Строение и функции ядра. Ядерная пора и ядерный поровый комплекс В чем состоит биологическая функция ядерных пор

ПОРЫ

В последнее время достигнуты большие успехи в определении строения пор на молекулярном уровне. Особенно ценным в исследованиях оказался метод реконструкции изображения; с его помощью удалось не только визуализировать отверстия в мембране, создаваемые большими порами, но и выявить симметричную организацию субъединиц вокруг центрального отверстия (табл.2).

Таблица 2. Псевдосимметрия некоторых пор.

Важным исключением из б-спирального семейства являются порины, поскольку они формируют поры из в-слоев, а не с помощью б-спиралей. Поры могут образовываться с помощью эндо- и экзогенных веществ.

ЯДЕРНЫЕ ПОРОВЫЕ КОМПЛЕКСЫ

Ядерная оболочка клеток млекопитающих содержит 3-4 тысячи пор (примерно 10 пор на 1 квадратный мкм). Через ядерные поры происходит обмен веществами между ядром и цитоплазмой. Действительно, РНК, синтезируемые в ядре, а также рибосомные субъединицы и белки, содержащие сигналы ядерного экспорта, транспортируются через ядерные поры в цитоплазму, а гистоны, компоненты репликативной системы, многие другие белки импортируются через ядерные поры из цитоплазмы в ядро. Поры окружены большими кольцевыми структурами, называемыми поровыми комплексами (их внутренний диаметр составляет приблизительно 80 нм, а мол. масса -50-100 млн. Каждый комплекс образован набором больших белковых гранул, сгруппированных в октагональную структуру. Поровой комплекс пронизывает двойную мембрану, связывая по окружности поры липидный бислой внутренней и внешней мембран в единое целое. "Дыра" в центре каждого комплекса (ядерная пора) представляет собой водный канал, сквозь который водорастворимые молекулы курсируют между ядром и цитоплазмой. Ядерный поровой комплекс содержит заполненный водой цилиндрический канал диаметром около 9 нм. Большие ядерные белки взаимодействуют с белками-рецепторами, расположенными на границе ядерных пор, и эти рецепторы активно переносят белки в ядро, увеличивая канал поры.

Количество ядерных пор зависит от типа клетки, стадии клеточного цикла и конкретной гормональной ситуации. Для ядерной поры характерна симметрия восьмого порядка, поэтому многие белки ядерной поры представлены в ее составе в количестве, кратном восьми. В электронный микроскоп видны выпуклые кольца. Кольцо, находящееся с ядерной стороны, несет структуру, называемую корзиной (basket). Это образование состоит из обращенных в нуклеоплазму фибрилл и прикрепленного к ним терминального кольца. К просвету канала обращены восемь симметричных образований (spoke complex). В центре комплекса виден вход в канал ядерной поры. Иногда в канале оказывается видна электронноплотная гранула. Некоторые исследователи полагают, что это какой-то транспортирующийся комплекс в момент пересечения ядерной мембраны. Другие считают, что эта структура является функциональной деталью ядерной поры. На основании этого последнего предположения была даже выдвинута не подтвердившаяся впоследствии гипотеза, согласно которой ядерная пора содержит не один, а восемь проницаемых каналов. Молекулы массой менее 5 кДа, проходят через ядерную пору свободно, и равновесие между ядерной и цитоплазматической концентрацией устанавливается за секунды. Для белков массой 17 кДа этот процесс занимает 2 минуты, белков массой 44 кДа (приблизительно 6 нм) - 30 минут. Белки массой более 60 кДа, по-видимому, вообще не могут пассивно проходить через ядерные поры. Проницаемый для гидрофильных макромолекул канал, через который происходит как активный, так и пассивный транспорт, в ядерной поре один, и он, по всей видимости, расположен в центре комплекса. Существуют специальные механизмы транспорта макромолекул внутрь ядра и из ядра в цитоплазму, однако до сих пор о них мало что известно.

Ядерные поровые комплексы (ЯПК) представляют собой симметричные структуры, расположенные в местах слияния внешней и внутренней ядерной мембран

В клетках человека каждый ЯПК обладает массой около 120 х 10 6 Да, что в 40 раз больше массы рибосомы, и состоит из множества копий молекул, включающих 30 белков

ЯПК содержит филаменты, простирающиеся в цитоплазму, и напоминающие корзину структуры, проникающие в ядро

Ядерный поровой комплекс (ЯПК) ядерной мембраны представляют собой единственные каналы, которые связывают ядро и цитоплазму. В клетках человека ЯПК имеют молекулярную массу около 120 х 106 Да и наружный диаметр порядка 120 нм. Общая масса ЯПК в 40 раз превышает массу эукариотической рибосомы. Комплекс ядерной поры состоит из многих копий примерно 30 разных полипептидов, нуклеопоринов. В противоположность ЯПК, рибосомы содержат по одной копии четырех типов РНК, и около 80 различных полипептидов.

