История Вселенной: от Большого Взрыва до наших дней.

Космология Возраст Вселенной Большой взрыв Содвижущееся расстояние Реликтовое излучение Космологическое уравнение состояния Тёмная энергия Скрытая масса Вселенная Фридмана Космологический принцип Космологические модели Формирован … Википедия

Отсчёт времени во вселенной «Звёздных войн» ведётся относительно победы Альянса Повстанцев над Империей в битве у планеты Явин IV. Соответственно, даты обозначаются как «до я. б.»/«ДЯБ» (BBY) до Явинской битвы (англ. Before Battle of… … Википедия

Отсчёт времени во вселенной «Звёздных войн» ведётся относительно победы Альянса Повстанцев над Империей в битве у планеты Явин IV. Соответственно, даты обозначаются как «до я. б.» (BBY) до Явинской битвы (англ. Before Battle of Yavin), и «п. я. б … Википедия

Отсчёт времени во вселенной «Звёздных войн» ведётся относительно победы Альянса Повстанцев над Империей в битве у планеты Явин IV. Соответственно, даты обозначаются как «до я. б.» (BBY) до Явинской битвы (англ. Before Battle of Yavin), и «п. я. б … Википедия

Отсчёт времени во вселенной «Звёздных войн» ведётся относительно победы Альянса Повстанцев над Империей в битве у планеты Явин IV. Соответственно, даты обозначаются как «до я. б.» (BBY) до Явинской битвы (англ. Before Battle of Yavin), и «п. я. б … Википедия

Отсчёт времени во вселенной «Звёздных войн» ведётся относительно победы Альянса Повстанцев над Империей в битве у планеты Явин IV. Соответственно, даты обозначаются как «bby» (BBY) До Явинской битвы (en. Before Battle of… … Википедия

Хронология первых трех дней аварии на шахте "Распадская" в 2010 г - В ночь на 9 мая 2010 г. в городе Междуреченске Кемеровской области на шахте Распадская, одной из крупнейших в мире угольных шахт, произошла авария, которая унесла жизни 91 человека. На шахте с интервалом в четыре часа прогремели сразу два взрыва … Энциклопедия ньюсмейкеров

Хронология первых трех дней аварии на шахте "Распадская" в 2010 году - На шахте с интервалом в четыре часа прогремели сразу два взрыва метана, причем повторный взрыв был значительно сильнее. Первый взрыв на шахте Распадская произошел 8 мая 2010 года в 20:55 мск. В этот момент в шахте находились 359 человек. 9 мая в… … Энциклопедия ньюсмейкеров

Млн л … Википедия

Книги

  • Хронология. Путешествие сквозь века: от Большого взрыва до наших дней , Гюс Петер. О книге Что мы знаем о всемирной истории? Можем ли выстроить наши знания о разных эпохах в одну стройную линию, связав одни события с другими? Эта большая, оригинально иллюстрированная…
  • Хронология. Путешествие сквозь века: от Большого взрыва до наших дней (виммельбух) , Хиде, Сильвия Ванден. Что мы знаем о всемирной истории? Можем ли выстроить наши знания о разных эпохах в одну стройную линию, связав одни события с другими? Эта большая, оригинально иллюстрированная книга поможет…
Время Эпоха Событие Время от сегодняшнего момента, лет
Сингулярность Большой взрыв. 13,7 млрд.
0 - 10 −43 с Планковская эпоха Рождение частиц. 13,7 млрд.
10 −43 - 10 −35 с Эпоха Великого объединения Отделение гравитации от объединённого электрослабого и сильного взаимодействия. Возможное рождение монополей. Разрушение Великого объединения. 13,7 млрд.
10 −35 - 10 −31 с Инфляционная эпоха Вселенная экспоненциально увеличивает свой радиус на много порядков. Структура первичной квантовой флуктуации раздуваясь даёт началокрупномасштабной структуре Вселенной . Вторичный нагрев. Бариогенезис. 13,7 млрд.
10 −31 - 10 −12 с Электрослабая эпоха Вселенная заполнена кварк-глюонной плазмой, лептонами, фотонами, W- и Z-бозонами, бозонами Хиггса. Нарушение суперсимметрии. 13,7 млрд.
10 −12 - 10 −6 с Кварковая эпоха Электрослабая симметрия нарушена, все четыре фундаментальных взаимодействия существуют раздельно. Кварки ещё не объединены в адроны. Вселенная заполнена кварк-глюонной плазмой, лептонами и фотонами. 13,7 млрд.
10 −6 - 1 с Адронная эпоха Адронизация. Аннигиляция барион-антибарионных пар. Благодаря CP-нарушению остаётся малый избыток барионов над антибарионами (около 1:10 9). 13,7 млрд.
1 секунда - 3 минуты Лептонная эпоха Аннигиляция лептон-антилептонных пар. Распад части нейтронов. Вещество становится прозрачным для нейтрино. 13,7 млрд.
3 минуты - 380 000 лет Протонная эпоха Нуклеосинтез гелия, дейтерия, следов лития-7 (20 минут). Вещество начинает доминировать над излучением (70 000 лет), что приводит к изменению режима расширения Вселенной. В конце эпохи (380 000 лет) происходит рекомбинация водорода и Вселенная становится прозрачной для фотонов теплового излучения. 13,7 млрд.
380 000-150 млн лет Тёмные Века Вселенная заполнена водородом и гелием, реликтовым излучением, излучением атомарного водорода на волне 21 см. Звёзды, квазары и другие яркие источники отсутствуют. 13,55 млрд.
150 млн - 1 млрд лет Реионизация Образуются первые звёзды (звёзды популяции III), квазары, галактики, скопления и сверхскопления галактик. Реионизация водорода светом звёзд и квазаров. 12,7 млрд.
1 млрд лет - 8,9 млрд лет Эра вещества Образование межзвёздного облака, давшего начало Солнечной системе. 4,8 млрд.
8,9 млрд лет - 9,1 млрд лет Эра вещества Образование Земли и других планет нашей Солнечной системы, затвердевание пород. 4,6 млрд.

Глава Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра - средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа - порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.

Глава 8 Критика современной теории "Большого Взрыва"

По современным представлениям, наблюдаемая нами сейчас Вселенная возникла около 15 миллиардов лет назад из некоторого начального "сингулярного" состояния с бесконечно большими температурой и плотностью и с тех пор непрерывно расширяется и охлаждается.

