Решение с параметром модуль и три корня. Уравнения с модулем - чтобы получить максимум на ЕГЭ по математике (2019)

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Как говорили древние философы «Мудрость – это любовь к знаниям, а любовь – это мера всех вещей». «Мера» на латинском языке - «modulus», от него и произошло слово «модуль». И сегодня мы с вами поработаем с уравнениями, содержащими модуль. Надеюсь, у нас все получится, и в конце урока мы с вами станем мудрее.

Скачать:


Предварительный просмотр:

Пирогова Татьяна Николаевна г. Таганрог МОУ СОШ № 10.

Тема: «Решение уравнений с модулем и параметром»

10 класс, занятие элективного курса «Свойства функции».

План урока.

  1. Мотивация.
  2. Актуализация знаний.
  3. Решение линейного уравнения с модулем разными способами.
  4. Решение уравнений содержащих модуль под модулем.
  5. Исследовательская работа по определению зависимости количества корней уравнения

| | х| - а |= в от значений а и в.

  1. Рефлексия.

Ход урока.

Мотивация. Как говорили древние философы «Мудрость – это любовь к знаниям, а любовь – это мера всех вещей». «Мера» на латинском языке - «modulus», от него и произошло слово «модуль». И сегодня мы с вами поработаем с уравнениями, содержащими модуль. Надеюсь, у нас все получится, и в конце урока мы с вами станем мудрее.

Актуализация знаний. Итак, вспомним, что мы уже знаем о модуле .

  • Определение модуля. Модулем действительного числа – называется само число, если оно неотрицательно и противоположное ему число, если оно отрицательно.
  • Геометрический смысл модуля. Модуль действительного числа а равен расстоянию от начала отсчета до точки с координатой а на числовой прямой.

– a 0 a

|– a | = | a | | a | x

  • Геометрический смысл модуля разности величин. Модуль разности величин | а – в | - это расстояние между точками с координатами а и в на числовой прямой,

Т.е. длина отрезка [ а в ]

1) Если a b 2) Если a > b

a b b a

S = b – a S = a – b

3) Если a = b , то S = a – b = b – a = 0

  • Основные свойства модуля
  1. Модуль числа есть число неотрицательное, т.е. | x | ≥ 0 для любого x
  2. Модули противоположных чисел равны, т.е. | x | = |– x | для любого x
  3. Квадрат модуля равен квадрату подмодульного выражения, т.е. | x | 2 = x 2 для любого x

4. Модуль произведения двух чисел равен произведению модулей сомножителей, т.е.| a b | = | a | · | b |

5. Если знаменатель дроби отличен от нуля, то модуль дроби равен частному от деления модуля числителя на модуль знаменателя, т.е. при b ≠ 0

6. Для равенства любых чисел a и b справедливы неравенства :

| | a | – | b | | ≤ | a + b | ≤ | a | + | b |

| | a | – | b | | ≤ | a – b | ≤ | a | + | b |

  • График модуля у = | х | - прямой угол с вершиной в начале координат, стороны которого являются биссектрисами 1 и 2 квадрантов.
  • Как построить графики функций? у = | х –4|, у = | х +3|, у = | х –3|, у = | х | + 1 ,
  • у = | х | – 3, у = | х | – 5, у = | х – 3 | + 3, у = | х – 3 | – 2, у = | х + 2 | – 5. у = || х| – а |

Пример. Решить уравнение .

Способ 1. Метод раскрытия модулей по промежуткам.

Способ 2. Непосредственное раскрытие модуля.

Если модуль числа равен 3, то это число 3 или -3.

Способ 3 . Использование геометрического смысла модуля.

Необходимо найти на числовой оси такие значения х, которые удалены от 2 на расстояние, равное 3.

Способ 4. Возведение обеих частей уравнения в квадрат.

Здесь используется свойство модуля

И то, что обе части уравнения неотрицательные.

Способ 5. Графическое решение уравнения .

