Основные силы в классической механике. Границы применимости законов классической механики

КЛАССИЧЕСКАЯ МЕХАНИКА

ЛЕКЦИЯ 1

ВВЕДЕНИЕ В КЛАССИЧЕСКУЮ МЕХАНИКУ

Классическая механика изучает механическое движение макроскопических объектов, которые движутся со скоростями много меньше скорости света (=3 10 8 м/с). Под макроскопическими объектами понимаются объекты, размеры которых
м. (справа стоит размер типичной молекулы).

Физические теории, изучающие системы тел, движение которых происходит со скоростями много меньшими скорости света, относятся к числу нерелятивистских теорий. Если скорости частиц системы сравнимы со скоростью света
, то такие системы относятся к релятивистским системам, и они должны описываться на основе релятивистских теорий. Основой всех релятивистских теорий является специальная теория относительности (СТО). Если размеры изучаемых физических объектов малы
м., то такие системы относятся к квантовым системам, и их теории принадлежат к числу квантовых теорий.

Таким образом, классическую механику следует рассматривать как нерелятивистскую неквантовую теорию движения частиц.

1.1 Системы отсчета и принципы инвариантности

Механическое движение – это изменение положения тела относительно других тел с течением времени в пространстве.

Пространство в классической механике считается трехмерным (для определения положения частицы в пространстве необходимо задать три координаты), подчиняющимся геометрии Евклида (в пространстве справедлива теорема Пифагора) и абсолютным. Время одномерно, однонаправлено (меняется от прошлого к будущему) и абсолютно. Абсолютность пространства и времени означает, что их свойства не зависят от распределения и движения материи. В классической механике принимается справедливым следующее утверждение: пространство и время не связаны друг с другом и могут рассматриваться независимо друг от друга.

Движение относительно и, следовательно, для его описания необходимо выбрать тело отсчета , т.е. тело относительно которого рассматривается движение. Поскольку движение происходит в пространстве и во времени, то для его описания следует выбрать ту или иную систему координат и часы (арифметизировать пространство и время). В силу трехмерности пространства каждой его точке сопоставляются три числа (координаты). Выбор той или иной системы координат обычно диктуется условием и симметрией поставленной задачи. В теоретических рассуждениях мы обычно будем использовать прямоугольную декартову систему координат (рис 1.1).

В классической механике для измерения промежутков времени, в силу абсолютности времени, достаточно наличия одних часов, помещенных в начале системы координат (подробно этот вопрос будет рассмотрен в теории относительности). Тело отсчета и, связанные с этим телом, часы и масштабы (система координат) образуют систему отсчета .

0

Введем понятие замкнутой физической системы. Замкнутой физической системой называется такая система материальных объектов, в которой все объекты системы взаимодействуют между собой, но не взаимодействуют с объектами, которые не входят в систему.

Как показывают эксперименты, по отношению к целому ряду систем отсчета оказываются справедливыми следующие принципы инвариантности.

Принцип инвариантности относительно пространственных сдвигов (пространство однородно): на протекание процессов внутри замкнутой физической системы не сказывается ее место положения относительно тела отсчета.

Принцип инвариантности относительно пространственных поворотов (пространство изотропно): на протекание процессов внутри замкнутой физической системы не сказывается ее ориентация относительно тела отсчета.

Принцип инвариантности относительно временных сдвигов (время однородно): на протекание процессов внутри замкнутой физической системы не сказывается время начала протекания процессов.

Принцип инвариантности относительно зеркальных отражений (пространство зеркально - симметрично): процессы, протекающие в замкнутых зеркально – симметричных физических системах, сами являются зеркально – симметричными.

Те системы отсчета по отношению, к которым пространство однородно, изотропно и зеркально – симметрично и время однородно называются инерциальными системами отсчета (ИСО).

Первый закон Ньютона утверждает, что ИСО существуют.

Существует не одна, а бесконечное множество ИСО. Та система отсчета, которая движется относительно ИСО прямолинейно и равномерно сама будет ИСО.

Принцип относительности утверждает, что на протекание процессов в замкнутой физической системе не сказывается ее прямолинейное равномерное движение относительно системы отсчета; законы, описывающие процессы, одинаковы в разных ИСО; сами процессы будут одинаковы, если одинаковы начальные условия.

1.2 Основные модели и разделы классической механики

В классической механике при описании реальных физических систем вводится ряд абстрактных понятий, которым отвечают реальные физические объекты. В число основных таких понятий входят: замкнутая физическая система, материальная точка (частица), абсолютно твердое тело, сплошная среда и ряд других.

Материальная точка (частица) – тело, размерами и внутренней структурой которого можно пренебречь при описании его движения. При этом каждая частица характеризуется своим определенным набором параметров – масса, электрический заряд. В модели материальной точки не рассматриваются структурные внутренние характеристики частиц: момент инерции, дипольный момент, собственный момент (спин) и др. Положение частицы в пространстве характеризуется тремя числами (координатами) или радиус-вектором (рис. 1.1).

Абсолютно твердое тело

Система материальных точек, расстояния между которыми не меняются в процессе их движения;

Тело, деформациями которого можно пренебречь.

Реальный физический процесс рассматривается как непрерывная последовательность элементарных событий.

Элементарное событие – это явление с нулевой пространственной протяженностью и нулевой длительностью (например, попадание пули в мишень). Событие характеризуется четырьмя числами – координатами; три пространственные координаты (или радиус – вектор) и одна временная координата:
. Движение частицы при этом представляется как непрерывная последовательность следующих элементарных событий: прохождение частицы через данную точку пространства в данное время.

Закон движения частицы считается заданным, если известна зависимость радиус – вектора частицы (или трех ее координат) от времени:

В зависимости от вида изучаемых объектов классическую механику подразделяют на механику частицы и системы частиц, механику абсолютно твердого тела, механику сплошных сред (механика упругих тел, гидромеханика, аэромеханика).

По характеру решаемых задач классическую механику подразделяют на кинематику, динамику и статику. Кинематика изучает механическое движение частиц без учета причин, вызывающих изменение характера движения частиц (сил). Закон движения частиц системы считается заданным. По этому закону в кинематике определяются скорости, ускорения, траектории движения частиц системы. Динамика рассматривает механическое движение частиц с учетом причин, вызывающих изменение характера движения частиц. Силы, действующие между частицами системы и на частицы системы со стороны тел, не включенных в систему, считаются известными. Природа сил в классической механике не обсуждается. Статика может рассматриваться как частный случай динамики, где изучаются условия механического равновесия частиц системы.

По способу описания систем механика делится на ньютонову и аналитическую механику.

1.3 Преобразования координат событий

Рассмотрим, как преобразуются координаты событий при переходе от одной ИСО к другой.