Наша вселенная является реально существующим объектом, а не философским понятием, и не может быть создана из объекта, находящегося в сингулярном состоянии. Это противоречит здравому смыслу. Объект может сжиматься в сторону бесконечности, но как только сжатие закончится, у любого объекта будут реально существующие параметры.

Такое понятие, как температура, вообще неприемлемо к такому объекту. Мы ведь не считаем элементарные частицы горячими, если они не разогнаны до высоких скоростей. А элементарные частицы имеют более высокую энергию, чем фотоны. Температура - это броуновское движение молекул. Этих самых молекул у данного объекта и не было.



Согласно этой теории Большого Взрыва, дальнейшая эволюция зависит от измеримого экспериментально параметра r - средней плотности вещества в современной Вселенной. Если r меньше некоторого (известного из теории) критического значения rc, Вселенная будет расширяться вечно; если же r > rc , то процесс расширения когда-нибудь остановится и начнется обратная фаза сжатия, возвращающая к исходному сингулярному состоянию.

Если и сейчас Вселенная расширяется, а значит, плотность материи недостаточна для создания такого мощного гравитационного поля, которое заставило бы нашу Вселенную сжиматься, то в будущем плотность материи станет ещё меньше, а, соответственно уменьшится и гравитационное поле. И вообще, никакого влияния гравитационного поля, на структуру Вселенной не заметно. Под влиянием гравитационного поля, движение галактик, должно быть искривлено. Физики преувеличивают значение гравитации на эволюцию Вселенной.

Разбегание галактик происходит равномерно по всем сторонам. Это возможно только в том случае, если наша Вселенная не имеет общего центра вращения. Иначе с разных сторон, галактики бы удалялись и приближались с разной скоростью. Из закона Хаббла можно сделать вывод: «Наша Вселенная не имеет общей точки вращения, а, значит, гравитационное поле не сможет заставить Вселенную сжаться. Это сделают другие силы».

Все нужные сведения и закономерности из этих разделов являются надежно установленными, поэтому получаемую с их помощью информацию относительно эволюции системы можно считать вполне достоверной. Принципиальные трудности возникают лишь при попытке продвинуться еще ближе к "началу мира", т.е. внутрь первой сотой доли секунды.

Здесь явное желание выдать желаемое за действительное. Физики не только не знают первые минуты Большого Взрыва, но не могут объяснить и современное состояние Вселенной. Они не знают, как возникли спиральные галактики, как сохраняют свою структуру, как эти галактики эволюционируют и как становятся шаровыми галактиками. Да и какие силы могут заставить Вселенную сжаться, тоже не знают. И какие силы, заставляют Вселенную, расширяется, для физиков тоже тёмный лес.

По данным современной наблюдательной астрономии звезды во Вселенной группируются в галактики, которые, в свою очередь, также образуют скопления. Представление о порядках величин дают следующие цифры: наша Галактика содержит ~ 1011 звезд и имеет форму линзы диаметром 80 тысяч световых лет и толщиной ~ 30 тысяч световых лет.

Да все спиральные галактики имеют форму линзы, а вот толщина этих "линз" прямопропорциональна термоядерным процессам, происходящим в галактиках. Этот феномен современная физика объяснить не может, так как считает, что элементарные частицы состоят из кварков. На самом деле элементарные частицы состоят из кванта энергии и вакуума, имеющего сложное строение. Именно вакуум превращает волну в корпускулу. При термоядерной реакции выделяется не только энергия, но и вакуум, со всеми его структурами, в том числе и с носителем гравитационного поля. Этот тип гравитации называется «Линейным». Именно Линейная гравитация притягивает звёзды к плоскости спиральных галактик. Уменьшатся термоядерные реакции в галактике, и галактики, из спиральных, будут превращаться в шаровые.

Данные наблюдений показывают, что в крупных масштабах Вселенная однородна и изотропна. Грубо говоря, это означает, что в любой сфере с фиксированным достаточно большим диаметром (достаточным считается число ~ 300 миллионов световых лет) содержится приблизительно одинаковое число галактик. Утверждение об однородности и изотропности Вселенной в больших масштабах принято называть Космологическим Принципом.

Однородность и изотропность вселенной никак не вяжется с взрывным процессом. Ни при одном взрыве такого быть не может. Это возможно только в том случае, когда всё вещество Вселенной, возникло по всему объёму Вселенной, а не из одной точки.

Количественным итогом этих наблюдений является сформулированный в 1929 году Хабблом "закон разбегания", согласно которому, все галактики (в среднем) удаляются от нас, и скорость этого разбегания u приблизительно пропорциональна расстоянию R до рассматриваемой галактики.

Если бы галактики удалялись от нас, то никакого Космологического Принципа не могло бы быть. Галактики удаляются не от нас, а друг от друга.

Наглядной моделью такого разбегания может послужить надуваемый резиновый шарик с нанесенными хаотически на его поверхность точками - "галактиками": при надувании все эти точки будут удаляться друг от друга в точном соответствии с законом Хаббла.

В резиновый шарик надувают газ, а что надувается в нашу вселенную, что бы она расширялась? Точки "разбегаются на поверхности шарика (на плоскости), а наша Вселенная увеличивается во всём объёме. Это хороший образ, но он не объясняет природы данного явления. К образным примерам прибегают тогда, когда нет реальных знаний. Наша Вселенная увеличивается в объёме за счёт термоядерных реакций, происходящих в звёздах. Как только термоядерные реакции замедлятся, Вселенная начнёт сжиматься.

Это модель "двумерного замкнутого мира". Аналогичный "открытый мир" можно представить в виде резиновой плоскости с нанесенными точками, равномерно растягивающейся во всех направлениях.

И опять это плоскость. И опять это образ. Никакое образное сравнение, не может заменить знание природы расширения вселенной. Удаление галактик связано не только с расстоянием, но и с термоядерными процессами, происходящими в галактиках. Но уже в конце сороковых годов появились первые работы физиков-теоретиков, в которых предсказывалось, что в настоящий момент вся Вселенная должна быть заполнена равновесным электромагнитным излучением с эффективной температурой в несколько градусов Кельвина.

Это означает, что взрыв был не точечным, а равномерным по всему объёму Вселенной.