Обозначим. Построим графики функций и :

Абсциссы точек пересечения графиков дадут корни

2 -1 0 1 2 3

2 -1 0 1 2 3 4 5

2 -1 0 1 2 3

2 -1 0 1 2 3 4 5

Самостоятельная работа

решите уравнения:

| х – 1| = 3

| х – 5| = 3

| х –3| = 3

| х + 3| = 3

| х + 5| = 3

(-2; 4)

(2; 8)

(0; 6)

(-6; 0)

(-8;-2)

А теперь добавьте в условия еще один модуль и решите уравнения:

| | х| – 1| = 3

| | х| –5| = 3

| | х | – 3| = 3

| | х | + 3| = 3

| | х | + 5| = 3

(нет корней)

Итак, сколько корней может иметь уравнение вида | | х | – а |= в? От чего это зависит?

Исследовательская работа по теме

«Определение зависимости количества корней уравнения | | х | – а |= в от а и в »

Проведем работу по группам, с использованием аналитического, графического и геометрического способов решения.

Определим, при каких условиях данное уравнение имеет 1 корень, 2 корня, 3 корня, 4 корня и не имеет корней.

1 группа (по определению)

2 группа (используя геометрический смысл модуля)

3 группа (используя графики функций)

А > 0

1 группа

2 группа

3 группа

Нет корней

в в ≥ 0

в + а

в в ≥ 0

а + в

в в ≥ 0

в а

ровно один корень

в > 0 и в + а = 0

в > 0 и в + а = 0

в > 0 и в = – а

ровно два корня

в > 0 и в + а > 0

– в + а

в > 0 и в + а > 0

– в + а

в > 0 и в > | а |

ровно три корня

в > 0 и – в + а = 0

в > 0 и – в + а = 0

в > 0 и в = а

ровно четыре корня

в > 0 и – в + а >0

в > 0 и – в + а >0

в > 0 и в а

Сравните результаты, сделайте общий вывод и составьте общую схему.

Конечно, необязательно эту схему запоминать . Главное в проведенном нами исследовании было – увидеть эту зависимость, используя разные методы , и теперь повторить свои рассуждения при решении таких уравнений нам будет уже несложно.

Ведь решение задания с параметром всегда подразумевает некоторое исследование.

Решение уравнений с двумя модулями и параметром.

1. Найти значения р, х| – р – 3| = 7 имеет ровно один корень.

Решение: | | х| – (р + 3)| = 7

р +3= -7, р = -10. Или геометрически

р + 3 – 7 р + 3 р + 3+7 р + 3+7=0, р = -10

7 7 по схеме уравнение такого вида имеет ровно один корень, если в = – а, где в =7, а = р +3

2. Найти значения р, при каждом из которых уравнение | | х| – р – 6| = 11 имеет ровно два корня.

Решение: | | х| – (р + 6)| = 11 геометрически

Р + 6 – 11 р + 6 р + 6+11 р + 6-11 р р + 6+11>0, р > -17

11 11

по схеме уравнение такого вида имеет ровно два корня, если в + а > 0 и – в + а где в =11, а = р +6. -17р 5.

3. Найти значения р, при каждом из которых уравнение | | х| – 4 р | = 5 р –9 имеет ровно четыре корня.

Решение: по схеме уравнение такого вида имеет ровно четыре корня, если

0р –9 р, р > и р

т.е. 1 р 9.

Ответ: 1 р 9.

4 . . Найти значения р, при каждом из которых уравнение | | х| – 2 р | = 5 р +2 не имеет корней. Решение: 5 р +2 р +2 =0 и –2 р >0, или 5 р +2 >0 и 5 р +2 р.

р р = –0,4, или р > – 0,4 и р . Ответ : р

5. При каких значениях параметра р уравнение | | х –4 | – 3| + 2 р = 0 имеет три корня. Найти эти корни.

Преобразуем уравнение к виду:

| | х –4 | – 3|= – 2 р .