1. Пространственный сдвиг. В данном случае преобразования выглядят так:


(1.1)

Где
– вектор пространственного сдвига, который не зависит от номера события (индекс а).

2. Временной сдвиг:

,
, (1.2)

Где – временной сдвиг.

3. Пространственный поворот:

,
, (1.3)

Где
– вектор бесконечно малого поворота (рис.1.2).

4. Временная инверсия (обращение времени):

,
. (1.4)

5. Пространственная инверсия (отражение в точке):

, (1.5)

6. Преобразования Галилея. Рассматриваем преобразования координат событий при переходе от одной ИСО к другой, которая движется относительно первой прямолинейно и равномерно со скоростью (рис.1.3):

, , (1.6)

Где второе соотношение постулируется (!) и выражает собой абсолютность времени.

Дифференцируя по времени правую и левую часть преобразования пространственных координат с учетом абсолютного характера времени, используя определение скорости , как производной от радиуса – вектора по времени, условие, что =const, получаем классический закон сложения скоростей

. (1.7)

Здесь следует особо обратить внимание на то обстоятельство, что при выводе последнего соотношения необходимо принимать во внимание постулат об абсолютном характере времени.


Рис. 1.2 Рис. 1.3

Дифференцируя по времени еще раз, используя определение ускорения , как производной от скорости по времени, получим, что ускорение одинаково по отношению к разным ИСО (инвариантно относительно преобразований Галилея). Данное утверждение математически выражает собой принцип относительности в классической механике.

С математической точки зрения преобразования 1-6 образуют группу. Действительно, данная группа содержит в себе единичное преобразование – тождественное преобразование, отвечающее отсутствию перехода от одной системы к другой; для каждого из преобразований 1-6 существует обратное преобразование, которое переводит систему в исходное состояние. Операция умножения (композиции) вводится как последовательное применение соответствующих преобразований. Следует особо обратить внимание, что группа преобразований вращения не подчиняется коммутативному (перестановочному) закону, т.е. является неабелевой. Полную группу преобразований 1-6 называют галилеевой группой преобразований.

1.4 Векторы и скаляры

Вектором называется физическая величина, которая преобразуется как радиус-вектор частицы и характеризуется своим численным значением и направлением в пространстве. По отношению к операции пространственной инверсии векторы делятся на истинные (полярные) и псевдовекторы (аксиальные). При пространственной инверсии истинный вектор меняет свой знак, псевдовектор не изменяется.

Скаляры характеризуются только своим численным значением. По отношению к операции пространственной инверсии скаляры делятся на истинные и псевдоскаляры . При пространственной инверсии истинный скаляр не изменяется, псевдоскаляр меняет свой знак.

Примеры . Радиус-вектор, скорость, ускорение частицы являются истинными векторами. Векторы угла поворота, угловой скорости, углового ускорения – псевдовекторы. Векторное произведение двух истинных векторов – псевдовектор, векторное произведение истинного вектора на псевдовектор – истинный вектор. Скалярное произведение двух истинных векторов – истинный скаляр, истинного вектора на псевдовектор – псевдоскаляр.

Следует отметить, что в векторном или скалярном равенстве справа и слева должны стоять слагаемые одной природы по отношению к операции пространственной инверсии: истинные скаляры или псевдоскаляры, истинные векторы или псевдовекторы.

Механика – это часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение.

Механика, в свою очередь, делится на кинематику, динамику и статику.

Механическое движение – это изменение взаимного расположения тел или частей тела с течением времени.

Масса – это скалярная физическая величина, количественно характеризующая инертные и гравитационные свойства материи.

Инертность – это стремление тела сохранять состояние покоя или равномерного прямолинейного движения.

Инертная масса характеризует способность тела сопротивляться изменению своего состояния (покоя или движения), например, во втором законе Ньютона

.

Гравитационная масса характеризует способность тела создавать гравитационное поле, которое характеризуется векторной величиной , называемой напряженностью. Напряженность гравитационного поля точечной массы равна:

,

Гравитационная масса характеризует способность тела взаимодействовать с гравитационным полем:

.

п ринцип эквивалентности гравитационной и инертной масс: каждая масса является одновременно и инертной и гравитационной.

Масса тела зависит от плотности вещества ρ и размеров тела (объема тела V):

.

Понятие массы не тождественно понятиям веса и силы тяжести. Она не зависит от полей тяготения и ускорений.

Момент инерции – тензорная физическая величина, количественно характеризующая инертность твёрдого тела, проявляющуюся во вращательном движении.

п ри описании вращательного движения задать массу недостаточно. Инертность тела во вращательном движении зависит не только от массы, но и от ее распределения относительно оси вращения.

1. Момент инерции материальной точки

,

где m – масса материальной точки; r – расстояние от точки до оси вращения.

2. Момент инерции системы материальных точек

.

3. Момент инерции абсолютно твердого тела

.

Сила – это векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или деформируется (изменяет свою форму или размеры).

Механика использует различные модели для описания механического движения.

Материальная точка (м.т.)– это тело, обладающее массой, размерами которого в данной задаче можно пренебречь.

Абсолютно твердое тело (а.т.т.) – это тело, которое в процессе движения не деформируется, то есть расстояние между любыми двумя точками в процессе движения остается неизменным.
§ 2. Законы движения.


  • Первый закон н ьютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, воздействие со стороны других тел не заставит ее изменить это состояние.
Те системы отсчета, по отношению к которым выполняется первый закон Ньютона, называются инерциальными системами отсчета (ИСО). Следовательно, первый закон Ньютона утверждает существование ИСО.

  • Второй закон Ньютона (основной закон динамики поступательного движения): скорость изменения импульса материальной точки (тела) равна сумме действующих на нее сил


  • Третий закон Ньютона : всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми материальные точки действуют друг на друга, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки

,

здесь – сила, действующая на первую материальную точку со стороны второй; – сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.





,

здесь – гравитационная постоянная.
.

Законы сохранения в классической механике.

з аконы сохранения выполняются в замкнутых системах взаимодействующих тел.

Система называется замкнутой, если на систему не действуют внешние силы.

Импульс – векторная физическая величина, количественно характеризующая запас поступательного движения:

.

Закон сохранения импульса системы материальных точек (м.т.): в замкнутых системах м.т. полный импульс сохраняется

,
,

где – скорость i-й материальной точки до взаимодействия; – ее скорость после взаимодействия.

Момент импульса – физическая векторная величина, количественно характеризующая запас вращательного движения.

,

– импульс материальной точки, – радиус-вектор материальной точки.
Закон сохранения момента импульса : в замкнутой системе суммарный момент импульса сохраняется:

.

Физическая величина, характеризующая способность тела или системы тел совершать работу, называется энергией.

Энергия – скалярная физическая величина, являющаяся наиболее общей характеристикой состояния системы.

Состояние системы определяется ее движением и конфигурацией, т. е. взаимным расположением ее частей. Движение системы характеризуется кинетической энергией K, а конфигурация (нахождение тела в потенциальном поле сил) – потенциальной энергией U.

Полная энергия определяется как сумма:

E = K + U + E внутр,

где E внутр – внутренняя энергия тела.

Кинетическая и потенциальная энергии в сумме составляют механическую энергию .

Формула Эйнштейна (взаимосвязь энергии и массы):

В системе отсчета, связанной с центром масс системы м.т., m = m 0 – масса покоя, а Е = Е 0 = m 0 . c 2 – энергия покоя.

Внутренняя энергия определяется в системе отсчета, связанной с самим телом, то есть внутренняя энергия является одновременно и энергией покоя.

Кинетическая энергия – это энергия механического движения тела или системы тел. Релятивистская кинетическая энергия определяется по формуле

При малых скоростях v

.

Потенциальная энергия – скалярная физическая величина, характеризующая взаимодействие тел с другими телами или с полями.

Примеры:


    потенциальная энергия упругого взаимодействия

;

  • потенциальная энергия гравитационного взаимодействия точечных масс

;

Закон сохранения энергии : полная энергия замкнутой системы материальных точек сохраняется

.

При отсутствии диссипации (рассеяния) энергии сохраняются и полная и механическая энергии. В диссипативных системах полная энергия сохраняется, а механическая энергия не сохраняется.


§ 2. Основные понятия классической электродинамики.

Источником электромагнитного поля является электрический заряд.

Электрический заряд – это свойство некоторых элементарных частиц вступать в электромагнитное взаимодействие.

Свойства электрического заряда :

1. Электрический заряд может быть положительным и отрицательным (принято считать, что протон заряжен положительно, а электрон – отрицательно).

2. Электрический заряд квантован. Квант электрического заряда – элементарный электрический заряд (е = 1,610 –19 Кл). В свободном состоянии все заряды кратны целому числу элементарных электрических зарядов:

3. Закон сохранения заряда: суммарный электрический заряд замкнутой системы сохраняется во всех процессах, происходящих с участием заряженных частиц:

q 1 + q 2 +...+ q N = q 1 * + q 2 * +...+ q N * .

4. р елятивистская инвариантность: величина полного заряда системы не зависит от движения носителей заряда (заряд движущейся и покоящейся частиц одинаков). Иными словами – во всех ИСО величина заряда любой частицы или тела одинакова.

Описание электромагнитного поля.

Заряды взаимодействуют друг с другом (рис.1). Величина силы, с которой заряды одного знака отталкиваются друг от друга, а заряды разного знака притягиваются друг к другу, определяется с помощью эмпирически установленного закона Кулона:

.

Здесь
,
– электрическая постоянная.





Рис.1

А каков механизм взаимодействия заряженных тел? Можно выдвинуть такую гипотезу: тела, обладающие электрическим зарядом, порождают электромагнитное поле. В свою очередь, электромагнитное поле воздействует на другие заряженные тела, находящиеся в этом поле. Возник новый материальный объект – электромагнитное поле.

Опыт показывает, что в любом электромагнитном поле на неподвижный заряд действует сила, величина которой зависит только от величины заряда (величина силы пропорциональна величине заряда
) и его положения в поле. Можно каждой точке поля поставить в соответствие некоторый вектор , который является коэффициентом пропорциональности между силой, действующей на неподвижный заряд в поле, и зарядом . Тогда силу, с которой поле действует на неподвижный заряд можно определить по формуле:

.

Сила, действующая со стороны электромагнитного поля на неподвижный заряд, называется электрической силой . Векторная величина , характеризующая то состояние поля, которое обуславливает действие , называется электрической напряженностью электромагнитного поля.

Дальнейшие эксперименты с зарядами показывают, что вектор не характеризует электромагнитное поле полностью. Если заряд начать двигать, то появляется некоторая дополнительная сила, величина и направление которой никак не связаны с величиной и направлением вектора . Добавочную силу, возникающую при движении заряда в электромагнитном поле, называют магнитной силой . Опыт показывает, что магнитная сила зависит от заряда и от величины и направления вектора скорости. Если двигать пробный заряд через какую-либо фиксированную точку поля с одной и той же по величине скоростью, но в разных направлениях, то магнитная сила каждый раз будет разной. Однако всегда
. Дальнейший анализ экспериментальных фактов позволил установить, что для каждой точки электромагнитного поля существует единственное направление MN (рис.2), обладающее следующими свойствами:



Рис.2

Если вдоль направления MN направить некоторый вектор , имеющий смысл коэффициента пропорциональности между магнитной силой и произведением
, то задание , и однозначно характеризует то состояние поля, которое обусловливает появление . Вектор назвали вектором электромагнитной индукции. Так как и
, то

.

В электромагнитном поле на движущийся со скоростью заряд q действует электромагнитная сила Лоренца (рис.3):


.
Векторы и , то есть шестерка чисел
, являются равноправными компонентами единого электромагнитного поля (компоненты тензора электромагнитного поля). В частном случае может оказаться, что все
или все
; тогда электромагнитное поле сводится либо к электрическому, либо к магнитному полям.

Эксперимент подтвердил правильность построенной двухвекторной модели электромагнитного поля. В этой модели каждой точке электромагнитного поля задается пара векторов и . Построенная нами модель – модель непрерывного поля, так как функции
и
, описывающие поле, являются непрерывными функциями координат.

Теория электромагнитных явлений, использующая модель непрерывного поля, называется классической.

В действительности поле, как и вещество, дискретно. Но это начинает сказываться лишь на расстояниях, сравнимых с размерами элементарных частиц. Дискретность электромагнитного поля учитывается в квантовой теории.

Принцип суперпозиции.

Поля принято изображать с помощью силовых линий.

Силовая линия – это линия, касательная к которой в каждой точке совпадает с вектором напряженности поля.

Д
ля точечных неподвижных зарядов картина силовых линий электростатического поля показана на рис. 6.

Вектор напряженности электростатического поля, создаваемого точечным зарядом определяется по формуле (рис.7 а и б)иловая линия магнитного поля строится так, чтобы в каждой точке силовой линии вектор был направлен по касательной к этой линии. Силовые линии магнитного поля замкнуты (рис.8). Это говорит о том, что магнитное поле – вихревое поле.


Рис. 8

А если поле создает не один, а несколько точечных зарядов? Влияют ли заряды друг на друга или каждый из зарядов системы вносит свой вклад в результирующее поле независимо от остальных? Будет ли электромагнитное поле, создаваемое i-м зарядом в отсутствии остальных зарядов таким же, как и поле создаваемое i-м зарядом в присутствии остальных зарядов?

Принцип суперпозиции : электромагнитное поле произвольной системы зарядов есть результат сложения полей, которые создавались бы каждым из элементарных зарядов этой системы в отсутствии остальных:

и
.
Законы электромагнитного поля

Законы электромагнитного поля сформулированы в виде системы уравнений Максвелла.

Первое

.

Из первого уравнения Максвелла следует, что электростатическое поле – потенциальное (сходящееся или расходящееся) и его источником являются неподвижные электрические заряды.

Второе уравнение Максвелла для магнитостатического поля:

.

Из второго уравнения Максвелла следует, что магнитостатическое поле – вихревое не потенциальное и не имеет точечных источников.

Третье уравнение Максвелла для электростатического поля:

.

Из третьего уравнения Максвелла следует, что электростатическое поле не вихревое.

В электродинамике (для переменного электромагнитного поля) третье уравнение Максвелла:

,

т. е. электрическое поле не потенциальное (не кулоновское), а вихревое и создается переменным потоком вектора индукции магнитного поля.

Четвертое уравнение Максвелла для магнитостатического поля

,

Из четвертого уравнения Максвелла в магнитостатике следует, что магнитное поле – вихревое и создается постоянными электрическими токами или движущимися зарядами. Направление закрученности силовых линий магнитного поля определяется по правилу правого винта (рис.9).

Р
ис.9

В электродинамике четвертое уравнение Максвелла:

.

Первое слагаемое в этом уравнении есть ток проводимости I, связанный с движением зарядов и создающий магнитное поле.

Второе слагаемое в этом уравнении есть "ток смещения в вакууме", т. е. переменный поток вектора напряженности электрического поля.

Основные положения и выводы теории Максвелла следующие.

Изменение во времени электрического поля ведет к появлению магнитного поля и наоборот. Следовательно, существуют электромагнитные волны.

Передача электромагнитной энергии происходит с конечной скоростью. Скорость передачи электромагнитных колебаний равна скорости света
. Из этого следовала принципиальная тождественность электромагнитных и оптических явлений.


В В Е Д Е Н И Е

Физика - наука о природе, изучающая наиболее общие свойства материального мира, наиболее общие формы движения материи, лежащие в основе всех явлений природы. Физика устанавли-вает законы, которым подчиняются эти явления.

Физика изучает также свойства и строение материальных тел, указывает пути практического использования физических законов в технике.

В соответствии с многообразием форм материи и ее движения физика подразделяется на ряд разделов: механика, термоди-намика, электродинамика, физика колебаний и волн, оптика, фи-зика атома, ядра и элементарных частиц.

На стыке физики и других естественных наук возникли новые науки: астрофизика, биофизика, геофизика, физическая хи-мия и др.

Физика является теоретической основой техники. Развитие физики послужило фундаментом для создания таких новых отраслей техники, как космическая техника, ядерная техника, квантовая электроника и др. В свою очередь, развитие технических наук способствует созданию совершенно новых методов физичес-ких исследований, обуславливающих прогресс физики и смежных наук.

ФИЗИЧЕСКИЕ ОСНОВЫ КЛАССИЧЕСКОЙ МЕХАНИКИ

I . Механика. Общие понятия

Механика - раздел физики, который рассматривает простей-шую форму движения материи - механическое движение.

Под механическим движением понимают изменение положения изучаемого тела в пространстве со временем относительно неко-торого гола или системы тел, условно считаемых неподвижными. Такую систему тел вместе с часами, в качестве которых может быть выбран любой периодический процесс, называют системой отсчета (С.О.). С.О. часто выбирают из соображений удобства.

Для математического описания движения с С.О. связывают систе-му координат, часто прямоугольную.

Простейшее тело в механике - материальная точка. Это те-ло, размерами которого в условиях денной задачи можно пренебречь.

Всякое тело, размерами которого пренебречь нельзя, рас-сматривают как систему материальных точек.

Механика подразделяется на кинематику , которая занимается геометрическим описанием движения, не изучая его причин, динамику, которая изучает законы движения тел под действием сил, и статику, которая изучает условия равновесия тел.

2. Кинематика точки

Кинематика изучает пространственно-временное перемещение тел. Она оперирует такими понятиями, как перемещение , путь, время t , скорость движения , ускорение.

Линию, которую описывает при своем движении материальная точка, называют траекторией. По форме траектории движения де-лятся на прямолинейные и криволинейные. Вектор , соеди-няющий начальную I и конечную 2 точки, называют перемещением (рис. I.I).

Каждому моменту времени t соответствует свой радиус-вектор
:

Таким образом движение точки мо-жет быть описано векторной функ-цией.

которая определяем векторный способ задания движения, или тре-мя скалярными функциями

x = x (t ); y = y (t ); z = z (t ) , (1.2)

которые называют кинематическими уравнениями. Они определяют задание движения координатным способом.

Движение точки будет также определено, если для каждого момента времени будет установлено положение точки на траекто-рии, т.е. зависимость

Она определяет задание движения естественным способом.

Каждая из указанных формул представляет собой закон дви-жения точки.

3. Скорость

Если моменту времени t 1 соответствует радиус-вектор , а
, то за промежуток
тело получит перемещение
. В этом случае средней скоростью
за t назы-вают величину

, (1.4)

которая по отношению к траектории представляет секущую, про-ходящую через точки I и 2. Скоростью в момент времени t назы-вают вектор

, (1.5)

Из этого определения следует, что скорость в каждой точке траектории направлена по касательной к ней. Из (1.5) следует, что проекции и модуль вектора скорости определятся выражениями:

Если задан закон движения (1.3), то модуль вектора скорости определится так:

, (1.7)

Таким образом, зная закон движения (I.I), (1.2), (1.3), можно вычислить вектор и модуль доктора скорости и, наоборот, зная скорость из формул (1.6), (1.7), можно вычислять коор-динаты и путь.

4. Ускорение

При произвольном движении вектор скорости непрерывно ме-няется. Величина, характеризующая быстроту изменения вектора скорости, называется ускорением.

Если в. момент времениt 1 скорость точки ,а приt 2 - , то приращение скорости составит (Рис.1.2). Среднее ускорение п
ри этом

а мгновенное

, (1.9)

Для проекции и модуля ускорений имеем: , (1.10)

Если задан естественный способ движения, то ускорение можно определить и так. Скорость меняется по величине и по направлению, приращение скорости раскладывают на две величины;
- направленный вдоль (приращение скорости по величине) и
- направленный перпендикулярно (приращение. скорости по направлению), т.е. = + (Рис.I.З). Из (1.9) получаем:

(1.11);
(1.12)

Тангенциальное (касательное) ускорение характеризует быстроту изменения по величине (1.13)

нормальное (центростремительное ускорение) характеризует быстроту изменения по направлению. Для вычисления a n рассмотрим

OMN и MPQ при условии малого перемещения точки по траек-тории. Из подобия этих треугольников находим PQ:MP=MN:OM:

Полное ускорение в этом случае определится так:

, (1.15)

5. Примеры

I. Равнопеременное прямолинейное движение. Это движение с постоянным ускорением(
) . Из (1.8) находим

или
, где v 0 - скорость в момент времениt 0 . Полагая t 0 =0, находим
,
а пройденный путь S из формулы (I.7):

гдеS 0 - постоянная, определяемая из начальных условий.

2. Равномерное движение по окружности. В этом случае скорость меняется только по направлению, то есть
- центростремительное ускорение.

I. Основные понятия

Перемещение тел в пространстве - результат их механического взаимодействия между собой, в результате которого проис-ходит изменение движения тел или их деформация. В качестве мары механического взаимодействия в динамике вводится величина – сила . Для данного тела сила - внешний фактор, а характер движения зависит и от свойства самого тела - податливости оказываемому на него внешнему воздействию или степени инерции те-ла. Мерой инерции тела является его масса т , зависящая от количества вещества тела.

Таким образом, основными понятиями механики являются: дви-жущаяся материя, пространство и время как формы существования движущейся материи, масса как мера инерции тел, сила как мера механического взаимодействия между телами.Соотношения между этими понятиями определяются законам! движения, которые были сформулированы Ньютоном как обобщение и уточнение опытных фактов.

2. Законы механики

1-й закон. Всякое тело сохраняет состояние покоя или равно-мерного прямолинейного движения, пока внешние воздействиянеизменяют этого состояния. Первый закон заключает в себе закон инерции, а также определение силы как причины, нарушающей инерциальное состояние тела. Чтобы выразить его математически, Ньютон ввел понятие количества движения или импульса тела:

(2.1)

тогда , если

2-й закон. Изменение количества движения пропорционально при-ложенной силе и происходит по направлению действия этой силы. Выбрав единицы измерения m и так, чтобы коэффициент пропорциональности был равен единице, получаем

или
(2.2)

Если при движении m = const , то

или
(2.3)

В этом случае 2-й закон формулируют так: сила равна произведению массы тела на его ускорение. Этот закон является основным законом динамики и позволяет по заданным силам я начальным условиям находить закон движения тел. 3-й закон. Силы, с которыми два тела действуют друг на друга, равны и направлены в противоположные стороны, т.е.
, (2.4)

Законы Ньютона приобретают конкретный смысл после того, как указаны конкретные силы, действующие на тело. Например, часто в механике движение тел вызывается действием таких сил: сила тяготения
, где r - расстояние между телами, - гравитационная постоянная; сила тя-жести - сила тяготения вблизи поверхности Земли, P = mg ; сила трения
,где k основе классической механики лежат законы Ньютона. Кинематика изучает...

  • Основы квантовой механики и ее значение для химии

    Реферат >> Химия

    Именно с электромагнитными взаимодействиями связано и существование, и физические свойства атомно-молекулярных систем, - слабое... - тех первоначальных разделов классической теории (механики и термодинамики), на основе которых делались попытки интерпретации...

  • Применение концепций классической механики и термодинамики

    Контрольная работа >> Физика

    Фундаментальной физической теорией, которая имеет высокий статус и в современной физике, является классическая механика , основы ... . Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, ...

  • Основные идеи квантовой механики

    Реферат >> Физика

    Лежит в основе квантово-механического описания микросистем, подобно уравнениям Гамильтона в классической механике . В... идея квантовой механики сводится к следующему: всем физическим величинам классической механики в квантовой механике соответствуют «свои» ...

  • Возникновение классической механики явилось началом превращения физики в строгую науку, то есть систему знания утверждающую истинность, объективность, обоснованность и проверяемость как своих исходных принципов, так и своих конечных выводов. Это возникновение происходило в XVI-XVII веке и связано с именами Галилео Галилея, Рене Декарта и Исаака Ньютона. Именно они осуществили "математизацию" природы и заложили основы экспериментально-математического взгляда на природу. Они представили природу как множество "материальных" точек, обладающих пространственно-геометрическими (форма), количественно-математическими (число, величина) и механическими (движение) свойствами и связанных причинно-следственными зависимостями, которые можно выразить в уравнениях математики.

    Начало превращения физики в строгую науку было положено Г. Галилеем. Галилей сформулировал ряд фундаментальных принципов и законов механики. А именно:

    - принцип инерции , согласно которому когда тело двигается по горизонтальной плоскости, не встречая никаких сопротивлений движению, то движение его является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца;

    - принцип относительности , согласно которому в инерциальных системах все законы механики одинаковы и нет возможности, находясь внутри, определить движется ли она прямолинейно и равномерно или покоится;

    - принцип сохранения скоростей и сохранения пространственных и временных интервалов при переходе от одной инерциальной системы к другой. Это знаменитое галилеево преобразование .

    Целостный вид логико-математически организованной системы основных понятий, принципов и законов механика получила в работах Исаака Ньютона. Прежде всего в работе "Математические начала натуральной философии" В этой работе Ньютон вводит понятия: масса , или количество материи, инерция , или свойство тела сопротивляться изменению состояния покоя или движения, вес , как мера массы, сила , или действие, производимое на тело для изменения его состояния.

    Ньютон различал абсолютные (истинные, математические) пространство и время, которые не зависят от находящихся в них тел и всегда равны сами себе, и относительные пространство и время - подвижные части пространства и измеряемые длительности времени.

    Особое место в концепции Ньютона занимает учение о силе тяготения или гравитации, в котором он объединяет движение "небесных" и земных тел. Это учение включает утверждения:

    Тяжесть тела пропорциональна заключенному в нем количеству материи или массы;

    Сила тяжести пропорциональна массе;


    Сила тяжести или тяготение и есть та сила, которая действует между Землей и Луной обратно пропорционально квадрату расстояния между ними;

    Эта сила тяготения действует между всеми материальными телами на расстоянии.

    В отношении природы силы тяготения Ньютон говорил: "Гипотез не измышляю".

    Механика Галилея-Ньютона, развитая в работах Д. Аламбера, Лагранжа, Лапласа, Гамильтона... получила в итоге стройную форму, определяющую физическую картину мира того времени. Эта картина основывалась на принципах самотождественности физического тела; его независимости от пространства и времени; детерминированности, то есть строгой однозначной причинно-следственной связи между конкретными состояниями физических тел; обратимости всех физических процессов.

    Термодинамика.

    Исследования процесса превращения теплоты в работу и обратно, осуществленные в Х1Х веке С. Кално, Р. Майером, Д. Джоулем, Г. Гемгольцем, Р. Клаузиусом, У. Томсоном (лордом Кельвином), привели к выводам, о которых Р. Майер писал: "Движение, теплота..., электричество представляют собой явления, которые измеряются друг другом и переходят друг в друга по определенным законам". Гемгольц обобщает это утверждение Майера в вывод: "Сумма существующих в природе напряженных и живых сил постоянна". Уильям Томсон уточнил понятия "напряженные и живые силы" до понятий потенциальной и кинетической энергии, определив энергию как способность совершать работу. Р. Клаузиус обобщил эти идеи в формулировке: "Энергия мира постоянна". Так, совместными усилиями сообщества физиков был сформулирован фундаментальный для всего физического знания закон сохранения и превращения энергии .

    Исследования процессов сохранения и превращения энергии привели к открытию еще одного закона - закона возрастания энтропии . "Переход теплоты от более холодного тела к более теплому, - писал Клаузиус, - не может иметь места без компенсации". Меру способности теплоты к превращению Клаузиус назвал энтропией. Суть энтропии выражается в том, что во всякой изолированной системе процессы должны протекать в направлении превращения всех видов энергии в теплоту при одновременном уравнивании температурных разностей существующих в системе. Это означает, что реальные физические процессы протекают необратимо. Принцип, утверждающий стремление энтропии к максимуму называют вторым началом термодинамики. Первое начало - закон сохранения и превращения энергии.

    Принцип возрастания энтропии поставил перед физической мыслью ряд проблем: соотношения обратимости и необратимости физических процессов, формальности сохранения энергии, не способной совершать работу при температурной однородности тел. Все это требовало более глубокого обоснования начал термодинамики. Прежде всего природы тепла.

    Попытку такого обоснования предпринял Людвиг Больцман, который пришел, опираясь на молекулярно-атомное представление о природе теплоты, к выводу о статистическом характере второго закона термодинамики, так как вследствие огромного числа молекул, составляющих макроскопические тела, и чрезвычайной быстроты и хаотичности их движения мы наблюдаем лишь средние значения . Определение же средних значений - задача теории вероятностей. При максимальном температурном равновесии максимален и хаос движения молекул, в котором исчезает всякий порядок. Встает вопрос: может ли и, если да, то как, из хаоса снова возникнуть порядок? На это физика сможет ответить лишь через сто лет, введя принцип симметрии и принцип синергии.

    Электродинамика.

    К середине Х1Х века физика электрических и магнитных явлений достигла определенного завершения. Был открыт ряд важнейших законов Кулона, закон Ампера, закон электромагнитной индукции, законы постоянного тока и т.д. Все эти законы базировались на принципе дальнодействия . Исключением были взгляды Фарадея, который считал, что электрическое действие передается посредством непрерывной среды, то есть на основе принципа близкодействия . Опираясь на идеи Фарадея, английский физик Дж. Максвелл вводит понятие электромагнитного поля и описывает "открытое" им состояние материи в своих уравнениях. "... Электромагнитное поле, - пишет Максвелл, - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии". Комбинируя уравнения электромагнитного поля, Максвелл получает волновое уравнение, из которого следует существование электромагнитных волн , скорость распространения которых в воздухе равна скорости света. Существование таких электромагнитных волн экспериментально было подтверждено немецким физиком Генрихом Герцем в 1888 г.

    Для того, чтобы объяснить взаимодействие электромагнитных волн с веществом, немецкий физик Гендрик Антон Лоренц выдвинул гипотезу о существовании электрона , то есть малой электрически заряженной частички, которая в громадных количествах присутствует во всех весомых телах. Эта гипотеза объяснила открытое в 1896 году немецким физиком Зееманом явление расщепления спектральных линий в магнитном поле. В 1897 году Томсон экспериментально подтвердил наличие мельчайшей отрицательно заряженной частицы или электрона.

    Так, в рамках классической физики возникла достаточно стройная и завершенная картина мира, описывающая и объясняющая движение, гравитацию, теплоту, электричество и магнетизм, свет. Это и дало повод лорду Кельвину (Томсону) сказать, что здание физики практически построено, не хватает лишь несколько деталей...

    Во-первых, оказалось, что уравнения Максвелла являются неинвариантными относительно преобразований Галилея. Во-вторых, теория эфира, как абсолютной системы координат, к которой "привязаны" уравнения Максвелла, не нашла экспериментального подтверждения. Опыт Майкельсона-Морли показал, что никакой зависимости скорости света от направления в движущейся системе координат нет . Сторонник сохранения уравнений Максвелла Гендрик Лоренц, "привязав" эти уравнения к эфиру, как абсолютной системе отсчета, пожертвовал принципом относительности Галилея, его преобразованиями и сформулировал свои преобразования. Из преобразований Г. Лоренца следовало, что пространственные и временные интервалы неинвариантны при переходе от одной инерциальной системы отсчета к другой. Все бы ничего, но существование абсолютной среды - эфира не подтверждалось, как отмечалось, опытно-экспериментально. Это кризис.

    Неклассическая физика. Специальная теория относительности .

    Описывая логику создания специальной теории относительности Альберт Эйнштейн в совместной книге с Л. Инфельдом пишет: "Соберем теперь вместе те факты, которые достаточно проверены опытом, не заботясь больше о проблеме эфира:

    1. Скорость света в пустом пространстве всегда постоянна, независимо от движения источника или приемника света.

    2. В двух системах координат, движущихся прямолинейно и равномерно друг относительно друга, все законы природы строго одинаковы, и нет никакого средства обнаружить абсолютное прямолинейное и равномерное движение...

    Первое положение выражает постоянство скорости света, второе обобщает принцип относительности Галилея, сформулированный для механических явлений, на все происходящее в природе". Эйнштейн отмечает, что принятие этих двух принципов и отказ от принципа галилеевского преобразования, так как он противоречит постоянству скорости света, и положило начало специальной теории относительности. К принятым двум принципам: постоянства скорости света и эквивалентности всех инерциальных систем отсчета, Эйнштейн добавляет принцип инвариантности всех законов природы по отношению к преобразованиям Г. Лоренца. Поэтому во всех инерциальных системах справедливы те же самые законы, а переход от одной системы к другой дается преобразованиями Лоренца. Это значит, что ритм движущихся часов и длина движущихся стержней зависит от скорости: стержень сократится до нуля, если его скорость достигнет скорости света, а ритм движущихся часов замедляется, часы совершенно остановились бы, если бы они могли двигаться со скоростью света.

    Так из физики были элиминированы ньютоновское абсолютное время, пространство, движение, которые были как бы независимы от движущихся тел и их состояния.

    Общая теория относительности.

    В цитируемой уже книге Эйнштейн спрашивает: "Можем ли сформулировать физические законы таким образом, чтобы они были справедливы для всех систем координат, не только для систем, движущихся прямолинейно и равномерно, но и для систем, движущихся совершенно произвольно по отношению друг к другу?". И отвечает: "Это оказывается возможным".

    Потеряв в специальной теории относительности свою "независимость" от движущихся тел и друг от друга, пространство и время как бы "нашли" друг друга в едином пространственно-временном четырехмерном континууме. Автор континуума математик Герман Минковский опубликовал в 1908 году работу "Основания теории электромагнитных процессов", в которой утверждал, что отныне пространство само по себе и время само по себе должны быть низведены до роли теней, и только некоторый вид соединения обоих должен по-прежнему сохранять самостоятельность. Идея А. Эйнштейна и состояла в том, чтобы представить все физические законы как свойства этого континуума, как его метрику . С этой новой позиции Эйнштейн рассмотрел закон тяготения Ньютона. Вместо силы тяготения он стал оперировать полем тяготения . Поля тяготения были включены в пространственно-временной континуум как его "искривление". Метрика континуума стала неевклидовой, "римановской" метрикой. "Кривизна" континуума стала рассматриваться как результат распределения движущихся в нем масс. Новая теория объяснила не согласующуюся с ньютоновским законом тяготения траекторию вращения Меркурия вокруг Солнца, а также отклонения луча звездного света проходящего вблизи Солнца.

    Так из физики было элиминировано понятие "инерциальной системы координат" и обосновано утверждение обобщенного принципа относительности : любая система координат является одинаково пригодной для описания явлений природы .

    Квантовая механика.

    Вторым, по мнению лорда Кельвина (Томсона), недостающим элементом для завершения здания физики на рубеже Х1Х-ХХ веков было серьезное расхождение между теорией и экспериментом при исследовании законов теплового излучения абсолютно черного тела. Согласно господствующей теории, оно должно быть непрерывным, континуальным . Однако, это приводило к парадоксальным выводам, вроде того, что общая энергия, излучаемая черным телом при данной температуре, равна бесконечности (формула Релея-Джина). Для решения проблемы немецкий физик Макс Планк выдвинул в 1900 году гипотезу, что вещество не может излучать или поглощать энергию иначе, как конечными порциями (квантами), пропорциональными излучаемой (или поглощаемой) частоте. Энергия одной порции (кванта) Е=hn, где n - частота излучения, а h - универсальная константа. Гипотеза Планка была использована Эйнштейном для объяснения фотоэффекта. Эйнштейн ввел понятие кванта света или фотона. Он же предложил, что свет , в соответствии с формулой Планка, обладает одновременно волновыми и квантовыми свойствами. В сообществе физиков заговорили о корпускулярно-волновом дуализме, тем более что в 1923 году было открыто еще одно явление, подтверждающее существование фотонов - эффект Комптона.

    В 1924 году Луи де Бройль распространил идею о двойственной корпускулярно-волновой природе света на все частицы материи, введя представление о волнах материи . Отсюда можно говорить и о волновых свойствах электрона, например, о дифракции электрона, каковые и были экспериментально установлены. Однако эксперименты Р. Фейнмана с "обстрелом" электронами щита с двумя отверстиями показали, что невозможно, с одной стороны, сказать, через какое отверстие пролетает электрон, то есть точно определить его координату, а с другой стороны - не исказить картины распределения регистрируемых электронов, не нарушив характера интерференции. Это значит, что мы можем знать или координату электрона, или импульс, но не то и другое вместе.

    Этот эксперимент поставил под вопрос само понятие частицы в классическом смысле точной локализации в пространстве и времени.

    Объяснение "неклассического" поведения микрочастиц было впервые дано немецким физиком Вернером Гейзенбергом. Последний сформулировал закон движения микрочастицы, согласно которому знание точной координаты частицы приводит к полной неопределенности ее импульса, и наоборот, точное знание импульса частицы - к полной неопределенности ее координаты. В. Гейзенберг установил соотношение неопределенностей значений координаты и импульса микрочастицы:

    Dх * DР х ³ h, где Dх - неопределенность в значении координаты; DР х - неопределенность в значении импульса; h - постоянная Планка. Этот закон и соотношение неопределенностей получил название принципа неопределенности Гейзенберга.

    Анализируя принцип неопределенностей датский физик Нильс Бор показал, что в зависимости от постановки эксперимента микрочастица обнаруживает либо свою корпускулярную природу, либо волновую, но не обе сразу . Следовательно, эти две природы микрочастиц взаимно исключают друг друга, и в то же время должны быть рассмотрены как дополняющие друг друга, а их описание на основе двух классов экспериментальных ситуаций (корпускулярной и волновой) - целостным описанием микрочастицы. Существует не частица "само по себе", а система "частица - прибор". Эти вывод Н. Бора получили название принципа дополнительности .

    Неопределенность и дополнительность оказываются в рамках такого подхода не мерой нашего незнания, а объективными свойствами микрочастиц , микромира в целом. Из этого следует, что статистические, вероятностные законы лежат в глубине физической реальности, а динамические законы однозначной причинно-следственной зависимости лишь некоторый частный и идеализированный случай выражения статистических закономерностей.

    Релятивистская квантовая механика.

    В 1927 году английский физик Поль Дирак обратил внимание на то, что для описания движения открытых к тому времени микрочастиц: электрона, протона и фотона, так как они движутся со скоростями, близкими к скорости света, требуется применение специальной теории относительности. Дирак составил уравнение, которое описывало движение электрона с учетом законов и квантовой механики, и теории относительности Эйнштейна. Этому уравнению удовлетворяли два решения: одно решение давало известный электрон с положительной энергией, другое - неизвестный электрон-двойник, но с отрицательной энергией. Так возникло представление о частицах и симметричных им античастицах. Это породило вопрос: пуст ли вакуум? После эйнштейновского "изгнания" эфира он казался несомненно пустым.

    Современные, хорошо доказанные представления говорят, что вакуум "пуст" только в среднем. В нем постоянно рождается и исчезает огромное количество виртуальных частиц и античастиц. Это не противоречит и принципу неопределенности, который имеет также выражение DЕ * Dt ³ h. Вакуум в квантовой теории поля определяется как наинизшее энергетическое состояние квантового поля, энергия которого равна нулю только в среднем. Так что вакуум - это "нечто" по имени "ничто".

    На пути построения единой теории поля.

    В 1918 году Эмми Нетером было доказано, что если некоторая система инвариантна относительно некоторого глобального преобразования, то для нее существует определенная сохраняющая величина. Из этого следует, что закон сохранения (энергии) является следствием симметрий , существующих в реальном пространстве-времени.

    Симметрия как философское понятие означает процесс существования и становления тождественных моментов между различными и противоположными состояниями явлений мира. Это означает, что, изучая симметрию каких-либо систем, необходимо рассматривать их поведение при различных преобразованиях и выделять во всей совокупности преобразований такие, которые оставляют неизменными, инвариантными некоторые функции, соответствующие рассматриваемым системам.

    В современной физике употребляется понятие калибровочной симметрии . Под калибровкой железнодорожники понимают переход с узкой колеи на широкую. В физике под калибровкой первоначально понималось также изменение уровня или масштаба. В специальной теории относительности законы физики не изменяются относительно переноса или сдвига при калибровке расстояния. В калибровочной симметрии требование инвариантности порождает определенный конкретный вид взаимодействия. Следовательно, калибровочная инвариантность позволяет ответить на вопрос: "Почему и зачем в природе существуют такого рода взаимодействия?". В настоящее время в физике определено существование четырех типов физических взаимодействий: гравитационного, сильного, электромагнитного и слабого. Все они имеют калибровочную природу и описываются калибровочными симметриями, являющимися различными представлениями групп Ли. Это позволяет предположить существование первичного суперсимметричного поля , в котором еще нет различия между типами взаимодействий. Различия, типы взаимодействия являются результатом самопроизвольного, спонтанного нарушения симметрии исходного вакуума. Эволюция Вселенной предстает тогда как синергетический самоорганизующийся процесс : в процессе расширения из вакуумного суперсимметричного состояния Вселенная разогрелась до "большого взрыва". Дальнейший ход ее истории пролегал через критические точки - точки бифуркации, в которых происходили спонтанные нарушения симметрии исходного вакуума. Утверждение самоорганизации систем через самопроизвольное нарушение исходного типа симметрии в точках бифуркации и есть принцип синергии .

    Выбор направленности самоорганизации в точках бифуркации, то есть в точках самопроизвольного нарушения исходной симметрии не случаен. Он определен как бы присутствующим уже на уровне суперсимметрии вакуума "проектом" человека, то есть "проектом" существа, спрашивающего о том, почему мир таков. Это антропный принцип , который в физике сформулировал в 1962 году Д. Дике.

    Принципы относительности, неопределенности, дополнительности, симметрии, синергии, антропный принцип, а также утверждение глубинно-основного характера вероятностных причинно-следственных зависимостей по отношению к динамическим, однозначным причинно-следственным зависимостям и составляют категориально-концептуальную структуру современного гештальта, образа физической реальности.

    Литература

    1. Ахиезер А.И., Рекало М.П. Современная физическая картина мира. М., 1980.

    2. Бор Н. Атомная физика и человеческое познание. М., 1961.

    3. Бор Н. Причинность и дополнительность// Бор Н. Избранные научные труды в 2-х т. Т.2. М., 1971.

    4. Борн М. Физика в жизни моего поколения, М., 1061.

    5. Бройль Л. Де. Революция в физике. М., 1963

    6. Гейзенберг В. Физика и философия. Часть и целое. М. 1989.

    8. Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965.

    Вершиной научного творчества И. Ньютона является его бессмертный труд “Математические начала натуральной философии”, впервые опубликованный в 1687 году. В нем он обобщил результаты, полученные его предшественниками и свои собственные исследования и создал впервые единую стройную систему земной и небесной механики, которая легла в основу всей классической физики.

    Здесь Ньютон дал определения исходных понятий – количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Формулируя понятие количества материи, он исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность понимал как степень заполнения единицы объема тела первичной материей.

    В этой работе изложено учение Ньютона о всемирном тяготении, на основе которого он разработал теорию движения планет, спутников и комет, образующих солнечную систему. Опираясь на этот закон, он объяснил явление приливов и сжатие Юпитера. Концепция Ньютона явилась основой для многих технических достижений в течение длительного времени. На ее фундаменте сформировались многие методы научных исследований в различных областях естествознания.

    Результатом развития классической механики явилось создание единой механической картины мира, в рамках которой все качественное многообразие мира объяснялось различиями в движении тел, подчиняющемся законам ньютоновской механики.

    Механика Ньютона, в отличие от предшествующих механических концепций, давало возможность решать задачу о любой стадии движения, как предшествующей, так и последующей, и в любой точке пространства при известных фактах, обусловливающих это движение, а также обратную задачу определения величины и направления действия этих факторов в любой точке при известных основных элементах движения. Благодаря этому механика Ньютона могла использоваться в качестве метода количественного анализа механического движения.

    Закон Всемирного тяготения.

    Закон всемирного тяготения был открыт И.Ньютоном в 1682 году. По его гипотезе между всеми телами Вселенной действуют силы притяжения, направленные по линии, соединяющей центры масс. У тела в виде однородного шара центр масс совпадает с центром шара.

    В последующие годы Ньютон пытался найти физическое объяснение законам движения планет, открытых И.Кеплером в начале XVII века, и дать количественное выражение для гравитационных сил. Так, зная как движутся планеты, Ньютон хотел определить, какие силы на них действуют. Такой путь носит название обратной задачи механики.

    Если основной задачей механики является определение координат тела известной массы и его скорости в любой момент времени по известным силам, действующим на тело, то при решении обратной задачи необходимо определить действующие на тело силы, если известно, как оно движется.

    Решение этой задачи и привело Ньютона к открытию закона всемирного тяготения: «Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними».

    Относительно этого закона нужно сделать несколько важных замечаний.

    1, его действие в явной форме распространяется на все без исключения физические материальные тела во Вселенной.

    2 сила притяжения Земли у ее поверхности в равной мере воздействует на все материальные тела, находящиеся в любой точке земного шара. Прямо сейчас на нас действует сила земного притяжения, и мы ее реально ощущаем как свой вес. Если мы что-нибудь уроним, оно под действием всё той же силы равноускоренно устремится к земле.

    Действием сил всемирного тяготения в природе объясняются многие явления: движение планет в Солнечной системе, искусственных спутников Земли - все они находят объяснение на основе закона всемирного тяготения и законов динамики.

    Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. Одним из проявлений силы всемирного тяготения является сила тяжести - так принято называть силу притяжения тел к Земле вблизи ее поверхности.

    Сила тяжести направлена к центру Земли. В отсутствие других сил тело свободно падает на Землю с ускорением свободного падения.

    Три начала механики.

    Ньютона законы механики, три закона, лежащие в основе т. н. классической механики. Сформулированы И. Ньютоном (1687).

    Первый закон: «Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».

    Второй закон: «Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует».

    Третий закон: «Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны». Н. з. м. появились как результат обобщения многочисленных наблюдений, опытов и теоретических исследований Г. Галилея, Х. Гюйгенса, самого Ньютона и др.

    Согласно современным представлениям и терминологии, в первом и втором законах под телом следует понимать материальную точку, а под движением - движение относительно инерциальной системы отсчёта. Математическое выражение второго закона в классической механике имеет вид или mw = F, где m - масса точки, u - её скорость, a w - ускорение, F - действующая сила.

    Н. з. м. перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света


    ©2015-2019 сайт
    Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
    Дата создания страницы: 2017-04-04