Мгновенная скорость при криволинейном движении. Конспект урока "Прямолинейное и криволинейное движение

Мы знаем, что при прямолинейном движении направление вектора скорости всегда совпадает с направлением перемещения. Что можно сказать о направлении скорости и перемещения при криволинейном движении? Чтобы ответить на этот вопрос, мы воспользуемся тем же приемом, которым пользовались в предыдущей главе при изучении мгновенной скорости прямолинейного движения.

На рисунке 56 представлена некоторая криволинейная траектория. Допустим, что тело движется по ней из точки А в точку В.

При этом пройденный телом путь - это дуга А В, а его перемещение это вектор Конечно, нельзя считать, что скорость тела во время движения направлена вдоль вектора перемещения. Проведем между точками А и В ряд хорд (рис. 57) и представим себе, что движение тела происходит именно по этим хордам. На каждой из них тело движется прямолинейно и вектор скорости направлен вдоль хорды.

Сделаем теперь наши прямолинейные участки (хорды) более короткими (рис. 58). По-прежнему на каждом из них вектор скорости направлен вдоль хорды. Но видно, что ломаная линия на рисунке 58 уже более похожа на плавную кривую.

Ясно поэтому, что, продолжая уменьшать длину прямолинейных участков, мы их как бы стянем в точки и ломаная линия превратится в плавную кривую. Скорость же в каждой точке этой кривой будет направлена но касательной к кривой в этой точке (рис. 59).

Скорость движения тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке.

В том, что скорость точки при криволинейном движении действительно направлена по касательной, убеждает нас, например, наблюдение за работой гочнла (рис. 60). Если прижать к вращающемуся точильному камню концы стального прутка, то раскаленные частицы, отрывающиеся от камня, будут видны в виде искр. Эти частицы летят с той скоростью, которой

они обладали в момент отрыва от камня. Хорошо видно, что направление вылета искр всегда совпадает с касательной к окружности в той точке, где пруток касается камня. По касательной к окружности движутся и брызги от колес буксующего автомобиля (рис. 61).

Таким образом, мгновенная скорость тела в разных точках криволинейной траектории имеет различные направления, как это показано на рисунке 62. Модуль же скорости может быть во всех точках траектории одинаковым (см. рис. 62) или изменяться от точки к точке, от одного момента времени к другому (рис. 63).

При криволинейном движении у вектора скорости изменяется направление. При этом может меняться и его модуль, т. е. длина. В этом случае вектор ускорения раскладывается на две составляющие: касательную к траектории и перпендикулярную к траектории (рис. 10). Составляющая называется тангенциальным (касательным) ускорением, составляющая –нормальным (центростремительным) ускорением.

Ускорение при криволинейном движении

Тангенциальное ускорение характеризует быстроту изменения линейной скорости, а нормальное ускорение характеризует быстроту изменения направления движения.

Полное ускорение равно векторной сумме тангенциального и нормального ускорений:

(15)

Модуль полного ускорения равен:

.

Рассмотрим равномерное движение точки по окружности. При этом и . Пусть в рассматриваемый момент времени t точка находится в положении 1 (рис. 11). Спустя время Δt точка окажется в положении 2, пройдя путь Δs , равный дуге 1-2. При этом скорость точки v получает приращение Δv , в результате чего вектор скорости, оставаясь неизменным по величине, повернется на угол Δφ , совпадающий по величине с центральным углом, опирающимся на дугу длиной Δs :

(16)

где R-радиус окружности, по которой движется точка. Найдем приращение вектора скорости Для этого перенесем вектор так, чтобы его начало совпадало с началом вектора . Тогда вектор изобразится отрезком, проведенным из конца вектора в конец вектора . Этот отрезок служит основанием равнобедренного треугольника со сторонами и и углом Δφ при вершине. Если угол Δφ невелик (что выполняется для малых Δt), для сторон этого треугольника можно приближенно написать:

.

Подставляя сюда Δφ из (16), получаем выражение для модуля вектора :

.

Разделив обе части уравнения на Δt и сделав предельный переход, получим величину центростремительного ускорения:

Здесь величины v и R постоянные, поэтому их можно вынести за знак предела. Предел отношения – это модуль скорости Его также называют линейной скоростью.