По схеме уравнение такого вида имеет три корня,

если –2 р =3>0,

Т.е. р = –1,5.

|| х –4|–3| = 3,

| х –4|=0, х = 4,

|| х –4|=6, х = –2, х =10.

Ответ: при р = –1,5 уравнение имеет три корня: х 1 = –2, х 2 = 4, х 3 =10.

Подведение итогов урока. Рефлексия.

Скажите, какие бы вы выделили главные слова урока? (Модуль, параметр)

Что мы сегодня повторили? (Определение модуля, геометрический смысл модуля числа и разности чисел, свойства модуля, разные способы решения уравнений)

Что мы сегодня делали?

Домашнее задание.


21x 2 + 55x + 42 = 0, D = 552 − 4 21 42 = 3025 − 3582 < 0.

Ответ: 1; 2.

§6. Решение уравнений с модулями и параметрами

Рассмотрим несколько уравнений, в которых переменная x стоит под знаком модуля. Напомним, что

x , если x ≥ 0,

x = − x , если x < 0.

Пример 1. Решите уравнение:

а) x − 2 = 3; б) x + 1 − 2x − 3 = 1;

x + 2

X =1; г) x 2 −

6; д) 6x 2 −

x + 1

x − 1

а) Если модуль числа равен 3, то это число равно либо 3, либо (− 3 ) ,

т. е. x − 2 = 3, x = 5 или x − 2 = − 3, x = − 1.

б) Из определения модуля следует, что

x + 1

X + 1, при x + 1 ≥ 0,

т. е. при x ≥ − 1 и

x + 1

= − x − 1 при x < − 1. Выражение

2x − 3

2 x − 3, если x ≥ 3

и равно − 2 x + 3, если x < 3 .

x < −1

уравнение

равносильно

уравнению

− x −1 −

(− 2 x + 3 ) = 1, из которого следует, что

x = 5. Но число 5 не

удовлетворяет условию x < − 1, следовательно,

при x < − 1 данное

уравнение решений не имеет.

−1 ≤ x <

уравнение

равносильно

уравнению

x + 1− (2x + 3) = 1, из которого следует, что x = 1;

число 1 удовлетворя-

ет условию − 1 ≤ x <

2010-2011 уч. год., № 5, 8 кл. Математика. Квадратные уравнения

x ≥

уравнение

равносильно

уравнению

x + 1 − (− 2 x − 3 ) = 1, которое имеет решение x = 3. А так как число 3

удовлетворяет условию x ≥

то оно является решением уравнения.

x + 2

в) Если числитель и знаменатель дроби

имеют одинаковые

x − 1

знаки, то дробь положительна, а если разные – то отрицательна, т. е.

x + 2

x + 2

Если x ≤ − 2, если x > 1,

x − 1

x − 1

x + 2

Если − 2 < x < 1.

−1

При x ≤ − 2

ипри x > 1

исходноеуравнениеравносильноуравнению

x + 2

X =1, x +2

X (x −1 ) = x −1, x 2 − x +3 =0.

x − 1

Последнее уравнение не имеет решений.

При − 2 < x < 1 данное уравнение равносильно уравнению

x + 2

X =1, − x −2 + x 2 − x = x −1, x 2 −3 x −1 = 0.

x − 1

Найдём корни этого уравнения:

x = 3 ± 9 + 4 = 3 ± 13 .

Неравенствам

− 2 < x < 1 удовлетворяет число 3 − 13

Следова-

тельно, это число является решением уравнения.

x ≥ 0 данное

уравнение

равносильно

уравнению

x 2 − x −6 = 0,

корнями которого являются числа 3 и – 2. Число 3

удовлетворяет условию x > 0,

а число – 2 не удовлетворяет этому ус-

ловию, следовательно, только число 3 является решением исходного

x < 0 удовлетворяет число − 3 и не удовлетворяет число 2.

© 2011, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 5, 8 кл. Математика. Квадратные уравнения

x ≥ − 1 данное

уравнение

равносильно

уравнению

6 x 2 − x − 1 = 0, находим его корни: x = 1 ±

25 , x = 1 , x

= −1 .