Заключение

Наши дни с полным основанием называют золотым веком астрофизики - замечательные и чаще всего неожиданные открытия в мире звезд следуют сейчас одно за другим. Солнечная система стала последнее время предметом прямых экспериментальных, а не только наблюдательных исследований. Полеты межпланетных космических станций, орбитальных лабораторий, экспедиции на Луну принесли множество новых конкретных знаний о Земле, околоземном пространстве, планетах, Солнце.

Мы живем в эпоху поразительных научных открытий и великих свершений. Самые невероятные фантазии неожиданно быстро реализуются. С давних пор люди мечтали разгадать тайны Галактик, разбросанных в беспредельных просторах Вселенной. Приходится только поражаться, как быстро наука выдвигает различные гипотезы и тут же их опровергает. Однако астрономия не стоит на месте: появляются новые способы наблюдения, модернизируются старые.

В пользу теории «Большого взрыва» говорят: реликтовое излучение, характер распространения химических элементов во Вселенной. Но все же остаются много неразрешенных вопросов на которые мы пока не в состоянии дать ответ.

Во-первых, теория не дает ответа на следующие вопросы:

1. Что заставило вещество Вселенной расширяться?

2. Что происходило до начала расширения, до момента сингулярности?

3. Конечны ли пространство и масса? Откуда они берутся?

Во-вторых, допускается разбегание некоторых частиц со скоростями, в несколько раз превышающими скорость света. Так же в теории указываются ограничения на возможную плотность вещества (не более 1096), хотя с другой стороны выдвигается гипотеза о первоначальной точечности Вселенной, а следовательно и все-таки о бесконечной плотности (т.к. масса бесконечна). В-третьих, довольно абстрактно, альтернативно рассматриваются такие вопросы, плотно примыкающие к теории «Большого взрыва», как границы и открытость Вселенной, евклидова и неевклидова модель Вселенной. Наконец, не находят веского фактического подтверждения (хотя по теоретическим выкладкам все получается хорошо и главное – «удобно») существование таких частиц как гипероны, мезоны. То есть все методы анализа полученных данных, исследования, выдвижения гипотез осуществляются при довольно высокой степени допущений. Такая степень не позволительна для гипотезы, хотя может быть и подходит для столь глобальной теории. Остается только верить или надеяться, что космология когда-либо заполнит эти «белые дыры», сделает свои выводы обоснованными и по возможности фактически подтвержденными. Кстати, о «белых дырах». Вероятнее всего, именно их изучение позволит нам узнать ответы на многие вопросы, потому что существует гипотеза: именно белые дыры являются кусками первозданной сингулярности, первозданного ядра расширения. В этом направлении, по-видимому, и стоит ждать новых открытий в данной области, т.к. данный вопрос в целом является еще не полностью изученным и требует серьёзных исследований. Да, сегодня нам известно уже многое о строении Вселенной и ее отдельных" объектов. Но... с каждым годом расширяется горизонт науки, расширяются пределы в пространстве и времени, до которых проникает человеческий разум. что на долю наших потомков останется большая часть истин, еще не открытых...

Список использованной литературы:

1) В.Н. Лавриенко, В.П. Ратников, учебник КСЕ,- Москва, 2007

2) Гусейханов М.К., Раджабов О.Р. Концепции современного естествознания - М.: Дашков и К°, 2007.

3) Горелов А.А. Концепции современного естествознания – М.: Высшее образование, 2006

4) Кесарев В.В. Эволюция вещества во Вселенной. - М.: Атомиздат, 1989.

5) Левитан Е.П. Эволюционирующая Вселенная. – М.: Просвещение, 1993.

6) Новиков И.Д. Эволюция Вселенной – 3-е изд., переработанное. – Москва, 1993.

7) Ройзен И. Вселенная между мгновением и вечностью. –«Наука и жизнь», №№ 11 и 12, 1996 г.

8) Шишлова А. «В лаборатории - десять микросекунд после Большого взрыва». - «Наука и жизнь», № 3, 2000 г.

9) Садохин А.П. Концепции современного естествознания – М.: ЮНИТИ-ДАНА, 2006


Определение А.Л. Зельманова (1913-1987)

Здесь: совокупность накопленных теоретических положений о строении вещества и структуре Вселенной.

Релятивистская модель Вселенной , вытекающая из теории тяготения А. Эйнштейна (1917 г.), позволила снять фотометрический и гравитационный парадоксы. Напомним, что согласно новой модели свойства Космоса определяются распределением гравитационных масс: Вселенная безгранична, но при этом замкнута и представляет собой пространственно-временную четырехмерную сферу с «плавающей» материей. Аналогией может служить любая знакомая нам сфера, например, глобус или сама планета Земля: путешественник никогда не достигнет линии горизонта, но при этом площадь шара может быть выражена точным конечным числом.

Однако, несмотря на очевидную революционность идей, Эйнштейн в начале ХХ в. оставался в плену мировоззренческих установок на статичность и вечность мироздания.

Дальнейшее развитие космологии, становление парадоксальной для классического естествознания XIX в. модели расширяющейся Вселенной удобнее всего рассматривать в хронологическом порядке.

В 1917 г. А. Эйнштейн при создании своих уравнений поля ввел специальную «космологическую постоянную Λ» или «лямбда-член», необходимую для того, чтобы они допускали решения, приводящие к описанию стационарной Вселенной. Интересно, что впоследствии Эйнштейн назвал введение космологической постоянной «величайшей ошибкой своей жизни». Гораздо позднее выяснилось, что «космологическая постоянная» играет важную роль в описании некоторых этапов эволюции Вселенной.

В 1922 г. русский математик и геофизик Александр Александрович Фридман (1888-1925) нашел нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной, положив начало нестационарной космологической модели (расширяющейся или сжимающейся). Важно отметить, что речь шла о расширении самого пространства . Экстраполируя ситуацию в прошлое, можно было придти к сенсационному выводу: в самом начале вся материя Вселенной была сосредоточена в компактной области, из которой и начала свой разлет. Космос в этих расчетах стал напоминать раздувающийся мыльный пузырь или резиновый воздушный шар, у которого и радиус, и площадь поверхности непрерывно увеличиваются. Поскольку во Вселенной очень часто наблюдаются явления взрывного характера, у А. Фридмана возникло предположение, что и в самом начале ее развития также лежит аналогичный процесс. Позднее он получил название «Большой взрыв».

