Кинетика физическая.

), то можно вычислить все характеристики неравновесной системы. Вычисление полной функции распределения является практически неразрешимой задачей, но для определения многих свойств физических систем, например, потока энергии или импульса, достаточно знать функцию распределения небольшого числа частиц, а для газов малой плотности - одной частицы.

В кинетике используется существенное различие времён релаксации в неравновесных процессах; например, для газа из частиц или квазичастиц, время свободного пробега значительно больше времени столкновения между частицами. Это позволяет перейти от полного описания неравновесного состояния функцией распределения по всем координатам и импульсам к сокращённому описанию при помощи функции распределения одной частицы по её координатам и импульсам.

Кинетическое уравнение

Основной метод физической кинетики - решение кинетического уравнения Больцмана для одночастичной функции распределения f(x,\;p,\;t) молекул в фазовом пространстве их координат x и импульсов p. Функция распределения удовлетворяет кинетическому уравнению:

\frac{\partial f}{\partial t}+\frac{\vec{p}}{m}\frac{\partial f}{\partial\vec{x}}+\vec{F}\frac{\partial f}{\partial\vec{p}}=\mathrm{St}\,f, \omega\,dp"dp"_1=|v-v_1|\,d\sigma,

где p, p_1 - импульсы молекул до столкновения, v, v_1 - соответственно скорости, p", p"_1 - их импульсы после столкновения, f, f_1 - функции распределения молекул до столкновения, f", f"_1 - их функции распределения после столкновения.

Для газа из сложных молекул, обладающих внутренними степенями свободы, их следует учитывать в функции распределения. Например, для двухатомных молекул с собственным моментом вращения M функции распределения будут зависеть также от M.

Из кинетического уравнения следует теорема Больцмана - убывание со временем H-функции Больцмана (среднего логарифма функции распределения) или возрастание энтропии, так как она равна H-функции Больцмана с обратным знаком.

Уравнения переноса

Физическая кинетика позволяет получить уравнения баланса для средней плотности вещества, импульса и энергии. Например, для простого газа плотность \rho, гидродинамическая скорость V и средняя энергия \bar{E} удовлетворяют уравнениям баланса:

\frac{\partial\rho}{\partial t}+\mathrm{div}(\rho V)=0, - также известное как уравнение непрерывности \frac{\partial}{\partial t}(\rho V_\alpha)+\sum_\beta{\frac{\partial\Pi_{\alpha\beta}}{\partial x_\beta}}=0, \frac{\partial}{\partial t}n\bar{E}+\mathrm{div}(q)=0, \Pi_{\alpha\beta}=\int mV_\alpha V_\beta f\,dp,

где \Pi_{\alpha\beta} - тензор плотности потока импульса, m - масса частиц, n - плотность числа частиц, q=\int EVf\,dp - плотность потока энергии.

Если состояние газа мало отличается от равновесного, то в малых элементах объёма устанавливается распределение, близкое к локально равновесному распределению Максвелла , с температурой, плотностью и гидродинамической скоростью, соответствующими рассматриваемой точке газа. В этом случае неравновесная функция распределения мало отличается от локально равновесной, и решение кинетического уравнения даёт малую поправку к последней, пропорциональную градиентам температуры \nabla T и гидродинамической скорости \nabla V, так как \mathrm{St}\,f_0=0.

С помощью неравновесной функции распределения можно найти поток энергии (в неподвижной жидкости) q=-\lambda\nabla T, где \lambda - коэффициент теплопроводности, и тензор плотности потока импульса

\Pi_{\alpha\beta}=\rho V_\alpha V_\beta+\delta_{\alpha\beta}P-\sigma"_{\alpha\beta},

где \sigma"_{\alpha\beta}=\eta\left[\left(\frac{\partial V_\alpha}{\partial x_\beta}+\frac{\partial V_\beta}{\partial x_\alpha}\right)-\frac{2}{3}\delta_{\alpha\beta}\,\mathrm{div}\,V\right] - тензор вязких напряжении, \eta - коэффициент сдвиговой вязкости, P - давление. Эти два соотношения известны в механике сплошных сред как закон теплопроводности Фурье и закон вязкости Ньютона . Для газов с внутренними степенями свободы \sigma"_{\alpha\beta} содержит также член \zeta\delta_{\alpha\beta}, где \zeta - коэффициент «второй», объёмной вязкости , проявляющейся лишь при движениях, в которых \mathrm{div}\,V\ne 0. Для кинетических коэффициентов \lambda, \eta, \zeta получаются выражения через эффективные сечения столкновений, которые, в свою очередь, рассчитываются через константы молекулярных взаимодействий. В многокомпонентной смеси поток какого-либо компонента включает в себя диффузионный поток, пропорциональный градиенту концентрации вещества в смеси с коэффициентом диффузии, и поток за счет термодиффузии (эффект Соре), пропорциональный градиенту температуры с коэффициентом термодиффузии. Поток тепла включает помимо обычного потока за счёт теплопроводности, пропорционального градиенту температуры, дополнительную составляющую, пропорциональную градиентам концентраций компонентов и описывающую диффузионную теплопроводность (эффект Дюфура). Кинетическая теория даёт выражения для этих кинетических коэффициентов через эффективные сечения столкновений, при этом кинетические коэффициенты для перекрёстных явлений вследствие теоремы Онсагера оказываются равными. Эти соотношения являются следствием микроскопической обратимости уравнений движения частиц системы, то есть инвариантности их относительно обращения времени.

Уравнение баланса импульса с учётом выражения для плотности потока импульса через градиент скорости даёт уравнения Навье - Стокса , уравнение баланса энергии с учётом выражения для плотности потока тепла даёт уравнение теплопроводности , уравнение баланса числа частиц определённого сорта с учётом выражения для диффузионного потока даёт уравнение диффузии . Такой гидродинамический подход справедлив, если длина свободного пробега \lambda значительно меньше характерных размеров областей неоднородности.

Газы и плазма

Физическая кинетика позволяет исследовать явления переноса в разреженных газах, когда отношение длины свободного пробега \lambda к характерным размерам задачи L (то есть число Кнудсена \lambda/L) уже не очень мало́ и имеет смысл рассматривать поправки порядка 1/L (слабо разреженные газы). В этом случае кинетика объясняет явления температурного скачка и течения газов вблизи твёрдых поверхностей.

Для сильно разреженных газов, когда \lambda/L>1, гидродинамические уравнения и обычное уравнение теплопроводности уже не применимы и для исследования процессов переноса необходимо решать кинетическое уравнение с определёнными граничными условиями на поверхностях, ограничивающих газ. Эти условия выражаются через функцию распределения молекул, рассеянных из-за взаимодействия со стенкой. Рассеянный поток частиц может приходить в тепловое равновесие со стенкой, но в реальных случаях это не достигается. Для сильно разреженных газов роль коэффициента теплопроводности играют коэффициенты теплопередачи. Например, количество тепла Q, отнесённое к единице площади параллельных пластинок, между которыми находится разреженный газ, равно Q=\varkappa(T_2-T_1)/L , где T_1 и T_2 - температуры пластинок, L - расстояние между ними, \varkappa - коэффициент теплопередачи.

Теория явлений переноса в плотных газах и жидкостях значительно сложнее, так как для описания неравновесного состояния уже недостаточно одночастичной функции распределения, а нужно учитывать функции распределения более высокого порядка. Частичные функции распределения удовлетворяют цепочке зацепляющихся уравнений (так называемых уравнений Боголюбова или цепочке ББГКИ , то есть уравнений Боголюбова - Борна - Грина - Кирквуда - Ивона). С помощью этих уравнений можно уточнить кинетическое уравнение для газов средней плотности и исследовать для них явления переноса.

Физическая кинетика двухкомпонентной плазмы описывается двумя функциями распределения (для электронов f_e, для ионов f_i), удовлетворяющими системе двух кинетических уравнений (уравнений Власова). На частицы плазмы действуют силы

F_e=-e\left(E+\frac{v\times B}{c}\right),\quad F_i=-Z_eF_e,

где Z_e - заряд иона, E - напряжённость электрического поля, B - магнитная индукция, удовлетворяющие уравнениям Максвелла. Уравнения Максвелла содержат средние плотности тока j и заряда \rho, определяемые с помощью функций распределения:

j=e\int v(Zf_i-f_e)\,dp,\quad p=e\int (Zf_i-f_e)\,dp.

Таким образом, кинетические уравнения и уравнения Максвелла образуют связанную систему уравнений Власова - Максвелла , определяющую все неравновесные явления в плазме. Такой подход называется приближением самосогласованного поля. При этом столкновения между электронами учитываются не явно, а лишь через создаваемое ими самосогласованное поле. При учёте столкновений электронов возникает кинетическое уравнение, в котором эффективное сечение столкновений очень медленно убывает с ростом прицельного расстояния, а также становятся существенными столкновения с малой передачей импульса, в интеграле столкновений появляется логарифмическая расходимость. Учёт эффектов экранирования позволяет избежать этой трудности.

Конденсированные среды

Физическая кинетика неравновесных процессов в диэлектриках основана на решении кинетического уравнения Больцмана для фононов решётки. Взаимодействие между фононами вызвано ангармоническими членами гамильтониана решётки относительно смещения атомов из положения равновесия. При простейших столкновениях один фонон распадается на два или происходит слияние двух фононов в один, причём сумма их квазиимпульсов либо сохраняется (нормальные процессы столкновений), либо меняется на вектор обратной решётки (процессы переброса). Конечная теплопроводность возникает при учёте процессов переброса. При низких температурах, когда длина свободного пробега больше размеров образца L, роль длины свободного пробега играет L. Кинетическое уравнение для фононов позволяет исследовать теплопроводность и поглощение звука в диэлектриках. Если длина свободного пробега для нормальных процессов значительно меньше длины свободного пробега для процессов переброса, то система фононов в кристалле при низких температурах подобна обычному газу. Нормальные столкновения устанавливают внутреннее равновесие в каждом элементе объёма газа, которьй может двигаться со скоростью V, мало меняющейся на длине свободного пробега для нормальных столкновений. Поэтому можно построить уравнения гидродинамики фононного газа в диэлектрике .

Физическая кинетика металлов основана на решении кинетического уравнения для электронов, взаимодействующих с колебаниями кристаллической решётки. Электроны рассеиваются на колебаниях атомов решётки, примесях и дефектах, нарушающих её периодичность, причём возможны как нормальные столкновения, так и процессы переброса. Электрическое сопротивление возникает в результате этих столкновений. физическая кинетика объясняет термоэлектрические, гальваномагнически и термомагнинтные явления, скин-эффект , циклотронный резонанс в высокочастотных полях и другие кинетические эффекты в металлах . Для сверхпроводников она объясняет особенности их высокочастотного поведения.

Физическая кинетика магнитных явлений основана на решении кинетического уравнения для магнонов . Она позволяет вычислить динамическии восприимчивости магнитных систем в переменных полях, изучить кинетику процессов намагничивания.

Физическая кинетика явлений при прохождении быстрых частиц через вещество основана на решении системы кинетических уравнений для быстрых частиц и вторичных частиц, возникающих при столкновениях, например для \gamma-лучей (фотонов) с учётом различных процессов в среде (фотоэффекта , комптоновского рассеяния , образования пар). В этом случае кинетика позволяет вычислить коэффициенты поглощения и рассеяния быстрых частиц.

Фазовые переходы

Физическая кинетика фазовых переходов первого рода, то есть со скачком энтропии, связана с образованием и ростом зародышей новой фазы. Функция распределения зародышей по их размерам (если зародыши считать макроскопическими образованиями, а процесс роста - медленным) удовлетворяет уравнению Фоккера - Планка :

\frac{\partial f}{\partial t}=\frac{\partial}{\partial \alpha}\left(D\frac{\partial f}{\partial\alpha}-Af\right),

где \alpha - радиус зародыша, D - «коэффициент диффузии зародышей по размерам», A - пропорционально минимальной работе, которую нужно затратить на создание зародыша данного размера. Кинетика фазовых переходов второго рода в наиболее простом приближении основана на уравнении релаксации параметра порядка \eta, характеризующего степень упорядоченности, возникающей при фазовом переходе (уравнение Ландау - Халатникова):

\frac{\partial\eta}{\partial t}=-\gamma\frac{\partial\Omega}{\partial\eta},

где \gamma - постоянный коэффициент, \Omega - термодинамический потенциал в переменных T и \eta, вблизи точки фазового перехода зависящий от \eta. Для этой зависимости используется разложение по степеням \eta и T-T_c, где T_c - температура фазового перехода.

Явления переноса в жидкостях

Теорию явлений переноса в жидкостях также можно отнести к физической кинетике. Xотя для жидкостей метод кинетических уравнений непригоден, для них возможен более общий подход, основанный на иерархии времён релаксации. Для жидкости время установления равновесия в макроскопически малых (но содержащих ещё большое число молекул) элементарных объёмах значительно меньше, чем время релаксации во всей системе, вследствие чего в малых элементах объёма приближённо устанавливается статистическое равновесие. Поэтому в качестве исходного приближения при решении уравнения Лиувилля можно принять локально равновесное распределение Гиббса с температурой T(x,\;t), химическим потенциалом \mu(x,\;t) и гидродинамической скоростью V(x,\;t), соответствующими рассматриваемой точке жидкости. Например, для однокомпонентной жидкости локально равновесная функция распределения (или матрица плотности) имеет вид

f=\frac{1}{Z}\exp\left(-\int\beta(x,\;t)\,dx\right),

  • \beta(x,\;t)=\frac{1}{kT(x,\;t)},
  • H"(x)= H(x)-p(x)B(x,\;t)+\frac{1}{2}mn(x)V^2(x,\;t) - плотность энергии в системе координат, движущейся вместе с элементом жидкости,
  • H(x) - плотность энергии в неподвижной системе координат,
  • p(x) - плотность импульса,
  • n(x) - плотность числа частиц, рассматриваемые как фазовые функции, то есть функции от координат и импульсов всех частиц, например n(x)=\sum_j^N\delta(x-x_j).
  • {{#if:Боголюбов Н. Н. |{{#ifeq:{{#invoke:String|sub|Боголюбов Н. Н. |-1}}| |Боголюбов Н. Н. Боголюбов Н. Н. |-6|-2}}| |Боголюбов Н. Н. |{{#ifeq:{{#invoke:String|sub|Боголюбов Н. Н. |-6|-2}}|/span|Шаблон:±. |Шаблон:±. }}}}}} }}{{#if: |{{#if: |[{{{ссылка часть}}} {{{часть}}}]| {{{часть}}}}} // }}{{#if:|[[:s:{{{викитека}}}|Проблемы динамической теории в статистической физике]]|{{#if: |Проблемы динамической теории в статистической физике |{{#if:|[{{{ссылка}}} Проблемы динамической теории в статистической физике]|Проблемы динамической теории в статистической физике}}}}}}{{#if:| = {{{оригинал}}} }}{{#if:| / {{{ответственный}}}.|{{#if:||.}}}}{{#if:Проблемы динамической теории в статистической физике|{{#if:| {{#if:| = {{{оригинал2}}} }}{{#if:| / {{{ответственный2}}}.|{{#if:||.}}}}}}}}{{#if:| - {{{издание}}}.}}{{#switch:{{#if:М.|м}}{{#if:Изд-во Гостехиздат|и}}{{#if:1946|г}}
|миг= - Шаблон:Указание места в библиоссылке : Изд-во Гостехиздат, 1946. |ми= - Шаблон:Указание места в библиоссылке : Изд-во Гостехиздат. |мг= - Шаблон:Указание места в библиоссылке , 1946. |иг= - Изд-во Гостехиздат, 1946. |м= - Шаблон:Указание места в библиоссылке |и= - Изд-во Гостехиздат. |г= - 1946.

DOI :{{{doi}}} {{#ifeq:Шаблон:Str left |10.|| [Ошибка: Неверный DOI! ] {{#if:||}}}}}}; переиздано в {{#if:Николай Николаевич Боголюбов.|{{#ifeq:{{#invoke:String|sub|Николай Николаевич Боголюбов.|-1}}| |Николай Николаевич Боголюбов.|{{#ifeq:{{#invoke:String|sub|Николай Николаевич Боголюбов.|-6|-2}}| |Николай Николаевич Боголюбов.|{{#ifeq:{{#invoke:String|sub|Николай Николаевич Боголюбов.|-6|-2}}|/span|Шаблон:±. |Шаблон:±. }}}}}} }}{{#if: |{{#if: |[{{{ссылка часть}}} {{{часть}}}]| {{{часть}}}}} // }}{{#if:|[[:s:{{{викитека}}}|Собрание научных трудов в 12-ти тт]]|{{#if: |Собрание научных трудов в 12-ти тт |{{#if:|[{{{ссылка}}} Собрание научных трудов в 12-ти тт]|Собрание научных трудов в 12-ти тт}}}}}}{{#if:| = {{{оригинал}}} }}{{#if:| / {{{ответственный}}}.|{{#if:||.}}}}{{#if:Собрание научных трудов в 12-ти тт|{{#if:| {{#if:| = {{{оригинал2}}} }}{{#if:| / {{{ответственный2}}}.|{{#if:||.}}}}}}}}{{#if:| - {{{издание}}}.}}{{#switch:{{#if:М.|м}}{{#if:Наука|и}}{{#if:2006|г}}

|миг= - Шаблон:Указание места в библиоссылке : Наука, 2006. |ми= - Шаблон:Указание места в библиоссылке : Наука. |мг= - Шаблон:Указание места в библиоссылке , 2006. |иг= - Наука, 2006. |м= - Шаблон:Указание места в библиоссылке |и= - Наука. |г= - 2006.

}}{{#if:| - {{{том как есть}}}.}}{{#if:5: Неравновесная статистическая механика, 1939-1980|{{#if: | [{{{ссылка том}}} - Т. 5: Неравновесная статистическая механика, 1939-1980.]| - Т. 5: Неравновесная статистическая механика, 1939-1980.}}}}{{#if:| - Vol. {{{volume}}}.}}{{#if:| - Bd. {{{band}}}.}}{{#if:| - {{{страницы как есть}}}.}}{{#if:| - С. {{#if:|[{{{страницы}}}] (стб. {{{столбцы}}}).|{{{страницы}}}.}}}}{{#if:| - {{{страниц как есть}}}.}}{{#if:| - {{{страниц}}} с.}}{{#if:| - P. {{#if:|[{{{pages}}}] (col. {{{columns}}}).|{{{pages}}}.}}}}{{#if:| - S. {{#if:|[{{{seite}}}] (Kol. {{{kolonnen}}}).|{{{seite}}}.}}}}{{#if:| - p.}}{{#if:| - S.}}{{#if:| - ({{{серия}}}).}}{{#if:| - {{{тираж}}} экз. }}{{#if:5020341428| - ISBN 5020341428 .}}{{#if:| - ISBN {{{isbn2}}}.}}{{#if:| - ISBN {{{isbn3}}}.}}{{#if:| - ISBN {{{isbn4}}}.}}{{#if:| - ISBN {{{isbn5}}}.}}{{#if:| - DOI :{{{doi}}} {{#ifeq:Шаблон:Str left |10.|| [Ошибка: Неверный DOI! ] {{#if:||}}}}}}

  • {{#if:Боголюбов Н. Н. |{{#ifeq:{{#invoke:String|sub|Боголюбов Н. Н. |-1}}| |Боголюбов Н. Н. |{{#ifeq:{{#invoke:String|sub|Боголюбов Н. Н. |-6|-2}}| |Боголюбов Н. Н. |{{#ifeq:{{#invoke:String|sub|Боголюбов Н. Н. |-6|-2}}|/span|Шаблон:±. |Шаблон:±. }}}}}} }}{{#if: |{{#if: |[{{{ссылка часть}}} {{{часть}}}]| {{{часть}}}}} // }}{{#if:|[[:s:{{{викитека}}}|]]|{{#if: |Избранные труды по статистической физике |{{#if:http://eqworld.ipmnet.ru/ru/library/books/Bogolyubov1979ru.djvu%7C Избранные труды по статистической физике |Избранные труды по статистической физике}}}}}}{{#if:| = {{{оригинал}}} }}{{#if:| / {{{ответственный}}}.|{{#if:||.}}}}{{#if:Избранные труды по статистической физике|{{#if:| {{#if:| = {{{оригинал2}}} }}{{#if:| / {{{ответственный2}}}.|{{#if:||.}}}}}}}}{{#if:| - {{{издание}}}.}}{{#switch:{{#if:М.|м}}{{#if:Изд-во МГУ|и}}{{#if:1979|г}}
|миг= - Шаблон:Указание места в библиоссылке : Изд-во МГУ, 1979. |ми= - Шаблон:Указание места в библиоссылке : Изд-во МГУ. |мг= - Шаблон:Указание места в библиоссылке , 1979. |иг= - Изд-во МГУ, 1979. |м= - Шаблон:Указание места в библиоссылке |и= - Изд-во МГУ. |г= - 1979.

}}{{#if:| - {{{том как есть}}}.}}{{#if:|{{#if: | [{{{ссылка том}}} - Т. {{{том}}}.]| - Т. {{{том}}}.}}}}{{#if:| - Vol. {{{volume}}}.}}{{#if:| - Bd. {{{band}}}.}}{{#if:| - {{{страницы как есть}}}.}}{{#if:| - С. {{#if:|[{{{страницы}}}] (стб. {{{столбцы}}}).|{{{страницы}}}.}}}}{{#if:| - {{{страниц как есть}}}.}}{{#if:| - {{{страниц}}} с.}}{{#if:| - P. {{#if:|[{{{pages}}}] (col. {{{columns}}}).|{{{pages}}}.}}}}{{#if:| - S. {{#if:|[{{{seite}}}] (Kol. {{{kolonnen}}}).|{{{seite}}}.}}}}{{#if:| - p.}}{{#if:| - S.}}{{#if:| - ({{{серия}}}).}}{{#if:| - {{{тираж}}} экз. }}{{#if:| - ISBN {{{ISBN}}}.}}{{#if:| - ISBN {{{isbn2}}}.}}{{#if:| - ISBN {{{isbn3}}}.}}{{#if:| - ISBN {{{isbn4}}}.}}{{#if:| - ISBN {{{isbn5}}}.}}{{#if:| - DOI :{{{doi}}} {{#ifeq:Шаблон:Str left |10.|| [Ошибка: Неверный DOI! ] {{#if:||}}}}}}

  • {{#if:Больцман Л.|{{#ifeq:{{#invoke:String|sub|Больцман Л.|-1}}| |Больцман Л.|{{#ifeq:{{#invoke:String|sub|Больцман Л.|-6|-2}}| |Больцман Л.|{{#ifeq:{{#invoke:String|sub|Больцман Л.|-6|-2}}|/span|Шаблон:±. |Шаблон:±. }}}}}} }}{{#if: |{{#if: |[{{{ссылка часть}}} {{{часть}}}]| {{{часть}}}}} // }}{{#if:|[[:s:{{{викитека}}}|Лекции по теории газов]]|{{#if: |Лекции по теории газов |{{#if:http://eqworld.ipmnet.ru/ru/library/books/Boltcman1953ru.djvu%7C Лекции по теории газов |Лекции по теории газов}}}}}}{{#if:| = {{{оригинал}}} }}{{#if:| / {{{ответственный}}}.|{{#if:||.}}}}{{#if:Лекции по теории газов|{{#if:| {{#if:| = {{{оригинал2}}} }}{{#if:| / {{{ответственный2}}}.|{{#if:||.}}}}}}}}{{#if:| - {{{издание}}}.}}{{#switch:{{#if:М.|м}}{{#if:ГИТТЛ|и}}{{#if:1953|г}}
|миг= - Шаблон:Указание места в библиоссылке : ГИТТЛ, 1953. |ми= - Шаблон:Указание места в библиоссылке : ГИТТЛ. |мг= - Шаблон:Указание места в библиоссылке , 1953. |иг= - ГИТТЛ, 1953. |м= - Шаблон:Указание места в библиоссылке |и= - ГИТТЛ. |г= - 1953.