Ядерный поровой комплекс (ЯПК) представляют собой бочкообразные структуры, проходящие через ядерную оболочку и несколько выступающие за пределы обеих мембран, образуя структуры кольцеобразной формы. Как показано на рисунке ниже, для большинства ЯПК характерна симметрия восьмого порядка. Со стороны ядра и цитоплазмы пора выглядит по-разному. Части ЯПК, выступающие в нуклеоплазму и цитоплазму, называются терминальными структурами.

С цитоплазматической стороны ЯПК терминальные структуры представляют собой восемь относительно коротких фибрилл, которые распространяются в цитоплазму на расстояние около 100 нм. Со стороны ядра аналогичные фибриллы образуют кольцо. Эта структура называется ядерная корзина или «верша». У некоторых клеток многоклеточных организмов от ядерной корзины вглубь ядра направляются дополнительные фибриллы. Со стороны цитоплазмы и ядра терминальные структуры являются местами контакта транспортируемых молекул на входе и выходе из ЯПК.

Модели, описывающие строение ядерной поры , были предложены на основании анализа сотен электронных микрофотографий отдельных ЯПК, полученных при высоком разрешении. Для наложения изображений и их анализа использовались математические методы, дающие возможность получить усредненную картину распределения электронной плотности или обобщенную структуру кора ЯПК (этот метод не обеспечивает оптимального разрешения терминальных структур).

На рисунке ниже представлены модели структуры кора ЯПК клеток дрожжей и Xenopus. Размеры клеток S. cerevisiae и других одноклеточных эукариот составляют около 60 х 106 Да - т. е. вполовину меньше, чем размеры ЯПК многоклеточных организмов. Однако, несмотря на разницу в размерах, их общее строение одинаково. Размер центрального канала поры, а также его транспортные свойства у Metazoa и дрожжей также одинаковы. В настоящее время наилучшие изображения ЯПК получены методом криоэлектронной микроскопии.

ЯПК характеризуется осью симметрии восьмого порядка, расположенной перпендикулярно оболочке ядра.
Иногда встречаются поры, обладающие симметрией седьмого или девятого порядка.
Симметрия восьмого порядка легко видима на увеличенных изображениях отдельных ЯПК (фотографии внизу).
Усредненная микрофотография в электронном микроскопе, полученная по результатам нескольких сотен отдельных фотографий (внизу справа).

Как показано на рисунке ниже, при любом расположении ЯПК происходит слияние наружной и внутренней мембран ядра. Мы не знаем, каким образом это происходит, но, скорее всего, слияние является интегральной частью процесса сборки ЯПК в ядерной оболочке. Комплексы закрепляются в оболочке с помощью интегральных мембранных белков, которые являются частью основной структуры. Эти белки проходят в перинуклеарное пространство. ЯПК проникают в ядерную ламину и также скрепляются с ней.

Обобщенная модель ЯПК , построенная по данным многих исследований, предполагает, что ядерная пора состоит из нескольких кольцевых и напоминающих спицы структур. Эти структуры сложным образом соединены между собой. ЯПК состоят из модульных компонентов. С помощью сканирующего электронного микроскопа можно наблюдать различные структуры, которые подтверждают эту точку зрения. Основываясь на полученных данных, предложена модель, описывающая сборку модульных структур. Однако пока мы не можем проверить, действительно ли они соединены таким образом. Мы также очень мало знаем о процессе сборки ЯПК.

Фиксация клеток позволяет наблюдать этапы продвижения материалов по каналу ЯПК . При исследовании препаратов в электронном микроскопе часто видно, что полость центрального канала заполнена плотной средой. Относительно состава этой среды существуют различные точки зрения. Согласно одной из них, среда представляет собой часть ЯПК, которая наиболее прочно связывается с карго, транспортируемым через канал. Поэтому для ее обозначения используют термин транспортер или втулка. Альтернативная точка зрения предполагает, что в действительности электронноплотный материал является комплексом карго с рецептором. На основании исследований, проведенных с помощью электронного микроскопа с высоким разрешением, этот материал, по-видимому, характеризуется различными размерами и переменной локализацией в канале ЯПК, что более совместимо с точкой зрения о том, что он состоит из комплексов карго-рецептор.

В некоторых клетках ЯПК находятся не только в ядерной оболочке, но также в структурах, называемых окончатыми мембранами, которые представляют собой стопки двойных мембран, содержащих ЯПК и расположенных в цитоплазме. Часто ЯПК в слоях окончатых мембран располагаются так, как показано на рисунке ниже. Обычно окончатые мембраны присутствуют в ооцитах беспозвоночных и позвоночных, однако могут наблюдаться также и в других типах клеток. Происхождение и функции их остаются неизвестными.

Ядерный поровой комплекс (ЯПК ) клеток млекопитающих трудно отделить от ядерной оболочки, поскольку они обычно связаны с ламиной, представляющей собой нерастворимую структуру, и поэтому являются неудобным объектом исследования. Поскольку окончатые мембраны не имеют подстилающей ламины, они представляют собой ценный источник выделения ЯПК для последующих биохимических и цитологических исследований. Вероятно, ЯПК окончатых мембран имеют такое же строение и состав, как и комплексы пор ядерной оболочки.


ЯПК обладают различными терминальными структурами.
Как показывают исследования в электронном микроскопе,
со стороны ядра по форме они напоминают корзину (слева),
а со стороны цитоплазмы представлены фибриллами (справа).

Цитоплазматические фибриллы и ядерные корзины ядерных пор,
видимые в трансмиссионном электронном микроскопе.

Трехмерные компьютерные модели ЯПК,
иллюстрирующие распределение средней электронной плотности.
Представлен вид моделей сбоку, вдоль плоскости ядерной оболочки, и сверху, перпендикулярно оболочке.

Наружная и внутренняя мембраны ядерной оболочки соединяются в области комплекса ядерной поры. Предполагается, что ЯПК собраны из модульных компонентов.
Показаны фотографии этих компонентов, сделанные в электронном микроскопе на разных стадиях сборки ЯПК после митоза.
Окончатые мембраны в ооцитах Xenopus.
Фотография получена в трансмиссионном электронном микроскопе.

Ядерные поры являются одним из наиболее важных внутриклеточных компонентов, так как они участвуют в молекулярном транспорте. Несмотря на достижения в биологических исследованиях, не все вопросы, касающиеся этих структур, изучены полностью. Некоторые ученые считают, что по значимости функций и сложности строения комплекс ядерных пор можно отнести к органеллам клеток.

Ядерная оболочка

Характерной особенностью является наличие ядра, которое окружено оболочкой, отделяющей его от цитоплазмы. Мембрана состоит из двух слоев - внутреннего и наружного, соединенных между собой с помощью большого количества пор.

Значение ядерной оболочки очень велико - она позволяет отграничить процессы синтеза белка и нуклеиновых кислот, необходимых для регулирования функциональной активности генов. Мембрана управляет процессом транспортировки веществ внутрь, в цитоплазму, и в обратном направлении. Также она является скелетной структурой, поддерживающей форму ядра.

Между наружной и внутренней мембраной находится перинуклеарное пространство, ширина которого составляет 20-40 нм. Внешне ядерная оболочка выглядит как двухслойный мешок. Наличие пор в ее строении является существенным отличием данной структуры от аналогичных, имеющихся у митохондрий и пластид.

Строение ядерных пор

Каналы представляют собой перфорации диаметром около 100 нм, проходящие через всю ядерную оболочку. В поперечном сечении они характеризуются формой многоугольника, обладающего симметрией восьмого порядка. Проницаемый для веществ канал находится в центре. Он заполнен сложно организованными глобулярными (в виде клубка) и фибриллярными (в форме закрученной нити) структурами, образующими центральную гранулу-«пробку» (или транспортер). На рисунке ниже можно наглядно изучить, что представляет собой ядерная пора.

Микроскопическое исследование данных структур показывает, что они имеют кольчатое строение. Фибриллярные выросты простираются как наружу, в цитоплазму, так и внутрь, в сторону ядра (филаменты). Последние образуют своеобразную корзинку (в зарубежной литературе называемую «баскет»). В пассивной поре фибриллы корзины закрывают канал, а в активной - формируют дополнительное образование диаметром порядка 50 нм. Кольцо со стороны цитоплазмы состоит из 8 гранул, соединенных между собой, как бусы на нитке.

Совокупность этих перфораций в оболочке ядра носит название комплекса ядерных пор. Тем самым биологи подчеркивают взаимосвязь между собой отдельных отверстий, работающих как единый слаженный механизм.

Внешнее кольцо связано с центральным транспортером. У низших эукариотов (лишайники и другие) нет цитоплазматического и нуклеоплазматического колец.

Особенности структуры

Строение и функции ядерных пор имеют следующие особенности:

  • Каналы представляют собой многочисленные копии порядка 30-50 нуклеопоринов (а всего - около 1000 белков).
  • Масса комплексов находится в пределах от 44 МДа у низших эукариотов до 125 МДа у позвоночных животных.
  • У всех организмов (человека, птиц, рептилий и других животных) во всех клетках эти структуры устроены аналогичным образом, то есть поровые комплексы являются строго консервативной системой.
  • Компоненты ядерных комплексов имеют субъединичное строение, благодаря которому они обладают высокой пластичностью.
  • Диаметр центрального канала варьируется в пределах 10-26 нм, а высота порового комплекса - порядка 75 нм.