Оба корня удовлетворяют условию x ≥ − 1,

следовательно, они яв-

ляются решениями данного уравнения. При

x < − 1 данное уравнение

равносильно уравнению 6 x 2 + x + 1 = 0, которое не имеет решений.

Пусть заданы выражения f (x , a ) и g (x , a ) ,

зависящие от перемен-

ных x

и a .

Тогда уравнение

f (x, a) = g(x, a)

относительно перемен-

ной x называется уравнением с параметром a . Решить уравнение с параметром – это значит при любом допустимом значении параметра найти все решения данного уравнения.

Пример 2. Решитеуравнениепривсехдопустимыхзначенияхпараметра a :

а) ax 2 − 3 = 4 a 2 − 2 x 2 ; б) (a − 3 ) x 2 = a 2 − 9;

в) (a − 1 ) x2 + 2 (a + 1 ) x + (a − 2 ) = 0.

x 2 =

4a 2 + 3

Выражение 4 a 2

3 > 0 для любого a ; при a > − 2 име-

a + 2

ем два решения: x =

4a 2 + 3

и x = −

4a 2

Если

a + 2 < 0, то

a + 2

a + 2

выражение 4 a 2 + 3 < 0, тогда уравнение не имеет решений. a + 2

Ответ: x = ±

4a 2 + 3

При a > − 2;

при a ≤ − 2 решений нет.

a + 2

то x 2 = a + 3. Если a + 3 = 0,

б) Если a = 3, то x . Если a ≠ 3,

т.е. если a = − 3,

то уравнение имеет единственное решение x = 0. Ес-

ли a < − 3, то уравнение не имеет решений. Если a > − 3 и a ≠ 3, то уравнение имеет два решения: x 1 = a + 3 и x 2 = − a + 3.

© 2011, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 5, 8 кл. Математика. Квадратные уравнения

a = 1 данное уравнение принимает вид

4x − 1 = 0,

x = 1

является его решением. При

a ≠ 1 данное уравнение является

квадратным, его дискриминант D 1 равен

(a + 1 ) 2 − (a − 1 )(a − 2 ) = 5 a − 1.

Если 5 a − 1 < 0, т.е. a < 1 ,

то данное уравнение не имеет решений.

Если a =

то уравнение имеет единственное решение

a + 1

x = −

a − 1

−1

Если a >

и a ≠ 1,

то данное уравнение имеет два решения:

x = − (a + 1 ) ± 5 a − 1 .

a − 1

−(a +1 ) ±

1 при

a = 1; x = 3

при a

; x =

5a − 1

a − 1

при a > 1

и a ≠ 1; при a < 1

уравнение не имеет решений.

§7. Решение систем уравнений. Решение задач, сводящихся к квадратным уравнениям

В этом параграфе рассмотрим системы, которые содержат уравнения второй степени.

Пример 1. Решить систему уравнений

2x + 3y = 8,

xy = 2.

В этой системе уравнение 2 x + 3 y = 8 является уравнением первой степени, а уравнение xy = 2 – второй. Решим эту систему методом

© 2011, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 5, 8 кл. Математика. Квадратные уравнения

подстановки. Из первого уравнения системы выразим x через y и подставим это выражение для x во второе уравнение системы:

8 − 3y

4 −

y , 4

y y = 2.

Последнее уравнение сводится к квадратному уравнению

8y − 3y 2 = 4, 3y 2 − 8y + 4 = 0.

Находим его корни:

4 ± 4

4 ± 2

Y = 2, y

Из условия x = 4 −

получим x = 1, x

Ответ: (1;2 ) и

Пример 2. Решите систему уравнений:

x 2 + y 2 = 41,

xy = 20.

Умножим обе части второго уравнения на 2 и сложим с первым

уравнением системы:

x 2 + y 2 + 2xy = 41 + 20 2,

(x + y ) 2 = 81, откуда

следует, что x + y = 9 или x + y = − 9.