}}{{#if:| - {{{том как есть}}}.}}{{#if:|{{#if: | [{{{ссылка том}}} - Т. {{{том}}}.]| - Т. {{{том}}}.}}}}{{#if:| - Vol. {{{volume}}}.}}{{#if:| - Bd. {{{band}}}.}}{{#if:| - {{{страницы как есть}}}.}}{{#if:| - С. {{#if:|[{{{страницы}}}] (стб. {{{столбцы}}}).|{{{страницы}}}.}}}}{{#if:| - {{{страниц как есть}}}.}}{{#if:552| - 552 с.}}{{#if:| - P. {{#if:|[{{{pages}}}] (col. {{{columns}}}).|{{{pages}}}.}}}}{{#if:| - S. {{#if:|[{{{seite}}}] (Kol. {{{kolonnen}}}).|{{{seite}}}.}}}}{{#if:| - p.}}{{#if:| - S.}}{{#if:| - ({{{серия}}}).}}{{#if:| - {{{тираж}}} экз. }}{{#if:| - ISBN {{{ISBN}}}.}}{{#if:| - ISBN {{{isbn2}}}.}}{{#if:| - ISBN {{{isbn3}}}.}}{{#if:| - ISBN {{{isbn4}}}.}}{{#if:| - ISBN {{{isbn5}}}.}}{{#if:| - DOI :{{{doi}}} {{#ifeq:Шаблон:Str left |10.|| [Ошибка: Неверный DOI! ] {{#if:||}}}}}}

  • {{#if:Власов А. А. |{{#ifeq:{{#invoke:String|sub|Власов А. А. |-1}}| |Власов А. А. |{{#ifeq:{{#invoke:String|sub|Власов А. А. |-6|-2}}| |Власов А. А. |{{#ifeq:{{#invoke:String|sub|Власов А. А. |-6|-2}}|/span|Шаблон:±. |Шаблон:±. }}}}}} }}{{#if: |{{#if: |[{{{ссылка часть}}} {{{часть}}}]| {{{часть}}}}} // }}{{#if:|[[:s:{{{викитека}}}|]]|{{#if: |Нелокальная статистическая механика |{{#if:http://lib.mexmat.ru/books/11080%7C Нелокальная статистическая механика |Нелокальная статистическая механика}}}}}}{{#if:| = {{{оригинал}}} }}{{#if:| / {{{ответственный}}}.|{{#if:||.}}}}{{#if:Нелокальная статистическая механика|{{#if:| {{#if:| = {{{оригинал2}}} }}{{#if:| / {{{ответственный2}}}.|{{#if:||.}}}}}}}}{{#if:| - {{{издание}}}.}}{{#switch:{{#if:М.|м}}{{#if:Наука|и}}{{#if:1978|г}}
|миг= - Шаблон:Указание места в библиоссылке : Наука, 1978. |ми= - Шаблон:Указание места в библиоссылке : Наука. |мг= - Шаблон:Указание места в библиоссылке , 1978. |иг= - Наука, 1978. |м= - Шаблон:Указание места в библиоссылке |и= - Наука. |г= - 1978.

}}{{#if:| - {{{том как есть}}}.}}{{#if:|{{#if: | [{{{ссылка том}}} - Т. {{{том}}}.]| - Т. {{{том}}}.}}}}{{#if:| - Vol. {{{volume}}}.}}{{#if:| - Bd. {{{band}}}.}}{{#if:| - {{{страницы как есть}}}.}}{{#if:| - С. {{#if:|[{{{страницы}}}] (стб. {{{столбцы}}}).|{{{страницы}}}.}}}}{{#if:| - {{{страниц как есть}}}.}}{{#if:| - с.}}{{#if:| - P. {{#if:|[{{{pages}}}] (col. {{{columns}}}).|{{{pages}}}.}}}}{{#if:| - S. {{#if:|[{{{seite}}}] (Kol. {{{kolonnen}}}).|{{{seite}}}.}}}}{{#if:| - p.}}{{#if:| - S.}}{{#if:| - ({{{серия}}}).}}{{#if:| - {{{тираж}}} экз. }}{{#if:| - ISBN {{{ISBN}}}.}}{{#if:| - ISBN {{{isbn2}}}.}}{{#if:| - ISBN {{{isbn3}}}.}}{{#if:| - ISBN {{{isbn4}}}.}}{{#if:| - ISBN {{{isbn5}}}.}}{{#if:| - DOI :{{{doi}}} {{#ifeq:Шаблон:Str left |10.|| [Ошибка: Неверный DOI! ] {{#if:||}}}}}}

  • {{#if:С. де Гроот, В. ван Леувен, Х. Ван Верт.|{{#ifeq:{{#invoke:String|sub|С. де Гроот, В. ван Леувен, Х. Ван Верт.|-1}}| |С. де Гроот, В. ван Леувен, Х. Ван Верт.|{{#ifeq:{{#invoke:String|sub|С. де Гроот, В. ван Леувен, Х. Ван Верт.|-6|-2}}| |С. де Гроот, В. ван Леувен, Х. Ван Верт.|{{#ifeq:{{#invoke:String|sub|С. де Гроот, В. ван Леувен, Х. Ван Верт.|-6|-2}}|/span|Шаблон:±. |Шаблон:±. }}}}}} }}{{#if: |{{#if: |[{{{ссылка часть}}} {{{часть}}}]| {{{часть}}}}} // }}{{#if:|[[:s:{{{викитека}}}|Релятивистская кинетическая теория]]|{{#if: |Релятивистская кинетическая теория |{{#if:|[{{{ссылка}}} Релятивистская кинетическая теория]|Релятивистская кинетическая теория}}}}}}{{#if:| = {{{оригинал}}} }}{{#if:| / {{{ответственный}}}.|{{#if:||.}}}}{{#if:Релятивистская кинетическая теория|{{#if:| {{#if:| = {{{оригинал2}}} }}{{#if:| / {{{ответственный2}}}.|{{#if:||.}}}}}}}}{{#if:| - {{{издание}}}.}}{{#switch:{{#if:М.|м}}{{#if:Мир|и}}{{#if:1983|г}}
|миг= - Шаблон:Указание места в библиоссылке : Мир, 1983. |ми= - Шаблон:Указание места в библиоссылке : Мир. |мг= - Шаблон:Указание места в библиоссылке , 1983. |иг= - Мир, 1983. |м= - Шаблон:Указание места в библиоссылке |и= - Мир. |г= - 1983.

}}{{#if:| - {{{том как есть}}}.}}{{#if:|{{#if: | [{{{ссылка том}}} - Т. {{{том}}}.]| - Т. {{{том}}}.}}}}{{#if:| - Vol. {{{volume}}}.}}{{#if:| - Bd. {{{band}}}.}}{{#if:| - {{{страницы как есть}}}.}}{{#if:| - С. {{#if:|[{{{страницы}}}] (стб. {{{столбцы}}}).|{{{страницы}}}.}}}}{{#if:| - {{{страниц как есть}}}.}}{{#if:424| - 424 с.}}{{#if:| - P. {{#if:|[{{{pages}}}] (col. {{{columns}}}).|{{{pages}}}.}}}}{{#if:| - S. {{#if:|[{{{seite}}}] (Kol. {{{kolonnen}}}).|{{{seite}}}.}}}}{{#if:| - p.}}{{#if:| - S.}}{{#if:| - ({{{серия}}}).}}{{#if:| - {{{тираж}}} экз. }}{{#if:| - ISBN {{{ISBN}}}.}}{{#if:| - ISBN {{{isbn2}}}.}}{{#if:| - ISBN {{{isbn3}}}.}}{{#if:| - ISBN {{{isbn4}}}.}}{{#if:| - ISBN {{{isbn5}}}.}}{{#if:| - DOI :{{{doi}}} {{#ifeq:Шаблон:Str left |10.|| [Ошибка: Неверный DOI! ] {{#if:||}}}}}}

  • {{#if:Гуров К. П. |{{#ifeq:{{#invoke:String|sub|Гуров К. П. |-1}}| |Гуров К. П. |{{#ifeq:{{#invoke:String|sub|Гуров К. П. |-6|-2}}| |Гуров К. П. |{{#ifeq:{{#invoke:String|sub|Гуров К. П. |-6|-2}}|/span|Шаблон:±. |Шаблон:±. }}}}}} }}{{#if: |{{#if: |[{{{ссылка часть}}} {{{часть}}}]| {{{часть}}}}} // }}{{#if:|[[:s:{{{викитека}}}|Основания кинетической теории (метод Н. Н. Боголюбова)]]|{{#if: |[]|{{#if:|[{{{ссылка}}} Основания кинетической теории (метод Н. Н. Боголюбова)]|Основания кинетической теории (метод Н. Н. Боголюбова)}}}}}}{{#if:| = {{{оригинал}}} }}{{#if:| / {{{ответственный}}}.|{{#if:||.}}}}{{#if:Основания кинетической теории (метод Н. Н. Боголюбова)|{{#if:| {{#if:| = {{{оригинал2}}} }}{{#if:| / {{{ответственный2}}}.|{{#if:||.}}}}}}}}{{#if:| - {{{издание}}}.}}{{#switch:{{#if:М.|м}}{{#if:Наука|и}}{{#if:1966|г}}
|миг= - Шаблон:Указание места в библиоссылке : Наука, 1966. |ми= - Шаблон:Указание места в библиоссылке : Наука. |мг= - Шаблон:Указание места в библиоссылке , 1966. |иг= - Наука, 1966. |м= - Шаблон:Указание места в библиоссылке |и= - Наука. |г= - 1966.

}}{{#if:| - {{{том как есть}}}.}}{{#if:|{{#if: | [{{{ссылка том}}} - Т. {{{том}}}.]| - Т. {{{том}}}.}}}}{{#if:| - Vol. {{{volume}}}.}}{{#if:| - Bd. {{{band}}}.}}{{#if:| - {{{страницы как есть}}}.}}{{#if:| - С. {{#if:|[{{{страницы}}}] (стб. {{{столбцы}}}).|{{{страницы}}}.}}}}{{#if:| - {{{страниц как есть}}}.}}{{#if:352| - 352 с.}}{{#if:| - P. {{#if:|[{{{pages}}}] (col. {{{columns}}}).|{{{pages}}}.}}}}{{#if:| - S. {{#if:|[{{{seite}}}] (Kol. {{{kolonnen}}}).|{{{seite}}}.}}}}{{#if:| - p.}}{{#if:| - S.}}{{#if:| - ({{{серия}}}).}}{{#if:| - {{{тираж}}} экз. }}{{#if:| - ISBN {{{ISBN}}}.}}{{#if:| - ISBN {{{isbn2}}}.}}{{#if:| - ISBN {{{isbn3}}}.}}{{#if:| - ISBN {{{isbn4}}}.}}{{#if:| - ISBN {{{isbn5}}}.}}{{#if:| - DOI :{{{doi}}} {{#ifeq:Шаблон:Str left |10.|| [Ошибка: Неверный DOI! ] {{#if:||}}}}}}

  • {{#if:Климонтович Ю. Л.|{{#ifeq:{{#invoke:String|sub|Климонтович Ю. Л.|-1}}| |Климонтович Ю. Л.|{{#ifeq:{{#invoke:String|sub|Климонтович Ю. Л.|-6|-2}}| |Климонтович Ю. Л.|{{#ifeq:{{#invoke:String|sub|Климонтович Ю. Л.|-6|-2}}|/span|Шаблон:±. |Шаблон:±. }}}}}} }}{{#if: |{{#if: |[{{{ссылка часть}}} {{{часть}}}]| {{{часть}}}}} // }}{{#if:|[[:s:{{{викитека}}}|Кинетическая теория неидеального газа и неидеальной плазмы]]|{{#if: |Кинетическая теория неидеального газа и неидеальной плазмы |{{#if:|[{{{ссылка}}} Кинетическая теория неидеального газа и неидеальной плазмы]|Кинетическая теория неидеального газа и неидеальной плазмы}}}}}}{{#if:| = {{{оригинал}}} }}{{#if:| / {{{ответственный}}}.|{{#if:||.}}}}{{#if:Кинетическая теория неидеального газа и неидеальной плазмы|{{#if:| {{#if:| = {{{оригинал2}}} }}{{#if:| / {{{ответственный2}}}.|{{#if:||.}}}}}}}}{{#if:| - {{{издание}}}.}}{{#switch:{{#if:М.|м}}{{#if:Наука|и}}{{#if:1975|г}}
|миг= - Шаблон:Указание места в библиоссылке : Наука, 1975. |ми= - Шаблон:Указание места в библиоссылке : Наука. |мг= - Шаблон:Указание места в библиоссылке , 1975. |иг= - Наука, 1975. |м= - Шаблон:Указание места в библиоссылке |и= - Наука. |г= - 1975.

}}{{#if:| - {{{том как есть}}}.}}{{#if:|{{#if: | [{{{ссылка том}}} - Т. {{{том}}}.]| - Т. {{{том}}}.}}}}{{#if:| - Vol. {{{volume}}}.}}{{#if:| - Bd. {{{band}}}.}}{{#if:| - {{{страницы как есть}}}.}}{{#if:| - С. {{#if:|[{{{страницы}}}] (стб. {{{столбцы}}}).|{{{страницы}}}.}}}}{{#if:| - {{{страниц как есть}}}.}}{{#if:| - {{{страниц}}} с.}}{{#if:| - P. {{#if:|[{{{pages}}}] (col. {{{columns}}}).|{{{pages}}}.}}}}{{#if:| - S. {{#if:|[{{{seite}}}] (Kol. {{{kolonnen}}}).|{{{seite}}}.}}}}{{#if:| - p.}}{{#if:| - S.}}{{#if:| - ({{{серия}}}).}}{{#if:| - {{{тираж}}} экз. }}{{#if:| - ISBN {{{ISBN}}}.}}{{#if:| - ISBN {{{isbn2}}}.}}{{#if:| - ISBN {{{isbn3}}}.}}{{#if:| - ISBN {{{isbn4}}}.}}{{#if:| - ISBN {{{isbn5}}}.}}{{#if:| -

Кинетика физическая

теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового (термодинамического) равновесия. К К. ф. можно отнести термодинамику неравновесных процессов (См. Термодинамика неравновесных процессов), кинетическую теорию газов (См. Кинетическая теория газов) (в том числе плазмы), теорию процессов переноса в твёрдых телах, а также общую статистическую теорию неравновесных процессов, которая начала развиваться лишь в 50-е гг.

Все неравновесные процессы в адиабатически изолированных системах (системах, не обменивающихся теплом с окружающими телами) являются необратимыми процессами (См. Необратимые процессы) - происходят с увеличением энтропии (См. Энтропия); в равновесном состоянии энтропия достигает максимума.

Как и в случае равновесных состояний, в К. ф. возможны два способа описания систем: феноменологический, или термодинамический (термодинамика неравновесных процессов), и статистический.

Термодинамический метод описания неравновесных процессов

При термодинамическом описании неравновесных процессов рассматривается изменение в пространстве и времени таких макроскопических параметров состояния системы, как плотность массы i -го компонента ρ i (r, t ), плотность импульса ρu (r, t ), локальная температура T (r , t ), поток массы i-го компонента j i (r, t ), плотность потока внутренней энергии q (r, t ) [здесь r - координата, t - время, u - средняя массовая скорость, ρ - плотность массы]. В равновесном состоянии системы ρ , ρ i , Т постоянны, а потоки равны нулю.

Термодинамическое описание неравновесных возможно лишь при достаточно медленном параметров состояния в пространстве и во времени для состояний, близких к равновесным. Для газов это означает, что все термодинамические параметры, характеризующие состояние системы, мало меняются на длине свободного пробега и за время, равное среднему времени свободного пробега молекул (среднему времени между двумя последовательными столкновениями молекул). Медленные процессы встречаются практически очень часто, так как установление равновесия происходит только после очень большого числа столкновений; к ним относятся: Диффузия , Теплопроводность , Электропроводность и т.д. Отклонения от состояния термодинамического равновесия характеризуются Градиент ами температуры, концентрации (ρ i /ρ ) и массовой скорости (так называемыми термодинамическими силами), а потоки энергии, массы i -го компонента и импульса связаны с термодинамическими силами линейными соотношениями. Коэффициенты в этих соотношениях называются кинетическими коэффициентами.

Рассмотрим в качестве примера диффузию в бинарной смеси, то есть процесс выравнивания концентрации компонентов в результате хаотического теплового движения молекул. Феноменологическое уравнение, описывающее процесс диффузии, получают с помощью закона сохранения вещества и того опытного факта, что поток вещества одного из компонентов вследствие диффузии прямо пропорционален градиенту его концентрации (с обратным знаком). Коэффициент пропорциональности называется коэффициентом диффузии. Согласно уравнению диффузии, скорость изменения концентрации вещества со временем прямо пропорциональна дивергенции (См. Дивергенция) градиента концентрации с коэффициентом пропорциональности, равным коэффициенту диффузии.

Решение уравнения диффузии позволяет определить время, в течение которого произойдёт выравнивание концентрации молекул в системе (например, в сосуде с газом) за счёт диффузии (время релаксации). Время релаксации τ р имеет порядок: τ р Кинетика физическая L 2 /D, где L - линейные размеры сосуда, a D - коэффициент диффузии. Это время тем больше, чем больше размеры сосуда и чем меньше коэффициент диффузии. Коэффициент диффузии пропорционален длине свободного пробега молекул λ и их средней тепловой скорости ν. Поэтому время релаксации оказывается пропорциональным: τ р Кинетика физическая L 2 / λν = (L/λ ) 2 λ/ν, где λ/ν = τ - среднее время свободного пробега. Очевидно, что τ р >> τ при L >> λ . Таким образом, условие L >> λ (размеры системы велики по сравнению с длиной свободного пробега молекул) является необходимым для того, чтобы процесс установления равновесного состояния можно было считать медленным. Аналогичным образом устанавливаются уравнения, описывающие теплопроводность, внутреннее трение, электропроводность и т.д. Коэффициент диффузии, теплопроводности и вязкости, а также удельная электропроводность в феноменологической теории должны быть определены экспериментально.

Перечисленные процессы называются прямыми. Этим подчёркивается, что, например, при диффузии градиент концентрации данного вещества вызывает поток этого же вещества; градиент температуры вызывает поток внутренней энергии, которая при постоянной концентрации молекул меняется только с температурой; электрический ток вызывается градиентом потенциала и т.д. Кроме прямых процессов, существуют ещё так называемые перекрёстные процессы. Примером перекрёстного процесса может служить Термодиффузия - перенос вещества не вследствие градиента концентрации (это была бы обычная диффузия), а вследствие градиента температуры. Термодиффузия создаёт градиент концентрации, что приводит к появлению обычной диффузии. Если разность температур в системе поддерживается постоянной, то устанавливается стационарное состояние, при котором потоки вещества, вызванные градиентами температуры и концентрации, взаимно уравновешиваются. В смеси газов при этом концентрация молекул в местах повышенной температуры оказывается большей для молекул меньшей массы (данное явление используется для разделения изотопов (См. Изотопы)).

Градиент концентрации в свою очередь создаёт поток внутренней энергии. В этом состоит процесс диффузионной теплопроводности. При наличии в теле заряженных частиц градиент температуры создаёт упорядоченное перемещение этих частиц - электрический ток, называемый термоэлектрическим (см. Термоэлектрические явления).

В К. ф. важное значение имеет принцип симметрии кинетических коэффициентов, установленный Л. Онсагер ом. В равновесном состоянии термодинамические параметры a i (давление, температура и т.д.), характеризующие состояние макроскопической системы, постоянны во времени: da i /dt = 0. Важнейшая функция состояния системы - энтропия S , зависящая от a i , в состоянии равновесия имеет максимум и, следовательно, её частные производные ∂S/∂ aj = 0. При малом отклонении системы от равновесия производные ∂S/∂ aj и ∂a/∂t малы, но отличны от нуля, и между ними существуют приближённые линейные соотношения. Коэффициенты пропорциональности в этих соотношениях и есть кинетические коэффициенты. Если через γ ik обозначить коэффициент, определяющий скорость изменения параметра системы a i зависимости от = γ ki . Принцип Онсагера вытекает из свойства микроскопической обратимости, которая выражается в инвариантности уравнений движения частиц системы относительно замены знака времени: t → -t (см. Онсагера теорема). Из этого принципа, в частности, следует существование связи между коэффициентами, определяющим выделение током тепла из-за неравномерного нагрева проводника (Томсона эффект), и коэффициентами, определяющим выделение током тепла в спаях разнородных проводников или полупроводников (Пельтье эффект).

Статистический метод описания неравновесных процессов.

Статистическая теория неравновесных процессов является более детальной и глубокой, чем термодинамическая. В отличие от термодинамического метода, статистическая теория на основе определенных представлений о строении вещества и действующих между молекулами силах позволяет вычислить кинетические коэффициенты, определяющие интенсивность процессов диффузии, внутреннего трения (вязкости (См. Вязкость)), электропроводности и т.д. Однако эта теория весьма сложна.

Статистический метод описания систем как в равновесном, так и неравновесном состоянии основан на вычислении функции распределения. Для равновесных состояний имеются универсальные функции распределения координат и импульсов (или скоростей) всех частиц, определяющие вероятность того, что эти величины принимают фиксированные значения. Для систем, находящихся в тепловом контакте с окружающей средой, температура которой постоянна, это - каноническое Гиббса распределение , а для изолированных систем - микроканоническое Гиббса распределение; оба распределения полностью определяются энергией системы.

Неравновесные состояния в гораздо большей степени (чем равновесные) зависят от микроскопических свойств систем: свойств атомов и молекул и сил взаимодействия между ними. Лишь в 50-60-е гг. были разработаны общие методы построения функций распределения (по координатам и импульсам всех частиц системы), аналогичных каноническому распределению Гиббса, но описывающих неравновесные процессы.

С помощью функций распределения можно определить любые макроскопические величины, характеризующие состояние системы, и проследить за их изменением в пространстве с течением времени. Это достигается вычислением статистических средних (см. Статистическая физика). Нахождение функции распределения, зависящей от координат и импульсов всех частиц, является в общем случае неразрешимой задачей, т.к. оно эквивалентно решению уравнений движения для всех частиц системы. Однако для практических целей нет необходимости в знании точного вида этой функции распределения: она содержит слишком подробную информацию о движении отдельных частиц, которая не существенна для определения поведения системы в целом. В связи с этим используется приближенное статистическое описание с помощью более простых функций распределения. Для описания состояния газов средней плотности достаточно знания так называемой одночастичной функции распределения f (p, r, t ), дающей среднее число частиц с определёнными значениями импульсов р (или скоростей ν ) и координат r. Для газов более высокой плотности необходимо знание двухчастичных (парных) функций распределения. Общий метод получения уравнений для одночастичных и более сложных функций (зависящих от координат и импульсов двух и более частиц) был разработан Н. Н. Боголюбов ым, М. Борн ом, М. Грином и др. Эти уравнения называются кинетическими. К их числу относится Кинетическое уравнение Больцмана для разреженных газов, полученное Л. Больцман ом из соображений, основанных на балансе частиц со скоростями в интервалах Δν x , Δν y , Δν z внутри объёма Δх Δy Δz (ν x , ν y , ν z - проекции скорости ν на координатные оси х, у, z ). Разновидностями уравнения Больцмана для ионизированного газа (плазмы) являются кинетические уравнения Л. Д. Ландау и А. А. Власов а (см. Плазма).

Кинетические уравнения могут быть построены не только для газов, но и для малых возбуждений в конденсированных системах. Тепловое движение системы характеризуется различного рода возбуждениями. В газе это - поступательное движение составляющих его частиц и внутренние возбуждения атомов и молекул. В общем случае тепловое движение характеризуется возбуждениями более сложной природы. Так, в кристаллических телах тепловое возбуждение можно представить в виде упругих волн, распространяющихся вдоль кристалла, точнее - волн, соответствующих нормальным колебаниям кристаллической решётки (См. Колебания кристаллической решётки). В плазме коллективными возбуждениями являются колебания плотности электрического заряда, вызванные дальнодействующими кулоновскими силами. В металлах возможны электронные возбуждения (переходы электронов из состояний внутри Ферми поверхности (См. Ферми поверхность) в состояния вне её), а в полупроводниках - ещё и дырочные возбуждения (появление свободных от электронов состояний в валентной зоне при переходе электронов в зону проводимости; см. Полупроводники). При низких температурах, в слабовозбуждённом состоянии, энергию возбуждения всегда можно представить в виде суммы некоторых элементарных возбуждений, или, на квантовом языке, квазичастиц (См. Квазичастицы). Понятие о квазичастицах применимо не только для кристаллических тел, но и для жидких, газообразных и аморфных, если температура не слишком велика. Функции распределения для квазичастиц системы, находящейся в неравновесном состоянии, удовлетворяют кинетическому уравнению.

В случае квантовых систем функция распределения зависит от Спин а частиц (или квазичастиц). В частности, для частиц с полуцелым спином равновесной функцией распределения служит распределение Ферми - Дирака, а для частиц (квазичастиц) с целым или нулевым спином - распределение Бозе - Эйнштейна (см. Статистическая физика).

В кинетических уравнениях наряду с внешними воздействиями учитываются взаимодействия между частицами или квазичастицами, причем эти взаимодействия рассматриваются как парные столкновения. Именно эти взаимодействия приводят к установлению равновесных состояний. Во многих случаях функция распределения не зависит явно от времени. Такая функция называется стационарной, она описывает процессы, течение которых не претерпевает изменений со временем. При стационарных процессах изменение функции распределения вследствие внешних воздействий компенсируется её изменением в результате столкновений.

В простых случаях можно грубо оценить изменение функции распределения f системы в результате столкновений, считая, что оно пропорционально величине отклонения от равновесной функции (так как только при отклонении от состояния равновесия столкновения меняют функцию распределения). Величина, обратная коэффициенту пропорциональности в этом соотношении, называется временем релаксации. В общем случае учесть взаимодействие таким простым способом невозможно, и в кинетическое уравнение входит так называемый интеграл столкновений, который более точно учитывает результат изменения функции распределения вследствие взаимодействия частиц (квазичастиц).

Решая кинетическое уравнение, находят неравновесную функцию распределения и вычисляют потоки энергии, массы и импульса, что позволяет получить уравнения теплопроводности, диффузии и переноса импульса (уравнение Навье - Стокса) с кинетическими коэффициентами, выраженными через молекулярные постоянные. [Однако кинетическое уравнение можно построить лишь для газов (из частиц или квазичастиц)].

Основные принципы теории неравновесных процессов надёжно установлены. Разработаны методы построения уравнений переноса энергии, массы и импульса в различных системах, не только в газах, а, например, и в жидкостях. При этом получают выражения для кинетических коэффициентов, входящих в эти уравнения, через корреляционные функции (функции, описывающие корреляцию в пространстве и во времени) потоков этих физических величин, то есть в конечном счете, через молекулярные постоянные. Эти выражения очень сложны и могут быть вычислены лишь средствами современной вычислительной математики.

Лит.: Гуревич Л. Э., Основы физической кинетики, М.- Л., 1940; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М.-Л., 1946; Гуров К. П, Основания кинетической теории. Метод Н. Н. Боголюбова, М., 1966; Ландау Л. Д., Лифшиц Е. М., Статистическая физика, М., 1964 (Теоретическая физика, т. 5): Климонтович Ю. Л., Статистическая теория неравновесных процессов в плазме, М., 1964; Пригожин И. Р., Неравновесная статистическая механика, пер. с англ., М., 1964; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; Гроот С., Мазур П., Неравновесная термодинамика, пер. с англ., М., 1964; Честер Дж., Теория необратимых процессов, пер. с англ., М., 1966; Хаазе Р., Термодинамика необратимых процессов, пер. с нем., М., 1967.

Г. Я. Мякишев.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

КИНЕТИКА ФИЗИЧЕСКАЯ

- микроскопич. теория процессов в неравновесных средах. В К. ф. методами квантовой или классич. статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в разл. физ. системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внеш. полей.

В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, К. ф. исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрич. и магн. проницаемости и др. характеристики сплошных сред.

К. ф. включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистич. теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах (диэлектриках, металлах и полупроводниках) и жидкостях, кинетику магн. процессов и теорию кинетич. явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.

Если известна ф-ция распределения всех частиц системы по их координатам и импульсам в зависимости от времени (в квантовом случае - статистич. оператор), то можно вычислить все характеристики неравновесной системы. Вычисление полной ф-ции распределения является практически неразрешимой задачей, но для определения мн. свойств физ. систем, напр. потока энергии или импульса, достаточно знать ф-цию распределения небольшого числа частиц, а для газов малой плотности - одной частицы.

В К. ф. используется существ. различие времён релаксации в неравновесных процессах (иерархия времён релаксации), напр. для газа из частиц или квазичастиц время свободного пробега значительно больше времени столкновения между частицами. Это позволяет перейти от полного описания неравновесного состояния ф-цией распределения по всем координатам и импульсам к сокращённому описанию при помощи ф-ции распределения одной частицы по её координатам и импульсам.

Кинетическое уравнение. Осн. метод К. ф. - решение кинетического уравнения Больцмана для одночастичной ф-ции распределения f (x , р , t ) молекул в фазовом пространстве их координат x и импульсов р . Ф-ция распределения удовлетворяет кинетич. ур-нию

где Stf - интеграл столкновений, определяющий разность числа частиц, приходящих в элемент объёма вследствие прямых столкновений и убывающих из него вследствие обратных столкновений. Для одноатомных молекул или для многоатомных, но без учёта их внутр. степеней свободы

где - вероятность столкновения, связанная с диф-ференц. эфф. сечением рассеяния da:

где р , р 1 - импульсы молекул до столкновения, v ,v 1 - соответств. скорости, - их импульсы после столкновения, f , f 1 - ф-ции распределения молекул до столкновения, - их ф-ции распределения после столкновения. Для газа из сложных молекул, обладающих внутр. степенями свободы, их следует учитывать в ф-ции распределения. Напр., для двухатомных молекул с собств. моментом вращения М ф-ции распределения будут зависеть также от М.

Из кинетич. ур-ния следует Больцмана Н-теорема - убывание со временем Я-функции Больцмана (ср. логарифма ф-ции распределения) или возрастание энтропии, т. к. она равна Я-функции Больцмана с обратным знаком.

Уравнения переноса. К. ф. позволяет получить ур-ния баланса ср. плотностей вещества, импульса и энергии. Напр., для простого газа плотность , гидро-динамич. скорость V и ср. энергия удовлетворяют ур-ниям баланса:

тензор плотности потока импульса, п - плотность числа частиц, - плотность потока энергии.

Если состояние газа мало отличается от равновесного, то в малых элементах объёма устанавливается распределение, близкое к локально равновесному Максвелла распределению,

с темп-рой, плотностью и гидродинамич. скоростью, соответствующими рассматриваемой точке газа. В этом случае неравновесная ф-ция распределения мало отличается от локально равновесной и решение кинетич.

ур-ния даёт малую поправку к последней, пропорциональную градиентам темп-ры и гидродинамич. скорости , т. к. .С помощью неравновесной ф-ции распределения можно найти поток энергии (в неподвижной жидкости) , где - коэф. теплопроводности, и тензор плотности потока импульса

тензор вязких напряжении, - коэф. сдвиговой вязкости, Р- давление. Для газов с внутр. степенями свободы содержит также член , где - коэф. "второй", объёмной вязкости, проявляющейся лишь при движениях, в к-рых . Для кинетич. коэффициентов получаются выражения через эфф. сечения столкновений и, следовательно, через константы молекулярных взаимодействий. В бинарной смеси поток вещества состоит из диффуз. потока, пропорционального градиенту концентрации вещества в смеси с коэф. диффузии, и термодиффузионного потока, пропорционального градиенту темп-ры с коэф. термодиффузии, а поток тепла, кроме обычного члена теплопроводности, пропорционального градиенту темп-ры, содержит дополнит. член, пропорциональный градиенту концентрации и описывающий Дюфура эффект. К. ф. даёт выражения для этих кинетич. коэффициентов через эфф. сечения столкновений. Кинетич. коэффициенты для перекрёстных явлений, напр. термодиффузии и эффекта Дюфура, оказываются равными (Онсагера теорема). Эти соотношения являются следствием микро-скопич. обратимости ур-ний движения частиц системы, т. е. инвариантности их относительно обращения времени.

Ур-ние баланса импульса с учётом выражения для плотности потока импульса через градиент скорости даёт Навье-Стокса уравнения, ур-ние баланса энергии с учётом выражения для плотности потока тепла даёт теплопроводности ур-ние, ур-ние баланса числа частиц определ. сорта с учётом выражения для диффуз. потока даёт диффузии уравнение. Такой гидродинамич. подход справедлив, если длина свободного пробега l значительно меньше характерных размеров областей неоднородности.

Газы и плазма. К. ф. позволяет исследовать явления переноса в разреж. газах, когда отношение длины свободного пробега l к характерным размерам задачи L (т. е. Кнудсена число l/L )уже не очень мало и имеет смысл рассматривать поправки порядка l/L (слабо разреж. газы). В этом случае К. ф. объясняет явления температурного скачка и течения газов вблизи твёрдых поверхностей.

Для сильно разреж. газов, когда l/L> 1, гидродинамич. ур-ния и обычное ур-ние теплопроводности уже не применимы и для исследования процессов переноса необходимо решать кинетич. ур-ние с определ. граничными условиями на поверхностях, ограничивающих газ. Эти условия выражаются через ф-цию распределения молекул, рассеянных из-за взаимодействия со стенкой. Рассеянный поток частиц может приходить в тепловое равновесие со стенкой, но в реальных случаях это не достигается. Для сильно разреж. газов роль коэф. теплопроводности играют коэф. теплопередачи. Напр., кол-во тепла Q, отнесённое к единице площади параллельных пластинок, между к-рыми находится разреж. газ, равно , где Т 1 и Т 2 - теми-ры пластинок, L - расстояние между ними, - коэф. теплопередачи.

Теория явлений переноса в плотных газах и жидкостях значительно сложнее, т. к. для описания неравновесного состояния уже недостаточно одночастичной ф-ции распределения, а нужно учитывать ф-ции рас-

пределения более высокого порядка Частичные ф-ции распределения удовлетворяют цепочке зацепляющихся ур-ний ( Боголюбова уравнений, наз. также цепочкой ББГКИ, т. е. ур-ний Боголюбова-Борна-Грина- Кирквуда-Ивона). С помощью этих ур-ний можно уточнить кинетич. ур-ние для газов ср. плотности и исследовать для них явления переноса.

К. ф. двухкомпонентной плазмы описыпается двумя ф-циями распределения (для электронов , для ионов f i ) удовлетворяющими системе двух кинетич. ур-ний. На частицы плазмы действуют силы

где Ze - заряд иона, Е - напряжённость электрич. поля, В - магн. индукция, удовлетворяющие Максвелла уравнениям. Ур-ния Максвелла содержат ср. плотности тока и заряда , определяемые с помощью ф-ций распределения:

Т. о., кинетич. ур-ния и yp-ния Максвелла образуют связанную систему ур-ний, определяющих все неравновесные явления в плазме. Такой подход наз. приближением самосогласованного поля. При этом столкновения между электронами учитываются не явно, а лишь через создаваемое ими самосогласованное поле (см. Кинетические уравнения для плазмы). При учёте столкновений электронов возникает кинетич.. ур-ние, в к-ром эфф. сечение столкновений очень медленно убывает с ростом прицельного расстояния, становятся существенными столкновения с малой передачей импульса, в интеграле столкновений появляется логарифмич. расходимость. Учёт эффектов экранирования позволяет избежать этой трудности.

Конденсированные среды. К. ф. неравновесных процессов в диэлектриках основана на решении кинетич. ур-ния Больцмана для фононов решётки (ур-ние Пайерлса). Взаимодействие между фононами вызвано членами гамильтониана решётки, ангармоническими относительно смещения атомов на положения равновесия. При простейших столкновениях один фонон распадается на два или происходит слияние двух фононов в один, причём сумма их квазиимпульсов либо сохраняется (нормальные процессы столкновений), либо меняется на вектор обратной решётки (процессы переброса). Конечная теплопроводность возникает при учёте процессов переброса. При низких темп-рах, когда длина свободного пробега больше размеров образца L, роль длины свободного пробега играет L. Кинетич. ур-ние для фононов позволяет исследовать теплопроводность и поглощение звука в диэлектриках. Если длина свободного пробега для нормальных процессов значительно меньше длины свободного пробега для процессов переброса, то система фопонов в кристалле при низких темп-pax подобна обычному газу. Нормальные столкновения устанавливают внутр. равновесие в каждом элементе объёма газа, к-рый может двигаться со скоростью V, мало меняющейся на длине свободного пробега для нормальных столкновении. Поэтому можно построить ур-ния гидродинамики фононного газа в диэлектрике. К. ф. м е т а л л о в основана на решении кинетич. ур-ния для электронов, взаимодействующих с колебаниями кристаллич. решётки. Электроны рассеиваются на колебаниях атомов решётки, примесях и дефектах, нарушающих её периодичность, причём возможны как нормальные столкновения, так и процессы переброса. Электрич. сопротивление возникает в результате этих столкновений. К. ф. объясняет термоэле-ктрич., гальваномагн, и термомагн. явления, скин-эффект, циклотронный резонанс в ВЧ-полях и др. кинетич. эффекты в металлах. Для сверхпроводников она объясняет особенности их ВЧ-поведения.

К. ф. явлений при прохождении быстрых частиц через вещество основана на решении системы кинетич. ур-ний для быстрых частиц и вторичных частиц, возникающих при столкновениях, напр, для -лучей (фотонов) с учётом разл. процессов в среде (фотоэффекта, комптоновского рассеяния, образования пар). В этом случае К. ф. позволяет вычислить коэф. поглощения и рассеяния быстрых частиц.

Фазовые переходы. К. Фоккера-Планка уравнению:

где а - радиус зародыша, D - "коэф. диффузии зародышей по размерам", А пропорционально мин. работе, к-рую нужно затратить на создание зародыша данного размера. К. ф. фазовых переходов 2-го рода в наиб. простом приближении основана на ур-нии релаксации параметра порядка , характеризующего степень упорядоченности, возникающей при фазовом переходе:

где - постоянный коэф., - термодинамич. потенциал в переменных Т и ( - хим. потенциал), вблизи точки фазового перехода зависящий от . Для этой зависимости используется разложение по степеням и Т-Т с, где Т с - темп-pa фазового перехода. (См. также Кинетика фазовых переходов. )

Явления переноса в жидкостях. Теорию явлений переноса в жидкостях также можно отнести к К. ф., хотя для жидкостей метод кинетич. ур-ний непригоден, но для них возможен более общий подход, основанный также на иерархии времён релаксации. Для жидкости время установления равновесия в макроскопически малых (но содержащих ещё большое число молекул) элементарных объёмах значительно больше, чем время релаксации во всей системе, вследствие чего в малых элементах объёма приближённо устанавливается статистич. равновесие. Поэтому в качестве исходного приближения при решении Лиувилля уравнения можно принять локально равновесное Гиббса распределение с темп-рой Т (x, t), хим. потенциалом и гидродинамич. скоростью F(x , t), соответствующими рассматриваемой точке жидкости. Напр., для однокомпонентной жидкости локально равновесная ф-ция распределения (или статистич. оператор) имеет вид

Плотность энергии в системе координат, движущейся вместе с элементом жидкости, Н (х )- плотность энергии в неподвижной системе координат, р (х) - плотность импульса, n(x) - плотность числа частиц, рассматриваемые как фазовые ф-ции, т. е. ф-ции от координат и импульсов всех частиц, напр.

Приближённое решение ур-ния Лиувилля для состояний, близких к статистически равновесному, позволяет вывести ур-ния теплопроводности и Навье-Стокса для жидкости и получить микроскопич. выражения для кинетич. коэф. теплопроводности и вязкости через пространственно-временные корреляц. ф-ции плотностей потоков энергии и импульсов всех частиц системы ( Грина-Кубо формулы). Этот же подход возможен и для смеси жидкостей. Подобное решение ур-ния Лиувилля есть его частное решение, зависящее от времени лишь через параметры , , V(x, t), соответствующие сокращённому гидродинамич. описанию неравновесного состояния системы, к-рое справедливо, когда все гидродинамич. параметры мало меняются на расстояниях порядка длины свободного пробега (для газов) или длины корреляций потоков энергии или импульса (для жидкостей). [В квантовом случае Я (ж), р (x), п(x) - операторы в представлении вторичного квантования. ]

К задачам К. ф. относится также вычисление обобщённой восприимчивости, выражающей линейную реакцию физ. системы на включение внеш. поля. Её можно выразить через Грина функции с усреднением по состоянию, к-рое может быть и неравновесным.

В К. ф. исследуют также кинетич. свойства квантовых систем, что требует применения метода матрицы плотности (см., напр., Кинетическое уравнение основное).

Лит.: Гуревич Л. Э., Основы физической кинетики, Л.- М., 1940; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М.- Л., 1946; Ч е п-мен С., К а у л и н г Т.", Математическая теория неоднородных газов, пер. с англ., М., 1960; Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971; К л и-монтович Ю. Л., Кинетическая теория неидеального газа и неидеальной плазмы, М., 1975; Ферцигер Д ж., К а-п е р Г., Математическая теория процессов переноса в газах, пер. с англ., М., 1976; В а л е с к у Р., Равновесная и неравновесная статистическая механика, пер. с англ., т. 2, М., 1978; Л и ф ш и ц Е. М., Питаевский Л. П., Физическая кинетика, М., 1979. Д. Н. Зубарев.

  • - , раздел механики, в к-ром исследуется механич. состояние тела в связи с физ. причинами, его определяющими...

    Физическая энциклопедия

  • - микроскопич. теория процессов в статистически неравновесных системах. Она изучает методами квант. или классич...

    Физическая энциклопедия

  • - раздел классической механики, объединяющий статику и динамику...

    Начала современного Естествознания

  • - в физике - один из разделов ДИНАМИКИ. В химии раздел физической химии, рассматривающий скорость химических реакций...

    Научно-технический энциклопедический словарь

  • - раздел статистич. физики, в к-ром изучаются на основе мол.-кинетич...

    Естествознание. Энциклопедический словарь

  • - учение о механизме и скоростях физических и химических процессов. Физическая кинетика - теория неравновесных макро-скопических процессов в системах, выведенных из состояния теплового равновесия...

    Энциклопедический словарь по металлургии

  • - наука, изучающая зависимость между кинематическим состоянием материи, обладающей предполагаемыми свойствами и причинами, обусловливающими это состояние...

    Энциклопедический словарь Брокгауза и Евфрона

  • - основная часть механики, включающая динамику - учение о движении тел под действием сил и статики - учение о равновесии тел пол действием...
  • - теория неравновесных макроскопических процессов, то есть процессов, возникающих в системах, выведенных из состояния теплового равновесия...

    Большая Советская энциклопедия

  • - раздел механики, объединяющий статику и динамику...
  • - раздел статистической физики, в котором изучаются на основе молекулярно-кинетической теории неравновесные процессы в веществе, напр. процессы выравнивания концентраций в смесях, температур и т....

    Большой энциклопедический словарь

  • - язык жестов...

    Толковый переводоведческий словарь

  • - ...

    Орфографический словарь русского языка

  • - КИНЕ́ТИКА, -и, жен. Раздел механики, объединяющий в себе статику и динамику...

    Физическая деградация

    Из книги Фриланс: перезагрузка [Пошаговое руководство для удаленного сотрудника по заработку от 200 000 руб. в месяц] автора Масленников Роман Михайлович

    Физическая деградация Эта проблема не имеет особо прямого отношения к фрилансу, но это очень сильно влияет на вашу продуктивность. Почему многие фрилансеры чувствуют усталость, нет мотивации, нет сил, подавленность?Не верьте красивым картинкам под пальмами, которые вам

    Физическая активность

    Из книги Быстрые результаты. 10-дневная программа повышения личной эффективности автора Парабеллум Андрей Алексеевич

    Физическая активность Первое - обязательно начните день с какой-либо физической активности.Неважно, что это будет, выберите сами, - важно, чтобы это заставило вас вспотеть.Это может быть то, что вы любите, - бег, плавание в бассейне, прыжки на батуте, ролики, велосипед и

    Мотивация и кинетика поведения

    Из книги Результативность. Секреты эффективного поведения автора Стюарт-Котце Робин

    Мотивация и кинетика поведения Начнем с предположения о том, что поведение человека, чаше всего демонстрируемое, является отражением его мотивации, т. е. то, что вы делаете, заставляет вас быть довольным собой. Если принять это как гипотезу, это будет означать, что мы имеем

    Физическая расправа

    Из книги Самая очаровательная и привлекательная автора Шереметева Галина Борисовна

    Физическая расправа Слабый пол в последнее время все больше прибегает к побоям мужа, привыкнув к мысли о равноправии и о том, что мальчиков и девочек воспитывают с одинаковыми требованиями.В ход идут сковородки, палки, швабры, попытки утопить мужа в ванной, зарезать ножом,

    ЛЕКЦИЯ № 6. Химическая кинетика

    автора Березовчук А В

    ЛЕКЦИЯ № 6. Химическая кинетика 1. Понятие химической кинетики Кинетика – наука о скоростях химических реакций.Скорость химической реакции – число элементарных актов химического взаимодействия, протекающих в единицу времени в единицу объема (гомогенные) или на единице

    ЛЕКЦИЯ № 13. Электрохимическая кинетика

    Из книги Физическая химия: конспект лекций автора Березовчук А В

    ЛЕКЦИЯ № 13. Электрохимическая кинетика 1. Основные кинетические характеристики и методы их расчетов i0 – ток обмена – кинетическая характеристика равновесия между электродом и раствором при равновесном значении электродного потенциала. Токи обмена относят к 1 см2

    Из книги Заболевания крови автора Дроздова М В

    Кинетика эозинофилов Начальные стадии созревания эозинофилов в костном мозге длятся 34 ч, после этого клетки выходят в кровоток. В кровотоке эозинофилы находятся недолго, после чего располагаются главным образом в покровных тканях (коже, слизистых оболочках

    Кинетика

    Из книги Типология в гомеопатии автора Ванье Леон

    Кинетика Мы должны учитывать движения передвигающегося субъекта, изучать его походку, жесты и даже голос, - все они раскрывают разные аспекты, соответствующие типу.ПозаЧеловек не может сесть или встать, не удерживая своё равновесие, используя подсознательные

КИНЕТИКА ФИЗИЧЕСКАЯ - микроскопич. теория процессов в неравновесных средах. В К. ф. методами квантовой или классич. статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в разл. физ. системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внеш. полей.

Если известна ф-ция распределения всех частиц системы по их координатам и импульсам в зависимости от времени (в квантовом случае - статистич. оператор), то можно вычислить все характеристики неравновесной системы. Вычисление полной ф-ции распределения является практически неразрешимой задачей, но для определения мн. свойств физ. систем, напр. потока энергии или импульса, достаточно знать ф-цию распределения небольшого числа частиц, а для газов малой плотности - одной частицы.

В К. ф. используется существ. различие времён релаксации в неравновесных процессах (иерархия времён релаксации), напр. для газа из частиц или квазичастиц время свободного пробега значительно больше времени столкновения между частицами. Это позволяет перейти от полного описания неравновесного состояния ф-цией распределения по всем координатам и импульсам к сокращённому описанию при помощи ф-ции распределения одной частицы по её координатам и импульсам.

Кинетическое уравнение . Осн. метод К. ф. - решение кинетического уравнения Больцмана для одночастичной ф-ции распределения f (x , р , t ) молекул в фазовом пространстве их координат x и импульсов р . Ф-ция распределения удовлетворяет кинетич. ур-нию

где Stf - интеграл столкновений, определяющий разность числа частиц, приходящих в элемент объёма вследствие прямых столкновений и убывающих из него вследствие обратных столкновений. Для одноатомных молекул или для многоатомных, но без учёта их внутр. степеней свободы

где - вероятность столкновения, связанная с диф-ференц. эфф. сечением рассеяния da:

где р , р 1 - импульсы молекул до столкновения, v , v 1 - соответств. скорости, - их импульсы после столкновения, f , f 1 - ф-ции распределения молекул до столкновения, - их ф-ции распределения после столкновения. Для газа из сложных молекул, обладающих внутр. степенями свободы, их следует учитывать в ф-ции распределения. Напр., для двухатомных молекул с собств. моментом вращения М ф-ции распределения будут зависеть также от М .

Из кинетич. ур-ния следует Больцмана Н-теорема - убывание со временем Я-функции Больцмана (ср. логарифма ф-ции распределения) или возрастание энтропии, т. к. она равна Я-функции Больцмана с обратным знаком.

Уравнения переноса . К. ф. позволяет получить ур-ния баланса ср. плотностей вещества, импульса и энергии. Напр., для простого газа плотность , гидро-динамич. скорость V и ср. энергия удовлетворяют ур-ниям баланса:

тензор плотности потока импульса, п - плотность числа частиц, - плотность потока энергии.

Если состояние газа мало отличается от равновесного, то в малых элементах объёма устанавливается распределение, близкое к локально равновесному Максвелла распределению ,

с темп-рой, плотностью и гидродинамич. скоростью, соответствующими рассматриваемой точке газа. В этом случае неравновесная ф-ция распределения мало отличается от локально равновесной и решение кинетич.

ур-ния даёт малую поправку к последней, пропорциональную градиентам темп-ры и гидродинамич. скорости , т. к. .С помощью неравновесной ф-ции распределения можно найти поток энергии (в неподвижной жидкости) , где - коэф. , и тензор плотности потока импульса

тензор вязких напряжении, - коэф. сдвиговой вязкости, Р - давление. Для газов с внутр. степенями свободы содержит также член , где - коэф. "второй", объёмной вязкости, проявляющейся лишь при движениях, в к-рых . Для кинетич. коэффициентов получаются выражения через эфф. сечения столкновений и, следовательно, через константы молекулярных взаимодействий. В бинарной смеси поток вещества состоит из . потока, пропорционального градиенту концентрации вещества в смеси с коэф. диффузии, и термодиффузионного потока, пропорционального градиенту темп-ры с коэф. термодиффузии , а поток тепла, кроме обычного члена теплопроводности, пропорционального градиенту темп-ры, содержит дополнит. член, пропорциональный градиенту концентрации и описывающий Дюфура эффект .К. ф. даёт выражения для этих кинетич. коэффициентов через эфф. сечения столкновений. Кинетич. коэффициенты для перекрёстных явлений, напр. термодиффузии и эффекта Дюфура, оказываются равными (Онсагера теорема ).Эти соотношения являются следствием микро-скопич. обратимости ур-ний движения частиц системы, т. е. инвариантности их относительно обращения времени.

Ур-ние баланса импульса с учётом выражения для плотности потока импульса через градиент скорости даёт Навье-Стокса уравнения , ур-ние баланса энергии с учётом выражения для плотности потока тепла даёт теплопроводности ур-ние, ур-ние баланса числа частиц определ. сорта с учётом выражения для диффуз. потока даёт диффузии уравнение . Такой гидродинамич. подход справедлив, если l значительно меньше характерных размеров областей неоднородности.

Газы и плазма. К. ф. позволяет исследовать в разреж. газах, когда отношение длины свободного пробега l к характерным размерам задачи L (т. е. Кнудсена число l/L )уже не очень мало и имеет смысл рассматривать поправки порядка l/L (слабо разреж. газы). В этом случае К. ф. объясняет явления температурного скачка и течения газов вблизи твёрдых поверхностей.

Для сильно разреж. газов, когда l/L> 1, гидродинамич. ур-ния и обычное ур-ние теплопроводности уже не применимы и для исследования процессов переноса необходимо решать кинетич. ур-ние с определ. граничными условиями на поверхностях, ограничивающих газ. Эти условия выражаются через ф-цию распределения молекул, рассеянных из-за взаимодействия со стенкой. Рассеянный поток частиц может приходить в тепловое равновесие со стенкой, но в реальных случаях это не достигается. Для сильно разреж. газов роль коэф. теплопроводности играют коэф. теплопередачи. Напр., кол-во тепла Q , отнесённое к единице площади параллельных пластинок, между к-рыми находится разреж. газ, равно , где Т 1 и Т 2 - теми-ры пластинок, L - расстояние между ними, - коэф. теплопередачи.

Теория явлений переноса в плотных газах и жидкостях значительно сложнее, т. к. для описания неравновесного состояния уже недостаточно одночастичной ф-ции распределения, а нужно учитывать ф-ции рас-

пределения более высокого порядка Частичные ф-ции распределения удовлетворяют цепочке зацепляющихся ур-ний (Боголюбова уравнений , наз. также цепочкой ББГКИ, т. е. ур-ний Боголюбова-Борна-Грина- Кирквуда-Ивона). С помощью этих ур-ний можно уточнить кинетич. ур-ние для газов ср. плотности и исследовать для них явления переноса.

К. ф. двухкомпонентной плазмы описыпается двумя ф-циями распределения (для электронов , для ионов f i ) удовлетворяющими системе двух кинетич. ур-ний. На частицы плазмы действуют силы

где Ze - заряд иона, Е - напряжённость электрич. поля, В - магн. индукция, удовлетворяющие Максвелла уравнениям .Ур-ния Максвелла содержат ср. плотности тока и заряда, определяемые с помощью ф-ций распределения:

Т. о., кинетич. ур-ния и yp-ния Максвелла образуют связанную систему ур-ний, определяющих все неравновесные явления в плазме. Такой подход наз. приближением самосогласованного поля. При этом столкновения между электронами учитываются не явно, а лишь через создаваемое ими самосогласованное поле (см. Кинетические уравнения для плазмы). При учёте столкновений электронов возникает кинетич.. ур-ние, в к-ром эфф. сечение столкновений очень медленно убывает с ростом прицельного расстояния, становятся существенными столкновения с малой передачей импульса, в интеграле столкновений появляется логарифмич. расходимость. Учёт эффектов экранирования позволяет избежать этой трудности.

Конденсированные среды. К. ф. неравновесных процессов в диэлектриках основана на решении кинетич. ур-ния Больцмана для фононов решётки (ур-ние Пайерлса). Взаимодействие между фононами вызвано членами гамильтониана решётки, ангармоническими относительно смещения атомов на положения равновесия. При простейших столкновениях один фонон распадается на два или происходит слияние двух фононов в один, причём сумма их квазиимпульсов либо сохраняется (нормальные процессы столкновений), либо меняется на вектор обратной решётки (процессы переброса). Конечная теплопроводность возникает при учёте процессов переброса. При низких темп-рах, когда длина свободного пробега больше размеров образца L , роль длины свободного пробега играет L . Кинетич. ур-ние для фононов позволяет исследовать теплопроводность и поглощение звука в диэлектриках. Если длина свободного пробега для нормальных процессов значительно меньше длины свободного пробега для процессов переброса, то система фопонов в кристалле при низких темп-pax подобна обычному газу. Нормальные столкновения устанавливают внутр. равновесие в каждом элементе объёма газа, к-рый может двигаться со скоростью V , мало меняющейся на длине свободного пробега для нормальных столкновении. Поэтому можно построить ур-ния гидродинамики фононного газа в . К. ф. м е т а л л о в основана на решении кинетич. ур-ния для электронов, взаимодействующих с колебаниями кристаллич. решётки. Электроны рассеиваются на колебаниях атомов решётки, примесях и дефектах, нарушающих её периодичность, причём возможны как нормальные столкновения, так и процессы переброса. Электрич. сопротивление возникает в результате этих столкновений. К. ф. объясняет термоэле-ктрич., гальваномагн, и термомагн. явления, скин-эффект, циклотронный в ВЧ-полях и др. кинетич. эффекты в металлах. Для сверхпроводников она объясняет особенности их ВЧ-поведения.