Радиус кривизны

Радиус окружности R называется радиусом кривизны траектории. Величина, обратная R, называется кривизной траектории:

.

где R - радиус рассматриваемой окружности. Если α есть центральный угол, соответствующий дуге окружности s, то, как известно, между R, α и s имеет место соотношение:

s = Rα . (18)

Понятие радиуса кривизны применимо не только к окружности, но и любой кривой линии. Радиус кривизны (или обратная ему величина – кривизна) характеризует степень изогнутости линии. Чем меньше радиус кривизны (соответственно, чем больше кривизна), тем сильнее изогнута линия. Рассмотрим это понятие подробнее.


Кругом кривизны плоской линии в некоторой точке A называется предельное положение окружности, проходящей через точку А и две другие точки В 1 и В 2 при их бесконечном приближении к точке А (на рис. 12 кривая проведена сплошной линией, а круг кривизны - пунктирной). Радиус круга кривизны дает радиус кривизны рассматриваемой кривой в точке A, а центр этого круга - центр кривизны кривой для той же точки А.

Проведем в точках B 1 и В 2 касательные B 1 D и В 2 Е к окружности, проходящей через точки В 1 , А и B 2 . Нормали к этим касательным B 1 С и В 2 С представят собой радиусы R окружности и пересекутся в ее центре С. Введем угол Δα между нормалями В1С и В 2 С; очевидно, он равен углу между касательными В 1 D и В 2 E. Обозначим участок кривой между точками B 1 и В 2 как Δs. Тогда по формуле (18):

.

Круг кривизны плоской кривой линии

Определение кривизны плоской кривой в разных точках

На рис. 13 изображены круги кривизны плоской линии в разных точках. В точке A 1 , где кривая является более пологой, радиус кривизны больше, чем в точке A 2 , соответственно, кривизна линии в точке A 1 будет меньше, чем в точке A 2 . В точке A 3 кривая является еще более пологой, чем в точках A 1 и A 2 , поэтому радиус кривизны в этой точке будет больше, а кривизна меньше. Кроме того, круг кривизны в точке A 3 лежит по другую сторону кривой. Поэтому величине кривизны в этой точке приписывают знак, противоположный знаку кривизны в точках A 1 и A 2: если кривизну в точках A 1 и A 2 будем считать положительной, то кривизна в точке A 3 будет отрицательной.

Понятия скорости и ускорения естественным образом обобщаются на случай движения материальной точки по криволинейной траектории . Положение движущейся точки на траектории задается радиус-вектором r , проведенным в эту точку из какой-либо неподвижной точки О , например, начала координат (рис. 1.2). Пусть в момент времени t материальная точка находится в положении М с радиус-вектором r = r (t ). Спустя короткое время Dt , она переместится в положение М 1 с радиусом – вектором r 1 = r (t + Dt ). Радиус – вектор материальной точки получит приращение, определяемое геометрической разностью Dr = r 1 - r . Средней скоростью движения за время Dt называется величина

Направление средней скорости V ср совпадает с направлением вектора Dr .

Предел средней скорости при Dt ® 0, т. е. производная радиуса – вектора r по времени

(1.9)

называется истинной или мгновенной скоростью материальной точки. Вектор V направлен по касательной к траектории движущейся точки.

Ускорением а называется вектор, равный первой производной вектора скорости V или второй производной радиуса – вектора r по времени:

(1.10)

(1.11)

Отметим следующую формальную аналогию между скоростью и ускорением. Из произвольной неподвижной точки О 1 будем откладывать вектор скорости V движущейся точки во всевозможные моменты времени (рис. 1.3).

Конец вектора V называется скоростной точкой . Геометрическое место скоростных точек есть кривая, называемая годографом скорости. Когда материальная точка описывает траекторию, соответствующая ей скоростная точка движется по годографу.

Рис. 1.2 отличается от рис. 1.3 только обозначениями. Радиус – вектор r заменен на вектор скорости V , материальная точка – на скоростную точку, траектория – на годограф. Математические операции над вектором r при нахождении скорости и над вектором V при нахождении ускорения совершенно тождественны.