Эйнштейн был настолько уверен в невозможности события «начала» Вселенной, что даже опубликовал в одном из журналов небольшую статью о якобы найденной им грубой ошибке, допущенной А. Фридманом. Однако через несколько месяцев переписки Эйнштейн публично снял свои возражения, хотя при этом все же считал результаты Фридмана не имеющими какое-нибудь отношение к действительности, а скорее «игрой ума».


В ходе продолжающихся дискуссий о реальной возможности расширения Космоса рождались новые модели. В частности о расширении Вселенной, наполненной веществом, говорилось и в первой космологической работе крупнейшего бельгийского астронома и математика, католического священника, аббата Ж. Леметра (Georges Lemaître, 1894-1966), опубликованной в 1925 г. Однако для серьезного рассмотрения новой модели требовалось серьезное экспериментальное подтверждение.

Оно было впервые получено спустя четыре года, в 1929 г. Американский астроном Э.Хаббл (Edwin Powell Hubble; 1889-1953) установил, что все наблюдаемые гигантские звездные системы - галактики удаляются от нас и даже вычислил с какой именно скоростью. В своих выводах Э. Хаббл исходил из эффекта Доплера – закономерности изменения частоты и длины регистрируемых волн, вызванной движением их источника. Эффект Доплера каждому легко наблюдать на практике, например, когда мимо наблюдателя, стоящего на платформе, проезжает гудящий локомотив. Предположим, гудок выдает какой-то неизменный определенный тон. Когда локомотив не движется относительно наблюдателя, он слышит именно тот тон, который в действительности издается гудком. Но если локомотив будет приближаться к наблюдателю, то частота звуковых волн увеличится, а длина уменьшится, и наблюдатель услышит более высокий, чем на самом деле, тон. В момент, когда поезд будет проезжать мимо наблюдателя, он услышит тот самый тон, который издается на самом деле. А когда локомотив проедет дальше и будет уже отдаляться, наблюдатель услышит более низкий тон, вследствие меньшей частоты и, соответственно, большей длины звуковых волн. Визуально аналогичный эффект распространения волн на поверхности воды можно наблюдать с берега при движении лодки или пловца.

Анализируя спектры электромагнитного излучения галактик, Хаббл зарегистрировал красное смещение - сдвиг наблюдаемых спектральных линий в красную (длинноволновую) сторону, что свидетельствовало об удалении галактик друг от друга с возрастающей скоростью 55 км/с на каждый миллион парсек. Заметим, что речь идет не о «разлете» галактических систем в пространстве, а о расширении самого пространства, подобно тому, как «разбегаются» точки, нанесенные на поверхность воздушного шара при последующем его надувании. Соответственно, вопрос о месте точки, из которой когда-то начался «разбег» материи, не корректен, потому что изначально все различаемые нами отдельные точки-координаты пространства находились вместе . Впервые термин «Большой взрыв » или «Большой хлопок » (Big Bang ) применил британский астроном Ф. Хойл (Sir Fred Hoyle; 1915-(19150624)2001) на одной из своих лекций в 1949 г.

В научном сообществе открытие Э. Хаббла вызвало не только широкий резонанс, но и острые дискуссии. Для надежного подтверждения новой, динамичной картины мира требовались новые факты.

В 1948 г. начали выходить работы русского и американского физика Георгия Антоновича Гамова (1904-1968) о «горячей Вселенной», основанные на модели А. Фридмана. Согласно Фридману, Взрыв породил пространство, наполненное сверхплотным веществом, из которого через миллиарды лет образовались наблюдаемые тела Вселенной - звезды, галактики и планеты. Георгий Гамов предположил, что первичное вещество мира было не только сверхплотным, но и очень горячим. Новая идея заключалась в том, что в горячем и плотном веществе ранней Вселенной происходили ядерные реакции, и в этом «ядерном котле» за несколько минут были синтезированы легкие химические элементы. Самым эффектным результатом данной теории стало предсказание космического фона излучения. По законам термодинамики электромагнитное излучение в ранней Вселенной должно было сосуществовать вместе с горячим веществом, оно не исчезает при общем расширении Космоса и сохраняется - только сильно охлажденным - до сих пор как «эхо Творения » или «эхо Большого взрыва ». Гамов смог ориентировочно оценить, какова должна быть температура гипотетического остаточного излучения в настоящее время. Расчет давал весьма низкие показатели, близкие к абсолютному нулю (0 К или −273,15 °C) – от 1 до 10 К. В 1950 г. Г. Гамов внес уточнения в расчеты и назвал температуру около 3 К.

В 1955 г. молодой советский радиоастроном Тигран Арамович Шмаонов экспериментально обнаружил шумовое СВЧ излучение с температурой около 3K, а в 1964 г. американские радиоастрономы А. Пензиас (Arno Allan Penzias; род. в 1933 г.) и Р. Вилсон (Robert Woodrow Wilson; род. в 1936 г.) открыли космический фон излучения и измерили его температуру: она оказалась равной именно 3 К. Это было самое крупное открытие в космологии со времен наблюдения Хабблом в 1929 г. общего расширения Вселенной. В 1978 году А. Пензиасу и Р. Вилсону была присуждена Нобелевская премия «за открытие микроволнового реликтового излучения ». Термин «реликтовое (т.е. древнейшее или остаточное) излучение » ввел советский астрофизик Иосиф Самуилович Шкловский (1916-1985). Таким образом, модель «горячей вселенной» Г. Гамова оказалась экспериментально подтвержденной.

Теория «Большого взрыва» предполагала, в частности, что Вселенная должна на 23% состоять из гелия. Проведенные измерения содержания гелия в звездах и туманностях подтвердили эти предсказания. Еще более впечатляющим является подтверждение предположений о количественном содержании в космическом веществе тяжелого изотопа водорода – дейтерия и элемента лития.

Изучение реликтового излучения в 1990-е гг. продолжилось при помощи зонда космического фона СОВЕ (Cosmic Background Explorer) агентства NASA. В 2003 и 2009 гг. были запущены специальные астрономические космические аппараты-спутники: WMAP (Wilkinson Microwave Anisotropy Probe) Национального управления США по аэронавтике и исследованию космического пространства и «Планк» (Европейское космическое агентство) для проведения высокоточных измерений параметров реликтового излучения.

Вместе с данными предшествующих измерений, полученная информация позволила физикам развить современную стандартную космологическую модель (ΛCDM (читается «Лямбда-СиДиЭм»; сокращение от Lambda-Cold Dark Matter ), согласно которой Вселенная заполнена, помимо обычной барионной материи, темной энергией (описываемой упоминаемой выше космологической постоянной Λ в уравнениях Эйнштейна) и холодной темной материей (Cold Dark Matter ). С высокой точностью был установлен возраст Вселенной и распределение по массам различных видов материи («обычная» барионная материя - 4 %, темная материя - 23 %, темная энергия - 73 %). Согласно этой модели возраст Вселенной оценивается в 13,75 млрд. лет. Выяснилось, что наблюдаемое неравномерное распределение вещества напоминает квазиупорядоченные структуры в виде сот с ячейками неправильной формы размерами порядка 100 млн. световых лет. Рождение гармоничной крупномасштабной структуры Вселенной в некоторых богословских моделях соотносится с библейской «твердью» (Быт. 1:6-8) второго творческого дня.

Реконструированная хронология Большого Взрыва может быть представлена в следующем виде (рассматриваются только некоторые этапы).

Нулевой этап. Если доверять математическим расчетам, до Большого взрыва все вещество и вся энергия Вселенной были сконцентрированы в одной геометрической точке с нулевыми размерами, нулевым временем, но с массой и давлением, стремящимися к бесконечности. Это состояние Г. Гамов предложил назвать Августинской эпохой - в честь блаженного Августина, который говорил о появлении времени вместе с материей и пространством. Это начальное состояние Вселенной называется также сингулярностью (лат. singularis - единственный). Однако, согласно принципу неопределенности В. Гейзенберга, рассмотренному нами в главе, посвященной квантовой механике, вещество никак не может быть «стянуто» в одну точку, т.к. невозможно одновременно вести речь о координатах и скорости частицы. Таким образом, момент начала творения – сингулярность - не подчиняется ни одному из известных законов физики.

В современной инфляционной модели (лат. inflatio - вздутие, раздутие) «началом всего» является восьмимерное пространство или вакуум (лат. vacuum - пустота), приближающееся по размерам к точке. Вакуум нельзя назвать абсолютной пустотой – это среда с особыми свойствами, находящаяся в равновесном состоянии: в ней существуют виртуальные частицы, которые «занимают» у ваккума энергию на краткий миг, чтобы родиться и, возвращая занятую энергию, тут же исчезнуть. Иными словами, происходят квантовые флуктуации полей в возбужденном вакууме. Одна из таких флуктуаций может вывести вакуум из состояния равновесия, виртуальные частицы начинают захватывать энергию без отдачи, становясь реальными. Первые появившиеся нестабильные частицы выдающийся физик И. Пригожин отождествлял с черными мини-дырами , распадающимися на обычную материю и излучение. В целом, процесс мог выглядеть таким образом: спонтанная флуктуация вакуума > появление черных мини-дыр > рождение пространства-времени > рождение элементарных частиц. «Существует некоторая аналогия с переохлажденной жидкостью и порогом перехода в кристаллическое состояние, - писал И. Пригожин, - Мы можем наблюдать в переохлажденной жидкости флуктуации, приводящие к образованию крохотных кристаллов, которые то появляются, то снова растворяются. Но если образуется крупный кристалл, то происходит необратимое событие – кристаллизация всей жидкости».

С точки зрения теории струн , упоминавшейся выше в главе, посвященной строению материи на уровне микромира, начальные условия до Большого взрыва описываются следующим образом: сначала все пространственные измерения плотно свернуты до минимальных размеров планковской длины - 10 −33 м. Температура и энергия высоки, но не бесконечны. В начальный момент существования Вселенной все пространственные измерения совершенно равноправны и полностью симметричны: все они свернуты в «многомерный комок» планковских размеров (10 −33 м). Далее Вселенная проходит первую стадию понижения симметрии, когда в планковский момент времени (10 −43 с) три пространственных измерения «отбираются» для последующего расширения и принимают наблюдаемую ныне форму, а остальные сохраняют исходный планковский размер.

Инфляционный период . Прошедшее с начала расширения Вселенной время составляет 10 −33 с. За этот период с огромной скоростью происходит увеличение ее пространственных размеров до 10 50 раз. Отсюда и применение термина - «инфляция ». Происходит вторичный разогрев материи.

Кварковая эпоха – от 10 −12 до 10 −6 с. Электрослабая симметрия нарушена, все четыре фундаментальные физические взаимодействия существуют раздельно. Кварки еще не объединены в адроны. Вселенная заполнена кварк-глюонной плазмой, лептонами и фотонами.

Адронная и Лептонная эры – от 10 −6 до 3 с. На данном этапе температура понизилась до 10 13 К, прекратилось свободное существование кварков. Начался процесс аннигиляции - взаимоуничтожения барион-антибарионных, а затем лептон-антилептонных пар, сопровождающийся излучением энергии или рождением новых частиц. Благодаря нарушению симметрии вещества-антивещества остается малый избыток барионов над антибарионами (около 1:10 9). Вещество становится прозрачным для нейтрино.

Протонная (фотонная) эпоха – от 3 минут до 380 тыс. лет. Образуются атомы, идет нуклеосинтез гелия, тяжелого изотопа водорода – дейтерия и лития. Вещество начинает доминировать над излучением, что приводит к изменению режима расширения Вселенной. В конце эпохи Вселенная становится прозрачной для фотонов, возникает реликтовое излучение.

Темные века - от 380 тыс. до 150 млн. лет. Однородная расширяющаяся Вселенная заполнена водородом, гелием, реликтовым излучением, излучением атомарного водорода на волне 21 см.

Эры Реионизации и Вещества – от 150 млн. до 10 млрд. лет. Из уплотнений вещества образуются первые звезды, квазары, галактики, скопления и сверхскопления галактик. Водород реионизируется светом звезд и квазаров.

Источником собственного свечения звезд являются термоядерные реакции превращения водорода в гелий. Серии ядерных процессов могут порождать более тяжелые химические элементы. Звезды классифицируются по целому раду параметров: размеру, спектрам излучения, яркости, элементарному химическому составу и т.п. В 1910 г. датским астрономом Э. Герцшпрунгом (Ejnar Hertzsprung; 1873-1967) и американским астрофизиком Г. Расселом (Henry Norris Russell; 1877-1957) была разработана специальная диаграмма для классификации звезд и описания процессов их эволюции, носящая в настоящее время имена этих ученых (диаграмма Герцшпрунга-Рассела ).

История Вселенной
  • Основные этапы развития Вселенной
Наблюдаемые процессы Теоретические изыскания
  • Вселенная Фридмана
Время Эпоха Событие Время от сегодняшнего момента, лет
0 Сингулярность Большой взрыв . 13,7 млрд
0 - 10 −43 с Планковская эпоха Рождение частиц . 13,7 млрд
10 −43 - 10 −35 с Эпоха Великого объединения Отделение гравитации от объединённого электрослабого и сильного взаимодействия. Возможное рождение монополей . Разрушение Великого объединения. 13,7 млрд
10 −35 - 10 −32 с Инфляционная эпоха Вселенная экспоненциально увеличивает свой радиус на много порядков. Структура первичной квантовой флуктуации , раздуваясь, даёт начало крупномасштабной структуре Вселенной . Вторичный нагрев. 13,7 млрд
10 −32 - 10 −12 с Электрослабая эпоха Вселенная заполнена кварк-глюонной плазмой, лептонами, фотонами, W- и Z-бозонами, бозонами Хиггса. Нарушение суперсимметрии. 13,7 млрд
10 −12 - 10 −6 с Кварковая эпоха Электрослабая симметрия нарушена, все четыре фундаментальных взаимодействия существуют раздельно. Кварки ещё не объединены в адроны. Вселенная заполнена кварк-глюонной плазмой, лептонами и фотонами. 13,7 млрд
10 −6 - 100 с Адронная эпоха Адронизация . Аннигиляция барион -антибарионных пар. Благодаря CP-нарушению остаётся малый избыток барионов над антибарионами (около 1:10 9). 13,7 млрд
100 секунд - 3 минуты Лептонная эпоха Аннигиляция лептон-антилептонных пар. Распад части нейтронов . Вещество становится прозрачным для нейтрино . 13,7 млрд
3 минуты - 380 000 лет Протонная эпоха Нуклеосинтез гелия, дейтерия, следов лития-7 (20 минут). Вещество начинает доминировать над излучением (70 000 лет), что приводит к изменению режима расширения Вселенной. В конце эпохи (380 000 лет) происходит рекомбинация водорода и Вселенная становится прозрачной для фотонов теплового излучения. 13,7 млрд
380 000-550 млн лет Тёмные века Вселенная заполнена водородом и гелием, реликтовым излучением, излучением атомарного водорода на волне 21 см. Звёзды , квазары и другие яркие источники отсутствуют. 13,15 млрд
550 млн - 800 млн лет Реионизация Образуются первые звёзды (звёзды популяции III), квазары , галактики , скопления и сверхскопления галактик. Реионизация водорода светом звёзд и квазаров. 12,7 млрд
800 млн лет - 8,9 млрд лет Эра вещества Образование межзвёздного облака, давшего начало Солнечной системе . 4,8 млрд
8,9 млрд лет - 9,1 млрд лет Образование Земли и других планет нашей Солнечной системы, затвердевание пород. 4,6 млрд

Напишите отзыв о статье "Хронология Большого взрыва"

Примечания

Источники

  • // A TREE OF KNOWLEDGE online book

Отрывок, характеризующий Хронология Большого взрыва

– Нет, Север. Не можешь. Но я буду рада, если ты побудешь со мною рядом... Мне приятно видеть тебя – грустно ответила я и чуть помолчав, добавила: – Мы получили одну неделю... Потом Караффа, вероятнее всего, заберёт наши короткие жизни. Скажи, неужели они стоят так мало?.. Неужели и мы уйдём так же просто, как ушла Магдалина? Неужели не найдётся никого, кто очистил бы от этой нелюди наш мир, Север?..
– Я не пришёл к тебе, чтобы отвечать на старые вопросы, друг мой... Но должен признаться – ты заставила меня передумать многое, Изидора... Заставила снова увидеть то, что я годами упорно старался забыть. И я согласен с тобою – мы не правы... Наша правда слишком «узка» и бесчеловечна. Она душит наши сердца... И мы, становимся слишком холодны, чтобы правильно судить происходящее. Магдалина была права, говоря, что наша Вера мертва... Как права и ты, Изидора.
Я стояла, остолбенело уставившись на него, не в силах поверить тому, что слышу!.. Был ли это тот самый, гордый и всегда правый Север, не допускавший какой-либо, даже малейшей критики в адрес его великих Учителей и его любимейшей Мэтэоры?!!
Я не спускала с него глаз, пытаясь проникнуть в его чистую, но намертво закрытую от всех, душу... Что изменило его столетиями устоявшееся мнение?!. Что подтолкнуло посмотреть на мир более человечно?..
– Знаю, я удивил тебя, – грустно улыбнулся Север. – Но даже то, что я открылся тебе, не изменит происходящего. Я не знаю, как уничтожить Караффу. Но это знает наш Белый Волхв. Хочешь ли пойти к нему ещё раз, Изидора?
– Могу ли я спросить, что изменило тебя, Север? – осторожно спросила я, не обращая внимания на его последний вопрос.
Он на мгновение задумался, как бы стараясь ответить как можно более правдиво...
– Это произошло очень давно... С того самого дня, как умерла Магдалина. Я не простил себя и всех нас за её смерть. Но наши законы видимо слишком глубоко жили в нас, и я не находил в себе сил, чтобы признаться в этом. Когда пришла ты – ты живо напомнила мне всё произошедшее тогда... Ты такая же сильная и такая же отдающая себя за тех, кто нуждается в тебе. Ты всколыхнула во мне память, которую я столетиями старался умертвить... Ты оживила во мне Золотую Марию... Благодарю тебя за это, Изидора.
Спрятавшись очень глубоко, в глазах Севера кричала боль. Её было так много, что она затопила меня с головой!.. И я никак не могла поверить, что наконец-то открыла его тёплую, чистую душу. Что наконец-то он снова был живым!..
– Север, что же мне делать? Разве тебе не страшно, что миром правят такие нелюди, как Караффа?..
– Я уже предложил тебе, Изидора, пойдём ещё раз в Мэтэору, чтобы увидеть Владыко... Только он может помочь тебе. Я, к сожалению, не могу...
Я впервые так ярко чувствовала его разочарование... Разочарование своей беспомощностью... Разочарование в том, как он жил... Разочарование в своей устаревшей ПРАВДЕ...
Видимо, сердце человека не всегда способно бороться с тем, к чему оно привыкло, во что оно верило всю свою сознательную жизнь... Так и Север – он не мог так просто и полностью измениться, даже сознавая, что не прав. Он прожил века, веря, что помогает людям... веря, что делает именно то, что, когда-то должно будет спасти нашу несовершенную Землю, должно будет помочь ей, наконец, родиться... Верил в добро и в будущее, несмотря на потери и боль, которых мог избежать, если бы открыл своё сердце раньше...
Но все мы, видимо, несовершенны – даже Север. И как бы не было больно разочарование, с ним приходится жить, исправляя какие-то старые ошибки, и совершая новые, без которых была бы ненастоящей наша Земная жизнь...
– Найдётся ли у тебя чуточку времени для меня, Север? Мне хотелось бы узнать то, что ты не успел рассказать мне в нашу последнюю встречу. Не утомила ли я тебя своими вопросами? Если – да, скажи мне, и я постараюсь не докучать. Но если ты согласен поговорить со мной – ты сделаешь мне чудесный подарок, так как то, что знаешь ты, мне не расскажет уже никто, пока я ещё нахожусь здесь, на Земле…

Сегодня мне хочется рассказать об истории нашей вселенной. О том, как из маленькой точки мироздание превратилось в то, что мы сейчас наблюдаем вокруг себя.

Ну что, поехали.

Вселенная существует почти 14 миллиардов лет. За этот очень длинный промежуток времени, она преодолела несколько эпох своей истории. Сейчас идёт 13--ый этап развития Вселенной, который называется "эра вещества".

Как же называются все фазы эволюции Вселенной, сколько они длились, что при них происходило? Как развивался окружающий нас мир?

Данная статья ответит Вам на эти вопросы.

Я опишу все этапы истории Вселенной в порядке с самого раннего до современного. Поэтому, начнём с "августинской эпохи".

Августинская эпоха.

Эта эпоха включает в себя состояние вселенной "до" и в момент Большого Взрыва. О данном этапе развития мира ничего толком не известно - существуют лишь гипотезы - так как современные физические теории не могут описать события до "планковской эпохи". Учёные знают лишь то, что в самом конце данной эры произошёл Большой взрыв - внезапано началось расширение пространства. К началу этого поистине грандиозного события, Вселенная была заточена в очень маленькую точку, обладая бесконечными плотностью и температурой, т.е. находилась в состоянии "космологической сингулярности".

Планковская эпоха.

Это самый ранний этап развития Вселенной, о котором существуют какие-либо теоретические предположения и описания. Данная фаза началась сразу после большого Взрыва и длилась в течение т.н. "планковского времени" от 0 до 10 -43 секунд после рождения Вселенной.

В то время (происходило чёрт знает что) размеры Вселенной были очень малы. Настолько, что квантовые эффекты - явления, происходящие с частицами - преобладали над физическими взаимодействиями.

Вселенная в эту эпоху также обладала планковской температурой (10 32 Кельвинов), энергией (10 19 миллиардов электронвольт), радиусом (10 -35 метров, что равно планковской длине) и плотностью (10 97 кг/м 3).

Все четыре типа взаимодействия частиц и состоящих из них тел (их ещё называют "фундаментальными") - сильное ядерное и слабое ядерное, электромагнитное, гравитационное - были тогда неотличимы друг от друга и объединены. Но так длилось недолго. Всему помешала очень высокая температура и плотность материи.

Эпоха великого объединения.

Эта фаза развития Вселенной началась с 10 -43 секунд и завершилась спустя 10 -35 секунд после Большого Взрыва. В самом её начале произошёл фазовый переход материи (схожий на конденсацию жидкости из газа, но применительно к элементарным частицам). Это случилось из-за отделения гравитации от "единого фундаментального взаимодействия".

Эпоха Великого объединения закончилась очередным разделением. Вселенная охладилась до отметки в 10 28 Кельвинов и сильное взаимодействие стало самостоятельным. Теперь только электромагнитные и слабые ядерные силы представляли единое целое.

Такое событие повлекло за собой новый фазовый переход. Благодаря ему в следующей эпохе истории Вселенной появились новые частицы, а пространство-время начало масштабное и резкое расширение. Пошли серьёзные изменения в плотности распределении вещества.

Инфляционная стадия.

Фаза инфляции расположена на временной шкале между 10 -35 и 10 -32 секунд после Большого Взрыва. В ту эпоху Вселенная увеличила свои размеры во множество раз. Раньше радиус всего мира был равен "планковской длине", а теперь космос расширился до размеров аж целого апельсина. И далее продолжал разрастаться с ускорением.

Образовалось несколько видов частиц. Это были кварки (фундаментальные частицы, из которых состоят адроны - например, протоны и нейтроны), электроны, гипероны и нейтрино (нейтральные фундаментальные частицы из класса лептонов).

Через некоторое время температура Вселенной снизилось, благодаря чему произошёл еще один фазовый переход. Из-за этого случилось т.н. "нарушение СР-инвариантности" и начались первые процессы такого явления, как "бариогенезис".

Бариогенезис - это объединение кварков и глюонов в новые, составные частицы - адроны.

Кроме того, возникла ещё и загадочная "барионная асимметрия Вселенной" - преобладание материи над анти-материей. Ученые до сих пор не смогли объяснить причины её возникновения.

Помимо выше написанного, у физиков и космологов есть предположения, что в данную эру Вселенная прошла через несколько циклов повторных нагревании и охлаждении.

К концу эпохи инфляции, строительным материалом Вселенной стала плазма из кварков, анти-кварков и глюонов (переносчиков сильного взаимодействия).

Дальнейшее снижение температуры Вселенной привело к очередному фазовому переходу. Он заключается в образовании физических сил, фундаментальных взаимодействий и элементарных частиц в их современной форме.

Данный фазовый переход уместился аж в три эпохи и закончился "первичным нуклеосинтезом".

Электрослабая эпоха.

Между 10 -32 и 10 -12 секунд после рождения мироздания. Электромагнитное и слабое взаимодействия до сих пор представляли единое электрослабое, т.к. температура Вселенной всё еще очень высока. тогда появились бозоны Хиггса (те самые которые 3 года назад нашли на Большом Андронном Коллайдере), W - и Z - базоны.

Помимо новых экзотических частиц и кварк-глюонной плазмы, космос был заполнен фотонами (фундаментальными частицами, или квантами, электромагнитного излучения) и лептонами.

Эпоха кварков.

Данная фаза расположена в период от 10 -12 до 10 -6 секунд после Большого Взрыва. Тогда случилось нарушение "электрослабой симметрии". Теперь все фундаментальные взаимодействия существуют отдельно друг друга.

В кварковой эпохе температура и энергия всё ещё слишком высоки, чтобы кварки окончательно слились в адроны.

Знаменательное превращение произойдёт только на следующем этапе развития мира.

Эпоха Адронов.

Между 10 -6 и 100 секунд после рождения Вселенной. Наконец-то кварк-глюонная плазма охладилась до такой степени, что бариогенезис завершился и на свет появились адроны и антиадроны. Однако большинство из этих частиц аннигилировали (взаимоуничтожаются). Сохранился лишь их малый остаток.

Вскоре Вселенная охладилась и расширилась настолько, что её температуры хватило всего лишь на создание лептонов и антилептонов. Эти частицы быстро становятся преобладающей массой во Вселенной.

Эпоха Лептонов.

В период от 100 секунд до 3 минут после Большого Взрыва расположилась эпоха лептонов. Тогда Вселенная стала прозрачной для нейтрино.

Космос продолжает охлаждаться. В конце эпохи температура снизилась до отметки, при которой образование новых лептонов стало невозможным. И пар "лептон-антилептон" настигает участь адронов. Большинство из них взаимоуничтожаются. Во вселенной осталось совсем небольшое количество лептонов, благодаря чему наступило доминирование фотонов.

Эпоха Нуклеосинтеза.

Одновременно с эпохой лептонов шёл и данный этап истории Вселенной. Благодаря достаточному охлаждению материи, выжившие адроны объединились в атомные ядра тяжелее водорода. Этот процесс и называют "первичным нуклеосинтезом".

В течение данной фазы возник первичный состав звёздного вещества: 75% водорода, почти 25% гелия, немного лития, дейтерия и бора.

Протонная Эра.

Началась с 3 минут после Большого взрыва и окончилась через 380.000 лет. Вещество стало доминировать над излучением.

В конце эпохи произошла рекомбинация (процесс, обратный ионизации) водорода. Из-за дальнейшего снижения температуры и расширения Вселенной, гравитация стала доминирующей силой.

Спустя 379.000 лет после Большого Взрыва, при температуре Вселенной в 3000 Кельвинов, произошло знаменательное событие - ядра атомов и электроны объединились в первые атомы. Началась "первичная рекомбинация". Это был поворотный момент: материя перешла из плазмы, непрозрачной для электромагнитного излучения в газообразное состояние. Вселенная наконец-то стала прозрачной.

В прошлые 379.000 лет фотоны страдали как могли. Различные заряженные элементарные частицы, коих раньше было вагон и маленькая тележка, препятствовали свету. Кванты света с ними взаимодействовали, из-за чего испытывали постоянные "пинки" и "толчки" со стороны "собратьев". Фотоны всё время отклонялись, либо поглощались заряженными частицами. В итоге, свет очень сильно рассеивался. Если бы наблюдатель попал в эту эпоху, он бы увидел перед собой один лишь густой туман.

Фотоны, как известно, взаимодействуют только с положительно и отрицательно заряженными частицами. И в конце "протонной эры" кванта света наконец-то обернулась удача. Отрицательные электроны и положительные протоны сгруппировались вместе с нейтронами в нейтрально заряженные атомы. Благодаря новым составным частицам, фотоны смогли свободно двигаться в пространстве и почти не взаимодействовать с веществом.

Реликтовое излучение и есть те самые фотоны, испущенные плазмой в сторону будущего расположения Земли и в связи с рекомбинацией избежавшие рассеяния. Они и до сих пор достигают нас, преодолевая расширяющееся пространство.

Тёмные века.

Наступили сразу после "протонной эры" и продлились 550 млн. лет. Вселенная настолько остыла, что после протонной эры, когда она переливалась красными оттенками, космос был ввергнут в черноту.

Это была скучная эпоха полной тьмы. Источников света (звезд или галактик) не было. Планет и астероидов уж подавно. Космос был заполнен преимущественно водородом, гелием и микроволновым реликтовым излучением.

Реионизация.

Часть истории Вселенной, которая началась сразу после Тёмных Веков и длилась 250 миллионов лет. По сравнению с прошлой, данная эра была повеселее и красочнее.

Начали образование кластеры - обособленные скопления пыли межзвёздного газа, которые возникали благодаря силам притяжения. Первыми плотными объектами стали квазары. Потом вспыхнули первые звёзды, появились газопылевые туманности.

Под силой гравитации они объединились в звёздные скопления, те - в галактики. Последние сформировали собственные скопления и сверхскопления.

Тогда, в недрах звёзд, в больших количествах образовались тяжелые элементы. Взрывы сверхновых разнесли их по Вселенной, из которых после сформировались холодные планеты, астероиды, метеорные тела, и, в конце концов, живые организмы.

Эра вещества.

Начиная с 800 миллионов лет после Большого Взрыва. Данная Эпоха идёт до сих пор.

Через несколько миллиардов лет после "реионизации" началось формирование планет и планетарных систем, в том числе и Солнечной Системы. Чуть более 8.4 миллиардов лет после Большого взрыва сформировалась Земля, а через ещё 500 миллионов лет на ней возникла жизнь.

Спустя 13.7 миллиардов лет после рождения Вселенной появились первые люди. Пройдет ещё пара миллионов лет и их потомки - представители вида Homp Sapiens - изобретут автомобили и самолёты, разработают релятивистскую и квантовую физику, освоят атомную энергию, исследуют ближайшие окрестности Вселенной, создадут Интернет, напишут эту стать. :)

История Вселенной: от Большого Взрыва до наших дней

22 оценок, Средняя оценка: 4.9 из 5