К.ф. магнитных явлений основана на решении кинетич. ур-ния для магнонов. Она позволяет вычислить динамич. восприимчивости магн. систем в перем. полях, изучить кинетику процессов .

К. ф. явлений при прохождении быстрых частиц через вещество основана на решении системы кинетич. ур-ний для быстрых частиц и вторичных частиц, возникающих при столкновениях, напр, для -лучей (фотонов) с учётом разл. процессов в среде (фотоэффекта, комптоновского рассеяния, образования пар). В этом случае К. ф. позволяет вычислить коэф. поглощения и рассеяния быстрых частиц.

Фазовые переходы. К.ф. фазовых переходов первого рода, т. е. со скачком энтропии, связана с образованием и ростом зародышей новой фазы. Ф-ция распределения зародышей по нх размерам (если зародыши считать макроскопич. образованиями, а процесс роста - медленным) удовлетворяет Фоккера-Планка уравнению :

где а - радиус зародыша, D - "коэф. диффузии зародышей по размерам", А пропорционально мин. работе, к-рую нужно затратить на создание зародыша данного размера. К. ф. фазовых переходов 2-го рода в наиб. простом приближении основана на ур-нии релаксации параметра порядка , характеризующего степень упорядоченности, возникающей при фазовом переходе:

Явления переноса в жидкостях. Теорию явлений переноса в жидкостях также можно отнести к К. ф., хотя для жидкостей метод кинетич. ур-ний непригоден, но для них возможен более общий подход, основанный также на иерархии времён релаксации. Для жидкости время установления равновесия в макроскопически малых (но содержащих ещё большое число молекул) элементарных объёмах значительно больше, чем во всей системе, вследствие чего в малых элементах объёма приближённо устанавливается статистич. равновесие. Поэтому в качестве исходного приближения при решении Лиувилля уравнения можно принять локально равновесное Гиббса распределение с темп-рой Т (x, t) , хим. потенциалом и гидродинамич. скоростью F(x , t) , соответствующими рассматриваемой точке жидкости. Напр., для однокомпонентной жидкости локально равновесная ф-ция распределения (или статистич. оператор) имеет вид

Плотность энергии в системе координат, движущейся вместе с элементом жидкости, Н (х )- плотность энергии в неподвижной системе координат, р (х) - плотность импульса, n(x) - плотность числа частиц, рассматриваемые как фазовые ф-ции, т. е. ф-ции от координат и импульсов всех частиц, напр.

Приближённое решение ур-ния Лиувилля для состояний, близких к статистически равновесному, позволяет вывести ур-ния теплопроводности и Навье-Стокса для жидкости и получить микроскопич. выражения для кинетич. коэф. теплопроводности и вязкости через пространственно-временные корреляц. ф-ции плотностей потоков энергии и импульсов всех частиц системы (Грина-Кубо формулы) . Этот же подход возможен и для смеси жидкостей. Подобное решение ур-ния Лиувилля есть его частное решение, зависящее от времени лишь через параметры , , V(x, t) , соответствующие сокращённому гидродинамич. описанию неравновесного состояния системы, к-рое справедливо, когда все гидродинамич. параметры мало меняются на расстояниях порядка длины свободного пробега (для газов) или длины корреляций потоков энергии или импульса (для жидкостей). [В квантовом случае Я (ж), р (x), п(x) - операторы в представлении вторичного квантования .]

К задачам К. ф. относится также вычисление обобщённой восприимчивости , выражающей линейную реакцию физ. системы на включение внеш. поля. Её можно выразить через Грина функции с усреднением по состоянию, к-рое может быть и неравновесным.

В К. ф. исследуют также кинетич. свойства квантовых систем, что требует применения метода матрицы плотности (см., напр., Кинетическое уравнение основное ).

Лит.: Гуревич Л. Э., Основы физической кинетики, Л.- М., 1940; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М.- Л., 1946; Ч е п-мен С., К а у л и н г Т.", Математическая теория неоднородных газов, пер. с англ., М., 1960; Зубарев Д. Н., Неравновесная статистическая , М., 1971; К л и-монтович Ю. Л., Кинетическая теория неидеального газа и неидеальной плазмы, М., 1975; Ферцигер Д ж., К а-п е р Г., Математическая теория процессов переноса в газах, пер. с англ., М., 1976; В а л е с к у Р., Равновесная и неравновесная статистическая механика, пер. с англ., т. 2, М., 1978; Л и ф ш и ц Е. М., Питаевский Л. П., Физическая кинетика, М., 1979. Д. Н. Зубарев .

Что такое физическая кинетика

Определение

Физическая кинетика - составная часть статистической физики, которая изучает процессы, происходящие в неравновесных средах с точки зрения строения вещества.

Физическая кинетика использует методы квантовой или классической статистической физики, рассматривая процессы переноса энергии, импульса, заряда и вещества в газе, жидкостях, плазме и твердых телах, а также влияние на разные состояния вещества со стороны полей. Физическая кинетика включает:

  1. кинетическую теорию газов,
  2. статистическую теорию неравновесных процессов в плазме,
  3. теорию явлений переноса,
  4. кинетику магнитных процессов,
  5. теорию кинетических явлений о прохождении быстрых частиц через вещество,
  6. кинетику фазовых переходов.

Основной метод физической кинетики: решение кинетического уравнения Больцмана.

Остановимся на кинетической теории газов. Основное уравнение кинетической теории газов:

где $p$ -- давление газа, $V$- объем газа, $E_k$ -- суммарная кинетическая энергия поступательного движения n молекул газа, находящихся в объеме V, причем:

где $m_i$- масса i-й молекулы, $v_i$ -- ее скорость.

Уравнение (1) можно записать в другом виде:

где $\rho =n\cdot m_0$- плотность газа, $n=\frac{N}{V}$ -- концентрация частиц газа, $m_0$ -- масса молекулы газа, $v^2_{kv}\ $-- квадрат среднеквадратичной скорости поступательного движения газа.

Прежде чем перейти непосредственно к явлению переноса, остановимся на ряде необходимых определений.

Столкновения двух частиц характеризуется эффективным сечением соударения $\sigma$. В случае соударения молекул, имеющих диаметр d, (по модели твердых сфер) эффективное газокинетическое поперечное сечение равно площади круга с радиусом d (эффективный диаметр молекулы):

\[\sigma=\pi d^2\left(3\right).\]

Эффективное поперечное сечение зависит от энергии соударяющихся частиц и характера процесса, происходящего при соударении.

Между двумя последовательными соударениями молекула движется прямолинейно и равномерно, проходя в среднем расстояние, называемое длиной свободного пробега $\left\langle \lambda \right\rangle $. Закон распределения свободных пробегов определяется вероятностью dw(x) того, что молекула пройдет без соударения путь x и совершит соударение на следующем бесконечно малом участке dx:

$n_0$ -- концентрация молекул газа.

Средняя длина свободного пробега может быть найдена по формуле:

\[\left\langle \lambda \right\rangle =\int\nolimits^{\infty }_0{xdw\left(x\right)=\int\nolimits^{\infty }_0{xe^{-n_0 \sigma x}n_0 \sigma dx=\frac{1}{n_0 \sigma }\left(5\right).}}\]

С учетом распределения соударяющихся молекул по относительным скоростям

\[\left\langle \lambda \right\rangle =\frac{1}{\sqrt{2}n_0 \sigma}\ \left(6\right),\]

где $\sigma$ считается не зависящей от относительно скорости.

Для двух состояний газа при постоянной температуре выполняется равенство:

Явления переноса

Если система находится в неравновесном состоянии, то предоставленная самой себе, она постепенно будет приходить к равновесному состоянию. Время релаксации -- это время, в течение которого система достигнет равновесного состояния. К явлениям переноса относят следующие явления:

  • теплопроводность. В состоянии равновесия температура T во всех точках системы одинакова. При отклонении температуры от равновесного значения в некоторой области в системе возникает движение теплоты в таких направлениях, чтобы сделать температуру всех частей системы одинаковой. Связанный с этим движением перенос тепла называют теплопроводностью;
  • диффузию. В состоянии равновесия плотность каждой компоненты во всех точках системы одинакова. При отклонении плотности от равновесного значения в некоторой области в системе возникает движение компонент вещества в таких направлениях, чтобы сделать плотность каждой компоненты постоянной по всему объёму. Связанный с этим движением перенос вещества называют диффузией.
  • вязкость. В равновесном состоянии разные части фазы покоятся друг относительно друга. При относительном движении фаз вещества друг относительно друга возникают силы трения или вязкость. Эти силы стремятся уменьшить скорость движения фаз.

Пусть G характеризует некоторое молекулярное свойство, отнесенное к одной молекуле. Это может быть энергия, импульс, концентрация и т.д. Если в равновесном состоянии G постоянно по объему, то при наличии градиента G имеется движение G в направлении его уменьшения. Пусть ось Ox направлена вдоль градиента G. Тогда полный поток $I_G$ в положительном направлении оси Ox в точке x имеет вид:

Уравнение (8) является основным уравнением процессов переноса количества G. Применение уравнения (8) рассмотрим в следующих главах, посвященных конкретным явлениям переноса.

Пример 1

Задание: При атмосферном давлении и температуре 273 К длина свободного пробега молекулы водорода равна 0,1 мк м. Оцените диаметр этой молекулы.

За основу возьмем формулу для средней длины свободного пробега молекулы:

\[\left\langle \lambda \right\rangle =\frac{1}{\sqrt{2}n_0 \sigma}=\frac{1}{\sqrt{2}n_0\pi d^2}\left(1.1\right).\]

Для нахождения диаметра молекулы в формуле (1.2) нам не хватает $n_0$ -- концентрации молекул. Используем уравнение состояния идеального газа, так как водород при атмосферном давлении можно считать идеальным газом:

Выразим диаметр из (1.1) и подставим вместо n (1.2), получим:

Проведем расчет:

Ответ: Диаметр молекулы водорода $\approx 2.3\cdot 10^{-10}м.$

Задание: Плотность газа увеличивают в 3 раза, а температуру уменьшают в 4 раза. Как изменилось число столкновений молекул в единицу времени?

Число столкновений определим как:

где $\left\langle S\right\rangle $- среднее перемещение молекулы, $\left\langle v\right\rangle $ -- средняя скорость молекулы.

\[\left\langle \lambda \right\rangle =\frac{1}{\sqrt{2}n_0 \pi d^2}\left(2.2\right).\]

\[\left\langle v\right\rangle =\sqrt{\frac{8\pi RT}{\mu }}\left(2.3\right).\] \

Необходимо еще определиться с $n_0$. Вспомним, что $n_0=\rho \frac{N_A}{\mu },$ $N_A$- число Авогадро, $\mu $- молярная масса вещества. Тогда:

\ \

тогда имеем:

\[\frac{z_2}{z_1}=\frac{{\rho }_2}{{\rho }_1}\sqrt{\frac{T_2}{T_1}}(2.4)\]

Подставим данные, получим:

\[\frac{z_2}{z_1}=3\cdot \frac{\sqrt{1}}{\sqrt{4}}=1,5\]

Ответ: Число столкновений увеличится в 1,5 раза.