Скорость V направлена по касательной траектории. Поэтому ускорение a будет направлено по касательной к годографу скорости. Можно сказать, что ускорение есть скорость движения скоростной точки по годографу . Следовательно,

Вам хорошо известно, что в зависимости от формы траектории движение делится на прямолинейное и криволинейное . С прямолинейным движением мы научились работать на предыдущих уроках, а именно решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Для начала определимся, какие принципиальные отличия есть у криволинейного движения (рис. 1) относительно прямолинейного и к чему эти отличия приводят.

Рис. 1. Траектория криволинейного движения

Поговорим о том, как удобно описывать движение тела при криволинейном движении.

Можно разбить движение на отдельные участки, на каждом из которых движение можно считать прямолинейным (рис. 2).

Рис. 2. Разбиение криволинейного движения на участки прямолинейного движения

Однако более удобным является следующий подход. Мы представим это движение как совокупность нескольких движений по дугам окружностей (рис. 3). Обратите внимание, что таких разбиений меньше, чем в предыдущем случае, кроме того, движение по окружности является криволинейным. К тому же примеры движения по окружности в природе встречается очень часто. Из этого можно сделать вывод:

Для того чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Рис. 3. Разбиение криволинейного движения на движения по дугам окружностей

Итак, начнем изучение криволинейного движения с изучения равномерного движения по окружности. Давайте разберемся, каковы принципиальные отличия криволинейного движения от прямолинейного. Для начала вспомним, что в девятом классе мы изучили тот факт, что скорость тела при движении по окружности направлена по касательной к траектории (рис. 4). Кстати, этот факт вы можете пронаблюдать на опыте, если посмотрите, как движутся искры при использовании точильного камня.

Рассмотрим движение тела по дуге окружности (рис. 5).

Рис. 5. Скорость тела при движении по окружности

Обратите внимание, что в данном случае модуль скорости тела в точке равен модулю скорости тела в точке :

Однако вектор не равен вектору . Итак, у нас появляется вектор разности скоростей (рис. 6):

Рис. 6. Вектор разности скоростей

Причем изменение скорости произошло через некоторое время . Таким образом, мы получаем знакомую комбинацию:

Это не что иное, как изменение скорости за промежуток времени, или ускорение тела. Можно сделать очень важный вывод:

Движение по криволинейной траектории является ускоренным. Природа этого ускорения – непрерывное изменение направление вектора скорости.

Еще раз отметим, что, даже если говорится, что тело равномерно движется по окружности, имеется в виду, что модуль скорости тела не изменяется. Однако такое движение всегда является ускоренным, поскольку изменяется направление скорости.

В девятом классе вы изучали, чему равно такое ускорение и как оно направлено (рис. 7). Центростремительное ускорение всегда направлено к центру окружности, по которой движется тело.

Рис. 7. Центростремительное ускорение

Модуль центростремительного ускорения может быть рассчитан по формуле:

Переходим к описанию равномерного движения тела по окружности. Договоримся, что скорость , которой вы пользовались по время описания поступательного движения, теперь будет называться линейной скоростью. И под линейной скоростью мы будем понимать мгновенную скорость в точке траектории вращающегося тела.

Рис. 8. Движение точек диска

Рассмотрим диск, который для определенности вращается по часовой стрелке. На его радиусе отметим две точки и (рис. 8). Рассмотрим их движение. За некоторое время эти точки переместятся по дугам окружности и станут точками и . Очевидно, что точка совершила большее перемещение, чем точка . Из этого можно сделать вывод, что чем дальше от оси вращения находится точка, тем с большей линейной скоростью она движется

Однако если внимательно посмотреть на точки и , можно сказать, что неизменным остался угол , на который они повернулись относительно оси вращения . Именно угловые характеристики мы и будем использовать для описания движения по окружности. Отметим, что для описания движения по окружности можно использовать угловые характеристики.

Начнем рассмотрение движения по окружности с самого простого случая – равномерного движения по окружности. Напомним, что равномерным поступательным движением называется движение, при котором за любые равные промежутки времени тело совершает одинаковые перемещения. По аналогии можно дать определение равномерного движения по окружности.

Равномерным движением по окружности называется движение, при котором за любые равные промежутки времени тело поворачивается на одинаковые углы.

Аналогично понятию линейной скорости вводится понятие угловой скорости.

