подгруппе с увеличением заряда ядра атома радиус атома увеличивается, а значение относительной электроотрицательности уменьшается.

Так как химический элемент фтор расположен в правом верхнем углу Периодической системы Д.И.Менделеева его значение относительной электроотрицательности будет максимальным и численно равным 4.

Вывод: Относительная электроотрицательность увеличивается с уменьшением радиуса атома.

В периодах с увеличением заряда ядра атома электроотрицательность увеличивается.

В главных подгруппах с увеличением заряда ядра атома относительная электроотрицательность химического элемента уменьшается. Самый электроотрицательный химический элемент - это фтор, так как он расположен в правом верхнем углу Периодической системы Д.И.Менделеева.

Подведение итога урока

На этом уроке вы узнали о закономерностях изменения электроотрицательности элементов в группе и периоде. На нём вы рассмотрели, от чего зависит электроотрицательность химических элементов. На примере элементов второго периода изучили закономерности изменения электроотрицательности элемента.

1. Рудзитис Г.Е. Неорганическая и органическая химия. 8 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2011 г.176с.:ил.

2. Попель П.П.Химия:8 кл.: учебник для общеобразовательных учебных заведений/П.П. Попель, Л.С.Кривля. -К.: ИЦ «Академия»,2008.-240 с.: ил.

3. Габриелян О.С. Химия. 9 класс. Учебник. Издательство: Дрофа.:2001. 224с.

1. №№ 1,2,5 (с.145) Рудзитис Г.Е. Неорганическая и органическая химия. 8 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2011 г.176с.:ил.

2. Приведите примеры веществ с ковалентной неполярной связью и ионной. Какое значение имеет электроотрицательность в образовании таких соединений?

3. Расположите в ряд по возрастанию электроотрицательности элементы второй группы главной подгруппы.

При взаимодействии элементов образуются электронные пары за счёт принятия или отдачи электронов. Способность атома оттягивать электроны была названа Лайнусом Полингом электроотрицательностью химических элементов. Полинг составил шкалу электроотрицательности элементов от 0,7 до 4.

Что такое электроотрицательность?

Электроотрицательность (ЭО) - количественная характеристика элемента, показывающая, с какой силой притягиваются электроны ядром атома. ЭО также характеризует способность удерживать валентные электроны на внешнем энергетическом уровне.

Рис. 1. Строение атома.

Возможность отдавать или принимать электроны определяет принадлежность элементов к металлам или неметаллам. Ярко выраженными металлическими свойствами обладают элементы, легко отдающие электроны. Элементы, принимающие электроны проявляют неметаллические свойства.

Электроотрицательность проявляется в химических соединениях и показывает смещение электронов в сторону одного из элементов.

Электроотрицательность увеличивается слева направо и уменьшается сверху вниз в периодической таблице Менделеева.

Как определить

Определить значение можно с помощью таблицы электроотрицательности химических элементов или шкалы Полинга. За единицу принята электроотрицательность лития.

Наибольшей ЭО обладают окислители и галогены. Значение их электроотрицательности больше двух. Рекордсменом является фтор с электроотрицательностью 4.

Рис. 2. Таблица электроотрицательности.

Наименьшую ЭО (меньше двух) имеют металлы первой группы периодической таблицы. Активными металлами считаются натрий, литий, калий, т.к. им легче расстаться с единственным валентным электроном, чем принять недостающие электроны.

Некоторые элементы занимают промежуточное положение. Их электроотрицательность близка к двум. Такие элементы (Si, B, As, Ge, Te) проявляют металлические и неметаллические свойства.

Для удобства сравнения ЭО используется ряд электроотрицательности элементов. Слева располагаются металлы, справа - неметаллы. Чем ближе к краям, тем активнее элемент. Самый сильным восстановителем, легко отдающим электроны и имеющим наименьшую электроотрицательность, является цезий. Активным окислителем, способным притягивать электроны, является фтор.

Рис. 3. Ряд электроотрицательности.

В неметаллических соединениях притягивают электроны элементы с большей ЭО. Кислород с электроотрицательностью 3,5 притягивает атомы углерода и серы с электроотрицательностью 2,5.

Что мы узнали?

Электроотрицательность показывает степень удержания ядром атома валентных электронов. В зависимости от значения ЭО элементы способны отдавать или принимать электроны. Элементы с большей электроотрицательностью оттягивают электроны и проявляют неметаллические свойства. Элементы, атомы которых легко отдают электроны, обладают металлическими свойствами. Некоторые элементы имеют условно нейтральную ЭО (около двух) и могут проявлять металлические и неметаллические свойства. Степень ЭО увеличивается слева направо и снизу вверх в таблице Менделеева.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 64.