Если x + y = 9, то

x = 9 − y . Подставим это выражение для x во

второе уравнение системы:

(9 − y ) y = 20, y 2 − 9 y + 20 = 0,

y = 9 ± 81 − 80 = 9 ± 1 , y = 5, y

4, x = 4, x = 5.

Из условия x + y = − 9 получим решения (− 4; − 5) и (− 5; − 4 ) .

Ответ: (± 4;± 5) , (± 5;± 4) .

Пример 3. Решите систему уравнений:

y = 1,

x −

x − y

Запишем второе уравнение системы в виде

( x − y )( x + y ) = 5.

© 2011, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 5, 8 кл. Математика. Квадратные уравнения

Используя уравнение x − y = 1, получаем: x + y = 5. Таким образом, получаем систему уравнений, равносильную дан-

x −

y = 1,

y = 5.

Сложим эти уравнения, получим: 2 x = 6,

x = 3, x = 9.

Подставляя значение x = 9 в первое уравнение

системы, получа-

ем 3 − y = 1, откуда следует, что y = 4.

Ответ: (9;4 ) .

(x + y)(x

Y −4 ) = −4,

Пример 4. Решите систему уравнений: (x 2 + y 2 ) xy = − 160.

xy = v;

Введём новые переменные

x + y = u

x2 + y2 = x2 + y2 + 2 xy − 2 xy = (x + y) 2 − 2 xy = u2 − 2 v,

u (u −4 ) = −4,

система приводится к виду (u 2 − 2 v ) v = − 160.

Решаем уравнение:

u (u − 4) = − 4, u 2 − 4u + 4 = 0, (u − 2) 2 = 0, u = 2.

Подставляем это значение для u в уравнение:

(u 2 − 2v ) v = − 160, (4 − 2v ) v = − 160, 2v 2 − 4v − 160 = 0,

v 2 − 2v − 80 = 0, v = 1± 1 + 80 = 1± 9, v = 10, v

= −8.

Решаем две системы уравнений:

x + y = 2,

x + y = 2,

и

xy = 10

xy = − 8.

Обесистемырешаемметодомподстановки. Дляпервойсистемыимеем:

x = 2 y , (2 y ) y = 10, y 2 2 y + 10 = 0.

Полученное квадратное уравнение не имеет решений. Для второй системы имеем: x = 2 y , (2 y ) y = − 8, y 2 2 y 8 = 0.

y = 1 ± 1 + 8 = 1 ± 3, y 1 = 4, y 2 = − 2. Тогда x 1 = − 2 и x 2 = 4. Ответ: (2;4 ) и (4; 2 ) .

© 2011, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

умноженное на 3, получим:

2010-2011 уч. год., № 5, 8 кл. Математика. Квадратные уравнения

Пример 5. Решите систему уравнений:

x2 + 4 xy = 3,

y2 + 3 xy = 2.

Из первого уравнения умноженного на 2, вычтем второе уравнение,

2 x2 xy 3 y2 = 0.

Если y = 0, тогда и x = 0, но пара чисел (0;0 ) не является решением исходной системы. Разделим в полученном уравнении обе части ра-

венства на y 2 ,

1 ± 5 , x = 2 y и x = − y.

3

= 0,

y

Подставляем

значение

x =

3y

первое уравнение

9 y 2 + 6 y 2 = 3, 11y 2 = 4, y =

, x =

, x = −

Подставляем значение x = − y в первое уравнение системы: y 2 4 y 2 = 3, 3 y 2 = 3.

Решений нет.

Пример 9. Найтивсезначенияпараметра a , прикоторыхсистемауравнений

x2 + (y 2 ) 2 = 1,

y = ax2 .

имеет хотя бы одно решение.

Данная система называется системой с параметром. Их можно решить аналитическим методом, т.е. с помощью формул, а можно применить так называемый графический метод.

Заметим, что первое уравнение задаёт окружность с центром в точке (0;2 ) с радиусом 1. Второе уравнение при a 0 задаёт параболу с вершиной в начале координат.

Если a 2

Вслучаеа) параболакасаетсяокружности. Извторогоуравнениясистемыследу-

ет, что x 2 = y / a ,

подставляем это значения для

x2

в первоеуравнение:

1

+(y 2 )

= 1,

+ y

4 y + 4 = 1, y

4 a y + 3

= 0.

В случае касания в силу симметрии существует единственное значение y , поэтому дискриминант полученного уравнения должен быть

равен 0. Так как ордината y точки касания положительная и т.к.

y = 2

a

получаем,

> 0; D

1 2

4 a

4 a

12 = 0,

4 a

> 0

получаем: 4

= 2

= 4 2

a =

4 + 2 3

4 + 2 3

2 +

(4 2 3)(4 + 2 3) =

16 12 =

4 2 3

Если a > 2 + 2 3 , то парабола будет пересекать окружность в 4 точ-

© 2011, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 5, 8 кл. Математика. Квадратные уравнения

Следовательно, система имеет хотя бы одно решение, если

a 2 + 2 3 .

Пример 10. Сумма квадратов цифр некоторого натурального двузначного числа на 9 больше удвоенного произведения этих цифр. После деления этого двузначного числа на сумму его цифр в частном получается 4 и в остатке 3. Найти это двузначное число.

Пусть двузначное число равно 10 a + b , где a и b – цифры этого числа. Тогда из первого условия задачи получаем: a 2 + b 2 = 9 + 2 ab , а из второго условия получаем: 10 a + b = 4 (a + b ) + 3.

a2 + b2 = 9 + 2 ab,

Решаем систему уравнений: 6 a 3 b = 3.

Из второго уравнения системы получаем

6a 3b = 3, 2a b = 1, b = 2a 1.

Подставляемэтозначениедля b впервоеуравнениесистемы:

a 2 + (2a 1) 2 = 9 + 2a (2a 1) , 5a 2 4a + 1 = 9 + 4a 2 2a ,

a 2 2a 8 = 0, D 1 = 1 + 8 = 9, a = 1 ± 3, a 1 = 4, a 2 = − 2 < 0, b 1 = 7.

Ответ: 47.

Пример 11. После смешения двух растворов, один из которых содержал 48 г, а другой 20 г, безводного йодистого калия, получили 200 г нового раствора. Найдите концентрацию каждого из первоначальных растворов, если концентрация первого раствора была на 15% больше концентрации второго.

Обозначим через x % – концентрацию второго раствора, а через (x + 15 ) % – концентрацию первого раствора.

(x + 15 )%

x %

I раствор

II раствор

В первом растворе 48 г составляет (x + 15 ) % от веса всего раствора,

поэтому вес раствора равен x 48 + 15 100. Во втором растворе 20 г со-

© 2011, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

10x − 5y − 3z = − 9,

6 x + 4 y − 5 z = − 1,3 x − 4 y − 6 z = − 23.

Уравняем коэффициенты при x в первом и втором уравнениях, для этого умножим обе части первого уравнения на 6, а второго уравнения – на 10, получаем:

60x − 30 y − 18z = − 54,60x + 40 y − 50z = − 10.

Вычитаем из второго уравнения полученной системы первое урав-

нение, получаем: 70 y − 32 z = 44, 35 y − 16 z = 22.

Из второго уравнения исходной системы вычитаем третье уравнение, умноженное на 2, получаем: 4 y + 8 y − 5 z + 12 z = − 1 + 46,

12 y + 7z = 45.

Теперь решаем новую систему уравнений:

35y − 16z = 22,12 y + 7z = 45.

К первому уравнению новой системы, умноженному на 7, прибавляем второе уравнение, умноженное на 16, получаем:

35 7 y + 12 16y = 22 7 + 45 16,

Теперь подставляем y = 2, z = 3 в первое уравнение исходной сис-

темы, получаем: 10x − 5 2 − 3 3 = − 9, 10x − 10 − 9 = − 9, 10x = 10, x = 1.

Ответ: (1; 2;3) . ▲

§ 3. Решение систем с параметром и с модулями

ax + 4 y = 2 a,

Рассмотрим систему уравнений

x + ay = a.

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

В этой системе, на самом деле, три переменные, а именно: a , x , y . Неизвестными считают x и y , a называют параметром. Требуется найти решения (x , y ) данной системы при каждом значении параметра a .

Покажем, как решают такие системы. Выразим переменную x из второго уравнения системы: x = a − ay . Подставляем это значение для x в первое уравнение системы, получаем:

a (a − ay) + 4 y = 2 a,

(2 − a )(2 + a ) y = a (2 − a ) .

Если a = 2, то получаем уравнение 0 y = 0. Этому уравнению удовлетворяет любое число y , и тогда x = 2 − 2 y , т. е. при a = 2 пара чисел (2 − 2 y ; y ) является решением системы. Так как y может быть

любым числом, то система при a = 2 имеет бесконечно много решений.

Если a = − 2, то получаем уравнение 0 y = 8. Это уравнение не имеет ни одного решения.

Если теперь a ≠ ± 2,

то y =

a (2 − a)

(2 − a )(2 + a )

2 + a

x = a − ay = a −

2 + a

Ответ: При a = 2 система имеет бесконечно много решений вида (2 − 2 y ; y ) , где y − любое число;

при a = − 2 система не имеет решений;

при a ≠ ± 2, система имеет единственное решение

. ▲

2 + a

2 + a

Мы решили эту систему и установили, при каких значениях параметра a система имеет одно решение, когда имеет бесконечно много решений и при каких значениях параметра a она не имеет решений.

Пример 1. Решите систему уравнений

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

−3

y − 1

3x − 2 y = 5.

Из второго уравнения системы выражаем x через y , получаем

2 y + 5

подставляем это значение для x в первое уравнение сис-

темы, получаем:

2y + 5

−3

y − 1

−3

−1

5 = 0

Выражение

y = −

y > −

; если

−5

= −y

Выражение y − 1 = 0,

если y = 1. Если

y > 1, то

y − 1

Y − 1, а ес-

ли y < 1, то

y − 1

1 − y .

Если y ≥ 1, то

y − 1

Y −1 и

получаем уравнение:

−3 (y

− 1) = 3,

−3 y

3, −

(2 2 +

5 ) = 3. Число 2 > 1, так что пара (3;2) является ре-

шением системы.

Пусть теперь

5 ≤ y <1,

y − 1

− y ;

нахождения

получаем

уравнение

3 y −3

4 y + 10

3 y = 6,

13 y = 8

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

(2 y + 5) =

Но меньше, чем

поэтому пара чисел

является решением системы.

y < −

то получаем уравнение:

3 y −3

4 y −

3y = 6,

5 y =

28 , y = 28 .

значение

поэтому решений нет.

Таким образом, система имеет два решения (3;2) и 13 27 ; 13 8 . ▲

§ 4. Решение задач с помощью систем уравнений

Пример 1. Путь от города до посёлка автомобиль проезжает за 2,5 часа. Если он увеличит скорость на 20 км/ч, то за 2 часа он пройдёт путь на 15 км больший, чем расстояние от города до посёлка. Найдите это расстояние.

Обозначим через S расстояние между городом и посёлком и через V скорость автомобиля. Тогда для нахождения S получаем систему из двух уравнений

2,5V = S ,

(V + 20) 2 = S + 15.

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

во второе уравнение:

S + 20 2

S +15,

S = 25,

S = 125.

Ответ: 125 км. ▲

Пример 2. Сумма цифр двузначного числа равна 15. Если эти цифры поменять местами, то получится число, которое на 27 больше исходного. Найдите эти числа.

Пусть данное число ab , т.е. число десятков равно a , а число единиц равно b . Из первого условия задачи имеем: a + b = 15. Если из числа ba вычесть число ab , то получится 27, отсюда получаем второе уравнение: 10 b + a − (10 a + b ) = 27. x

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

Умножим обе части уравнения на 20, получим: x + 8 y = 840. Для нахождения x и y получили систему уравнений

Ответ: 40 т, 100 т. ▲

Пример 4. Оператор ЭВМ, работая с учеником, обрабатывает задачу за 2 ч 24 мин. Если оператор будет работать 2 ч, а ученик 1 ч, то бу-

дет выполнено 2 3 всей работы. Сколько времени потребуется операто-

ру и ученику в отдельности на обработку задачи?

Обозначим всю работу за 1, производительность оператора за x и производительность ученика за y . Учитываем, что

2 ч 24 мин = 2 5 2 ч = 12 5 ч .

Из первого условия задачи следует, что (x+y ) 12 5 = 1. Из второго условия задачи следует, что 2 x + y = 2 3 . Получили систему уравнений

(x+y)

2 x + y =

Решаем эту систему методом подстановки:

− 2 x ;

−2 x

−x

− 1;

; x =

; y =

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

Слайд 2

.

Решение уравнений с параметрами и модулями, применяя свойства функций в неожиданных ситуациях и освоение геометрических приемов решения задач. Нестандарные уравнения Цель урока.

Слайд 3

Абсолютной величиной или модулем числа a называется число a, если a>0, число -a, если a 0 ׀ a ׀={ 0, если a=0 -a, если a 0) равносильно двойному неравенству -a 0. Неравенство ׀ х׀>a, (если a>0) равносильно двум неравенствам - Неравенство׀ х׀>a, (если a

Слайд 4

Решить уравнение с параметрами - значит указать, при каких значениях параметров существуют решения и каковы они. а) определить множество допустимых значений неизвестного и параметров; б) для каждой допустимой системы значений параметров найти соответствующие множества решений уравнения. Повторение важнейшего теоретического материала по темам «Решение уравнений с параметрами»

Слайд 5

1. Решить уравнение׀ х-2 ׀ =5; Ответ 7;-3 ׀ х-2 ׀ =-5; Ответ решения нет ׀ х-2 ׀ =х+5; ; Ответ решения нет; 1,5 ׀ х-2 ׀ = ׀ х+5 ׀ ; Ответ решения нет; -1,5; решения нет; -1,5; Устные упражнения.

Слайд 6

2. Решить уравнениеах=1; Ответ. Если a=0, то нет решения;если a=0, тох=1/ a 1.3. Решить уравнение (а²-1) х = а+ 1. 1) а = 1; тогда уравнение принимает вид Ох = 2 и не имеет решения 2) а = ­ 1; получаем Ох = О, и очевидно х - любое. 1 3) если а =± 1 ,то х = -- а-1 Ответ. Если а=-1 , то х- любое; если а=1, то нет решения 1 если а =± 1 ,то х= -- а-1

Слайд 7

2.Решить уравнение׀ х+3 ׀ + ׀ у -2 ׀= 4; . 2 3. 4. 1

Слайд 8

3 3 2 x y 0 1 Ответ: (-3; 2).

Слайд 9

2. Решить уравнениеaх=1;

Ответ. Если a=0, то нет решения; если a=0, то х=1/ a 1.3. Решить уравнение (а²-1) х = а+ 1. 1) а = 1; тогда уравнение принимает вид Ох = 2 и не имеет решения 2) а = ­ 1; получаем Ох = О, и очевидно х - любое. 1 3) если а =± 1 ,то х = -- а-1 Ответ. Если а=-1 , то х- любое; если а=1, то нет решения 1 если а =± 1 ,то х= -- а-1

Слайд 10

3 Построить график функции у= ׀х׀, у= ׀х-2 ׀, у = ׀ х+5I , у = ׀х-2 ׀+3, у = ׀ х+3 ׀-2

y x У=IxI 1 2 -3 -4 -1 1 -2 2 3 0 -5 4 5 6 -1 -2 Y=Ix+3I-2 Y=Ix-2I Y=Ix+5I Y=Ix-2I +3