Угловой скоростью равномерного движения ( называется физическая величина, равная отношению угла, на который повернулось тело, ко времени, за которое произошел этот поворот.

В физике чаще всего используется радианная мера угла. Например, угол в равен радиан. Измеряется угловая скорость в радианах в секунду:

Найдем связь между угловой скоростью вращения точки и линейной скоростью этой точки.

Рис. 9. Связь между угловой и линейной скоростью

Точка проходит при вращении дугу длиной , поворачиваясь при этом на угол . Из определения радианной меры угла можно записать:

Разделим левую и правую части равенства на промежуток времени , за который было совершено перемещение, затем воспользуемся определением угловой и линейной скоростей:

Обратим внимание, что чем дальше точка находится от оси вращения, тем выше ее линейная скорость. А точки, расположенные на самой оси вращения, неподвижны. Примером этого может служить карусель: чем ближе вы находитесь к центру карусели, тем легче вам на ней удержаться.

Такая зависимость линейной и угловой скоростей используется в геостационарных спутниках (спутники, которые всегда находятся над одной и той же точкой земной поверхности). Благодаря таким спутникам мы имеем возможность получать телевизионные сигналы.

Вспомним, что ранее мы вводили понятия периода и частоты вращения.

Период вращения – время одного полного оборота. Период вращения обозначается буквой и измеряется в секундах в СИ:

Частота вращения – физическая величина, равная количеству оборотов, которое тело совершает за единицу времени.

Частота обозначается буквой и измеряется в обратных секундах:

Они связаны соотношением:

Существует связь между угловой скоростью и частотой вращения тела. Если вспомнить, что полный оборот равен , легко увидеть, что угловая скорость:

Подставляя эти выражения в зависимость между угловой и линейной скоростью, можно получить зависимость линейной скорости от периода или частоты:

Запишем также связь между центростремительным ускорением и этими величинами:

Таким образом, мы знаем связь между всеми характеристиками равномерного движения по окружности.

Подытожим. На этом уроке мы начали описывать криволинейное движение. Мы поняли, каким образом можно связать криволинейное движение с движением по окружности. Движение по окружности всегда является ускоренным, а наличие ускорения обуславливает тот факт, что скорость всегда меняет свое направление. Такое ускорение называется центростремительным. Наконец, мы вспомнили некоторые характеристики движения по окружности (линейную скорость, угловую скорость, период и частоту вращения) и нашли соотношения между ними.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Аyp.ru ().
  2. Википедия ().

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

  1. Задачи 92, 94, 98, 106, 110 - сб. задач А.П. Рымкевич, изд. 10
  2. Вычислите угловую скорость движения минутной, секундной и часовой стрелок часов. Вычислите центростремительное ускорение, действующее на кончики этих стрелок, если радиус каждой из них равен одному метру.

Кинематика изучает движение без выявления причин, вызывающих это движение. Кинематика является разделом механики. Главной задачей кинематики является математическое определение положения и характеристик движения точек или тел во времени.

Основные кинематические величины:

- Перемещение() – вектор, соединяющий начальную и конечную точки.

r – радиус-вектор, определяет положение МТ в пространстве.

- Скорость – отношение пути ко времени.

- Путь – множество точек через которое прошло тело.

- Ускорение – скорость изменения скорости, то есть первая производная от скорости.

2.Ускорение при криволинейном движении: нормальное и тангенциальное ускорение. Плоское вращение. Угловая скорость, ускорение.

Криволинейное движение – это движение, траектория которого представляет собой кривую линию. Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости.

Изменение величины скорости за единицу времени – это тангенциальное ускорение :

Где 𝛖 τ , 𝛖 0 – величины скоростей в момент времени t 0 + Δt и t 0 соответственно. Тангенциальное ускорение в данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

Нормальное ускорение - это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Полное ускорение при равнопеременном криволинейном движении тела равно:

-угловая скорость показывает, на какой угол поворачивается точка при равномерном движении по окружности за единицу времени. Единица измерения в СИ - рад/с.

Плоское вращение – это вращение всех векторов скоростей точек тела в одной плоскости.

3.Связь между векторами скорости и угловой скорости материальной точки. Нормальное, тангенциальное и полное ускорение.

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Нормальное (центростремительное) ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой.