Произведение вероятностей независимых. Теорема сложения вероятностей и теорема умножения вероятностей

Пусть события А и В ― несовместные, причем вероятности этих событий известны. Вопрос: как найти вероятность того, что наступит одно из этих несовместных событий? На этот вопрос ответ дает теорема сложения.

Теорема. Вероятностьпоявления одного из двух несовместных событий равна сумме вероятностей этих событий:

p (А + В ) = p (А ) + p (В ) (1.6)

Доказательство. Действительно, пусть n – общее число всех равновозможных и несовместных (т.е. элементарных) исходов. Пусть событию А благоприятствует m 1 исходов, а событию В m 2 исходов. Тогда согласно классическому определению вероятности этих событий равны: p (А ) = m 1 / n , p (B ) = m 2 / n .

Так как события А и В несовместные, то ни один из исходов, благоприятствующих событию А , не благоприятствует событию В (см. схему ниже).

Поэтому событию А +В будут благоприятствовать m 1 + m 2 исходов. Следовательно, для вероятности p (А + В ) получим:

Следствие 1. Сумма вероятностей событий, образующих полную группу, равна единице:

p (А ) + p (В ) + p (С ) + … + p (D ) = 1.

Действительно, пусть события А , В , С , … , D образуют полную группу. В силу этого они являются несовместными и единственно возможными. Поэтому событие А + В + С + …+ D , состоящее в появлении (в результате испытания) хотя бы одного из этих событий, является достоверным, т.е. А+В+С+…+ D = и p (А+В+С+ …+ D ) = 1.

В силу несовместности событий А , В , С ,, D справедлива формула:

p (А+В+С+ …+ D ) = p (А ) + p (В ) + p (С ) + … + p (D ) = 1.

Пример. В урне 30 шаров, из них 10 красных, 5 синих и 15 белых. Найти вероятность извлечения красного или синего шара при условии, что из урны извлекли только один шар.

Решение. Пусть событие А 1 – извлечение красного шара, а событие А 2 – извлечение синего шара. Данные события несовместны, причём p (А 1) = 10 / 30 = 1 / 3; p (А 2) = 5 / 30 = 1 /6. По теореме сложения получим:

p (А 1 + А 2) = p (А 1) + p (А 2) = 1 / 3 + 1 / 6 = 1 / 2.

Замечание 1. Подчеркнём, что по смыслу задачи необходимо прежде всего установить характер рассматриваемых событий – являются ли они несовместными. Если приведённую теорему применять к совместным событиям, то результат получится неверным.

Теорема сложения вероятностей

Рассмотрим несовместные случайные события.

Известно, что несовместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ несовместные, то событию $A+B$ благоприятствуют $m_{A} +m_{B} $ элементарных событий. Имеем $P\left(A+B\right)=\frac{m_{A} +m_{B} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} =P\left(A\right)+P\left(B\right)$.

Теорема 1

Вероятность суммы двух несовместных событий равняется сумме их вероятностей.

Примечание 1

Следствие 1. Вероятность суммы любого количества несовместных событий равняется сумме вероятностей этих событий.

Следствие 2. Сумма вероятностей полной группы несовместных событий (сумма вероятностей всех элементарных событий) равна единице.

Следствие 3. Сумма вероятностей противоположных событий равна единице, поскольку они образуют полную группу несовместных событий.

Пример 1

Вероятность того, что на протяжении некоторого времени в городе ни разу не будет идти дождь, $p=0,7$. Найти вероятность $q$ того, что на протяжении этого же времени дождь в городе будет идти хотя бы один раз.

События "на протяжении некоторого времени в городе ни разу не шел дождь" и "на протяжении некоторого времени дождь в городе шел хотя бы один раз" противоположные. Поэтому $p+q=1$, откуда $q=1-p=1-0,7=0,3$.

Рассмотрим совместные случайные события.

Известно, что совместные случайные события $A$ и $B$ в одном и том же испытании имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность суммы $A+B$ этих событий, то есть вероятность появления хотя бы одного из них.

Предположим, что в данном испытании число всех равновозможных элементарных событий $n$. Из них событиям $A$ и $B$ благоприятствуют $m_{A} $ и $m_{B} $ элементарных событий соответственно. Поскольку события $A$ и $B$ совместны, то из всего количества $m_{A} +m_{B} $ элементарных событий определенное количество $m_{AB} $ благоприятствует одновременно и событию $A$, и событию $B$, то есть совместному их наступлению (произведению событий $A\cdot B$). Это количество $m_{AB} $ вошло одновременно и в $m_{A} $, и в $m_{B} $ Итак событию $A+B$ благоприятствуют $m_{A} +m_{B} -m_{AB} $ элементарных событий. Имеем: $P\left(A+B\right)=\frac{m_{A} +m_{B} -m_{AB} }{n} =\frac{m_{A} }{n} +\frac{m_{B} }{n} -\frac{m_{AB} }{n} =P\left(A\right)+P\left(B\right)-P\left(A\cdot B\right)$.

Теорема 2

Вероятность суммы двух совместных событий равняется сумме вероятностей этих событий за минусом вероятности их произведения.

Замечание. Если события $A$ и $B$ несовместны, то их произведение $A\cdot B$ является невозможным событием, вероятность которого $P\left(A\cdot B\right)=0$. Следовательно, формула сложения вероятностей несовместных событий является частным случаем формулы сложения вероятностей совместных событий.

Пример 2

Найти вероятность того, что при одновременном бросании двух игральных кубиков цифра 5 выпадет хотя бы один раз.

При одновременном бросании двух игральных кубиков число всех равновозможных элементарных событий равно $n=36$, поскольку на каждую цифру первого кубика может выпасти шесть цифр второго кубика. Из них событие $A$ -- выпадение цифры 5 на первом кубике -- осуществляется 6 раз, событие $B$ -- выпадение цифры 5 на втором кубике -- тоже осуществляется 6 раз. Из всех двенадцати раз цифра 5 один раз выпадает на обоих кубиках. Таким образом, $P\left(A+B\right)=\frac{6}{36} +\frac{6}{36} -\frac{1}{36} =\frac{11}{36} $.

Теорема умножения вероятностей

Рассмотрим независимые события.

События $A$ и $B$, которые происходят в двух последовательных испытаниях, называются независимыми, если вероятность появления события $B$ не зависит от того, состоялось или не состоялось событие $A$.

Например, пусть в урне находятся 2 белых и 2 черных шар а. Испытанием является извлечение шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар положили назад и провели второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Вероятность $P\left(B\right)=\frac{1}{2} $. Вероятность $P\left(B\right)$ не зависит от того, состоялось или нет событие $A$, следовательно события $A$ и $B$ независимы.

Известно, что независимые случайные события $A$ и $B$ двух последовательных испытаний имеют вероятности появления $P\left(A\right)$ и $P\left(B\right)$ соответственно. Найдем вероятность произведения $A\cdot B$ этих событий, то есть вероятность совместного их появления.

Предположим, что в первом испытании число всех равновозможных элементарных событий $n_{1} $. Из них событию $A$ благоприятствуют $m_{1} $ элементарных событий. Предположим также, что во втором испытании число всех равновозможных элементарных событий $n_{2} $. Из них событию $B$ благоприятствуют $m_{2} $ элементарных событий. Теперь рассмотрим новое элементарное событие, которое состоит в последовательном наступлении событий из первого и второго испытаний. Общее количество таких равновозможных элементарных событий равно $n_{1} \cdot n_{2} $. Поскольку события $A$ и $B$ независимы, то из этого числа совместному наступлению события $A$ и события $B$ (произведения событий $A\cdot B$) благоприятствует $m_{1} \cdot m_{2} $ событий. Имеем: $P\left(A\cdot B\right)=\frac{m_{1} \cdot m_{2} }{n_{1} \cdot n_{2} } =\frac{m_{1} }{n_{1} } \cdot \frac{m_{2} }{n_{2} } =P\left(A\right)\cdot P\left(B\right)$.

Теорема 3

Вероятность произведения двух независимых событий равняется произведению вероятностей этих событий.

Рассмотрим зависимые события.

В двух последовательных испытаниях происходят события $A$ и $B$. Событие $B$ называется зависимым от события $A$, если вероятность появления события $B$ зависит от того, состоялось или не состоялось событие $A$. Тогда вероятность события $B$, которая была вычислена при условии, что событие $A$ состоялось, называется условной вероятностью события $B$ при условии $A$ и обозначается $P\left(B/A\right)$.

Например, пусть в урне находятся 2 белых и 2 черных шара. Испытанием является извлечением шара. Событие $A$ -- "вынут белый шар в первом испытании". Вероятность $P\left(A\right)=\frac{1}{2} $. После первого испытания шар назад не кладут и выполняют второе испытание. Событие $B$ -- ``вынут белый шар во втором испытании"". Если в первом испытании был вынут белый шар, то вероятность $P\left(B/A\right)=\frac{1}{3} $. Если же в первом испытании был вынут черный шар, то вероятность $P\left(B/\overline{A}\right)=\frac{2}{3} $. Таким образом вероятность события $B$ зависит от того, состоялось или нет событие $A$, следовательно, событие $B$ зависит от события $A$.

Предположим, что события $A$ и $B$ происходят в двух последовательных испытаниях. Известно, что событие $A$ имеет вероятность появления $P\left(A\right)$. Известно также, что событие $B$ является зависимым от события $A$ и его условная вероятность при условии $A$ равна $P\left(B/A\right)$.

Теорема 4

Вероятность произведения события $A$ и зависимого от него события $B$, то есть вероятность совместного их появления, может быть найдена по формуле $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)$.

Справедливой является также симметричная формула $P\left(A\cdot B\right)=P\left(B\right)\cdot P\left(A/B\right)$, где событие $A$ предполагается зависимым от события $B$.

Для условий последнего примера найдем вероятность того, что белый шар будет извлечен в обоих испытаниях. Такое событие является произведением событий $A$ и $B$. Его вероятность равна $P\left(A\cdot B\right)=P\left(A\right)\cdot P\left(B/A\right)=\frac{1}{2} \cdot \frac{1}{3} =\frac{1}{6} $.

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность () наступления интересующего нас события от того, как развиваются остальные события.

В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события?

Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события.

События А и В называются независимыми , если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы.

Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) - вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 =0,7; р 2 =0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

Решение: как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р 1 *р 2 =0,56.


Что произойдет, с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается.


Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).


Эта схема очень удобна для анализа последовательных случайных событий.

Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях ? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.




Решение: По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045.

Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля.

И все-таки польза от наших оценок есть.

Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные.

Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять.

Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов.

Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение. Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.




Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает.

Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных.




Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

Основные понятия
События называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании. В противном случае они называются совместными.
Полной группой называют совокупность событий, объединение которых есть событие достоверное.
Противоположными называют два единственно возможных события, образующих полную группу.
События называются зависимыми, если вероятность появления одного из них зависит от наступления или ненаступления других событий.
События называются независимыми, если вероятность одного из них не зависит от наступления или ненаступления других.
Теорема сложения вероятностей несовместных событий
Р(A+B)=Р(A)+Р(B),
где А, В - несовместные события.

Теорема сложения вероятностей совместных событий
Р(A+B)=Р(A)+Р(B)-P(AB), где А и В - совместные события.

Теорема умножения вероятностей независимых событий
,
где А и В независимые события.
Теорема умножения вероятностей зависимых событий
Р(АВ)=Р(А)Р A (B),
где Р A (B) - вероятность наступления события В при условии, что произошло событие А; А и В- зависимые события.

Задача 1.
Стрелок производит два выстрела по мишени. Вероятность попадания при каждом выстреле 0,8. Составить полную группу событий и найти их вероятности. Решение.
Испытание - Производится два выстрела по мишени.
Событие А - оба раза промахнулся.
Событие В - попал один раз.
Событие С - оба раза попал.
.

Контроль: P(A) + P(B) + P(C) = 1.
Задача 2.
Согласно прогнозу метеорологов Р(дождь)=0,4; Р(ветер)=0,7; Р(дождь и ветер)=0,2. Какова вероятность того, что будет дождь или ветер? Решение. По теореме сложения вероятностей и в силу совместности предложенных событий имеем:
Р(дождь или ветер или то и другое)=Р(дождь) +Р(ветер) –Р(дождь и ветер)=0,4+0,7-0,2=0,9.
Задача 3.
На станции отправления имеется 8 заказов на отправку товара: пять – внутри страны, а три – на экспорт. Какова вероятность того, что два выбранных наугад заказа окажутся предназначенными для потребления внутри страны? Решение. Событие А – первый взятый наугад заказ – внутри страны. Событие В – второй тоже предназначен для внутреннего потребления. Нам необходимо найти вероятность Тогда по теореме об умножении вероятностей зависимых событий имеем

Задача 4.
Из партии изделий товаровед наудачу отбирает изделия высшего сорта. Вероятность того, что выбранная вещь окажется высшего сорта равна, 0,8; первого сорта – 0,7; второго сорта – 0,5. Найти вероятность того, что из трех наудачу отобранных изделий будут:
а) только два высшего сорта;
б) все разные. Решение. Пусть событие - изделие высшего сорта; событие - изделие первого сорта; событие - изделие второго сорта.
По условию задачи ; ; События - независимы.
а) Событие А – только два изделия высшего сорта будет выглядеть так тогда

б) Событие В – все три изделия различны - выразим так:, тогда .
Задача 5.
Вероятности попадания в цель при стрельбе из трех орудий таковы: p1= 0,8; p2 =0,7; p3 =0,9. Найти вероятность хотя бы одного попадания (событие А ) при одном залпе из всех орудий. Решение. Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события (попадание первого орудия), (попадание второго орудия) и (попадание третьего орудия) независимы в совокупности.
Вероятности событий, противоположных событиям (т.е. вероятности промахов), соответственно равны:

Искомая вероятность
Задача 6.
В типографии имеется 4 печатных машины. Для каждой машины вероятность того, что она работает в данный момент, равна 0,9. Найти вероятность того, что в данный момент работает хотя бы одна машина (событие А ). Решение. События «машина работает» и «машина не работает» (в данный момент) – противоположные, поэтому сумма их вероятностей равна единице:
Отсюда вероятность того, что машина в данный момент не работает, равна
Искомая вероятность . Задача 7. В читальном зале имеется 6 учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

Решение. Рассмотрим следующие события:
А1- первый взятый учебник в переплете;
A2- второй взятый учебник в переплете.
Событие, состоящее в том, что оба взятых учебника в переплете . События А1 и А2 являются зависимыми, так как вероятность наступления события А2 зависит от наступления события А1. Для решения указанной задачи воспользуемся теоремой умножения вероятностей зависимых событий: .
Вероятность наступления события А1 p(A1) в соответствии с классическим определением вероятности:
P(A1)=m/n=3/6=0,5.
Вероятность наступления события А2 определяется условной вероятностью наступления события А2 при условии наступления события А1 , т.е. (A2)==0,4.
Тогда искомая вероятность наступления события:
P(A)=0,5*0,4=0,2.

Рассматривается эксперимент Е . Предполагается, что его можно проводить неоднократно. В результате эксперимента могут появляться различные события, составляющие некоторое множество F . Наблюдаемые события разделяются на три вида: достоверное, невозможное, случайное.

Достоверным называется событие, которое обязательно произойдет в результате проведения эксперимента Е . Обозначается Ω.

Невозможным называется событие, которое заведомо не произойдет в результате проведения эксперимента Е . Обозначается .

Случайным называется событие, которое может произойти или не произойти в результате эксперимента Е .

Дополнительным (противоположным) событию А называется событие, обозначаемое , которое происходит тогда и только тогда, когда не происходит событиеА .

Суммой (объединением) событий называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий (рисунок 3.1). Обозначения .

Рисунок 3.1

Произведением (пересечением) событий называется событие, происходящее тогда и только тогда, когда все данные события происходят вместе (одновременно) (рисунок 3.2). Обозначения . Очевидно, что события А и Внесовместны , если .

Рисунок 3.2

Полной группой событий называется множество событий, сумма которых есть достоверное событие:

Событие В называют частным случаем события А , если с появлением события В появляется и событие А . Говорят также, что событие В влечет событие А (Рисунок 3.3). Обозначение .

Рисунок 3.3

События А и В называются эквивалентными , если они происходят или не происходят совместно при проведении эксперимента Е . Обозначение . Очевидно, что, еслии.

Сложным событием называют наблюдаемое событие, выраженное через другие наблюдаемые в том же эксперименте события с помощью алгебраических операций.

Вероятность осуществления того или иного сложного события вычисляют с помощью формул сложения и умножения вероятностей.

Теорема сложения вероятностей

Следствия:

1) в случае, если события А и В несовместны, теорема сложения приобретает вид:

2) в случае трех слагаемых теорема сложения записывается в виде

3) сумма вероятностей взаимно противоположных событий равна 1:

Совокупность событий ,, …,называютполной группой событий , если

Сумма вероятностей событий, образующих полную группу, равна 1:

Вероятность появления события А при условии, что событие В произошло, называют условной вероятностью и обозначают или.

А и В зависимые события , если .

А и В независимые события , если .

Теорема умножения вероятностей

Следствия:

1) для независимых событий А и В

2) в общем случае для произведения трех событий теорема умножения вероятностей имеет вид:

Образцы решения задач

Пример 1 ‑ В электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов первого, второго и третьего элементов соответственно равны ,,. Найти вероятность того, что тока в цепи не будет.

Решение

Первый способ.

Обозначим события: - в цепи произошел отказ соответственно первого, второго и третьего элементов.

Событие А – тока в цепи не будет (откажет хотя бы один из элементов, так как они включены последовательно).

Событие ‑ в цепи ток (работают три элемента), . Вероятность противоположных событий связана формулой (3.4). Событие представляет собой произведение трех событий, являющихся попарно независимыми. По теореме умножения вероятностей независимых событий получаем

Тогда вероятность искомого события .

Второй способ.

С учетом принятых ранее обозначений запишем искомое событие А – откажет хотя бы один из элементов:

Так как слагаемые, входящие в сумму, совместны, следует применить теорему сложения вероятностей в общем виде для случая трех слагаемых (3.3):

Ответ: 0,388.

Задачи для самостоятельного решения

1 В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

2 В мешке смешаны нити, среди которых 30 % белых, а остальные –красные. Определить вероятности того, что вынутые наудачу две нити будут: одного цвета; разных цветов.

3 Устройство состоит из трех элементов, работающих независимо. Вероятности безотказной работы за определенный промежуток времени первого, второго и третьего элементов соответственно равны 0,6; 0,7; 0,8. Найти вероятности того, что за это время безотказно будут работать: только один элемент; только два элемента; все три элемента; хотя бы два элемента.

4 Брошены три игральные кости. Найти вероятности следующих событий:

а) на каждой грани из выпавших появится пять очков;

б) на всех выпавших гранях появится одинаковое число очков;

в) на двух выпавших гранях появится одно очко, а на третьей грани – другое число очков;

г) на всех выпавших гранях появится разное число очков.

5 Вероятность попадания в мишень стрелком при одном выстреле равна 0,8. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью, меньшей 0,4, можно было ожидать, что не будет ни одного промаха?

6 Из цифр 1, 2, 3, 4, 5 сначала выбирается одна, а затем из оставшихся четырех – вторая цифра. Предполагается, что все 20 возможных исходов равновероятны. Найти вероятность того, что будет выбрана нечетная цифра: в первый раз; во второй раз; в оба раза.

7 Вероятность того, что в мужской обувной секции магазина очередной раз будет продана пара обуви 46-го размера, равна 0,01. Сколько должно быть продано пар обуви в магазине, чтобы с вероятностью, не меньшей 0,9, можно было ожидать, что будет продана хотя бы одна пара обуви 46-го размера?

8 В ящике 10 деталей, среди которых две нестандартные. Найти вероятность того, что в наудачу отобранных шести деталях окажется не более одной нестандартной.

9 Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие нестандартно, равна 0,1. Найти вероятность того, что:

а) из трех проверенных изделий только два окажутся нестандартными;

б) нестандартным окажется только четвертое по порядку проверенное изделие.

10 32 буквы русского алфавита написаны на карточках разрезной азбуки:

а) три карточки вынимают наугад одну за другой и укладывают на стол в порядке появления. Найти вероятность того, что получится слово «мир»;

б) извлеченные три карточки можно поменять местами произвольным образом. Какова вероятность того, что из них можно сложить слово «мир»?

11 Истребитель атакует бомбардировщик и дает по нему две независимые очереди. Вероятность сбить бомбардировщик первой очередью равна 0,2, а второй ‑ 0,3. Если бомбардировщик не сбит, он ведет по истребителю стрельбу из орудий кормовой установки и сбивает его с вероятностью 0,25. Найти вероятность того, что в результате воздушного боя сбит бомбардировщик или истребитель.

Домашнее задание

1 Формула полной вероятности. Формула Байеса.

2 Решить задачи

Задача 1 . Рабочий обслуживает три станка, работающих независимо друг от друга. Вероятность того, что в течение часа не потребует внимания рабочего первый станок, равна 0,9, второй – 0,8, третий – 0,85. Найти вероятность того, что в течение часа хотя бы один станок потребует внимания рабочего.

Задача 2 . Вычислительный центр, который должен производить непрерывную обработку поступающей информации, располагает двумя вычислительными устройствами. Известно, что каждое из них имеет вероятность отказа за некоторое время, равную 0,2. Требуется определить вероятность:

а) того, что откажет одно из устройств, а второе будет исправно;

б) безотказной работы каждого из устройств.

Задача 3 . Четыре охотника договорились стрелять по дичи в определенной последовательности: следующий охотник производит выстрел лишь в случае промаха предыдущего. Вероятность попадания для первого охотника равна 0,6, для второго – 0,7, для третьего – 0,8. Найти вероятность того, что будет произведено выстрелов:

г) четыре.

Задача 4 . Деталь проходит четыре операции обработки. Вероятность получения брака при первой операции равна 0,01, при второй – 0,02, при третьей – 0,03, при четвертой – 0,04. Найти вероятность получения детали без брака после четырех операций, предполагая, что события получения брака на отдельных операциях являются независимыми.