Удаленные от центра участки ядерных пор несимметричны. Ученые связывают это с различными механизмами регулирования транспортной функции на начальных этапах развития клетки. Предполагается также, что все поры являются универсальными структурами и обеспечивают перемещение молекул как в цитоплазму, так и в обратном направлении. Ядерные поровые комплексы присутствуют и в других компонентах клетки, обладающих мембранами, но в более редких случаях (ретикулум, окончатые мембраны цитоплазмы).

Количество пор

Основным фактором того, от чего зависит количество ядерных пор, является активность обмена веществ в клетке (чем она выше, тем больше число канальцев). Их концентрация в толще мембраны может изменяться в несколько раз в различные периоды функционального состояния клеток. Первое увеличение числа пор происходит после деления - митоза (во время реконструкции ядер), а затем в период роста ДНК.

У разных видов животных их количество отличается. Оно зависит также от места взятия образца. Так, в человека их насчитывается порядка 11 шт./мкм 2 , а в несозревшей яйцеклетке лягушки ксенопус - 51 шт./мкм 2 . В среднем их плотность варьирует в пределах 13-30 шт./мкм 2 .

Распределение ядерных пор по поверхности оболочки является практически равномерным, но в местах сближения вещества хромосом с мембраной их концентрация резко уменьшается. У низших эукариотов под ядерной мембраной нет фибриллярной сети жесткой структуры, поэтому поры могут перемещаться вдоль ядерной оболочки, и их плотность на различных участках значительно варьирует.

Функции

Главной функцией ядерного порового комплекса является пассивная (диффузионная) и активная (требующая энергетических затрат) передача молекул через мембрану, то есть обмен веществ между ядром клетки и цитоплазмой. Этот процесс жизненно важен и регулируется тремя системами, которые находятся в постоянном взаимодействии друг с другом:

  • комплекс биологически активных веществ-регуляторов в ядре и цитоплазме - импортин α и β, Ran-белок, гуанозинтрифосфат (пуриновый нуклеотид) и другие ингибиторы и активаторы;
  • нуклеопорины;
  • структурные компоненты порового ядерного комплекса, которые способны изменять свою форму и обеспечивать перенос веществ в нужном направлении.

Из цитоплазмы через ядерные поры поступают белки, необходимые для функционирования ядра, а в обратном направлении выводятся различные формы РНК. Поровый комплекс не только осуществляет чисто механическую транспортировку, но и служит сортировщиком, «узнающим» определенные молекулы.

Пассивная передача происходит для тех веществ, молекулярная масса которых невысока (не больше 5∙10 3 Да). В ядро свободно поступают такие вещества, как ионы, сахара, гормоны, нуклеотиды, аденозинтрифосфорная кислота, участвующая в обмене энергии. Максимальный размер белков, которые могут проникнуть через поры в ядро, - 3,5 нм.

Во время синтеза дочерней молекулы ДНК транспортировка веществ достигает пика активности - по 100-500 молекул через 1 ядерную пору за 1 мин.

Белки пор

Элементы каналов имеют белковую природу. Белки этого комплекса носят название нуклеопоринов. Они собраны примерно в 12 субкомплексах. Условно их делят на три группы:

  • соединения со специфическими повторяющимися последовательностями, узнаваемые биохимическими факторами;
  • не обладающие последовательностями;
  • которые находятся в участке мембраны, формирующей пору, или в самой поре в пространстве между слоями ядерной оболочки.

Исследованиями установлено, что нуклеопорины способны образовывать довольно сложные комплексы, включающие до 7 белков, а также принимают непосредственное участие в транспорте веществ. Некоторые из них могут непосредственно связываться с перемещаемыми через ядерную пору молекулами.

Экспорт веществ в цитоплазму

Одна и та же пора может принимать участие как в выводе, так и в импорте веществ. Обратного перевода РНК из цитоплазмы в ядро не происходит. Ядерные комплексы узнают сигналы для экспорта (NES), которые несут в себе рибонуклеопротеины.

NES-последовательность сигнальных веществ представляет собой сложный комплекс из аминокислот и белков, которые после выведения из ядра в цитоплазму диссоциируют (распадаются на отдельные составляющие). Поэтому аналогичные частички, введенные в цитоплазму искусственным путем, обратно в ядро не проникают.

Процесс митоза

При делении (митозе) клетки происходит «разборка» ядерного порового комплекса. Так, комплексы с молекулярной массой 120 мДа распадаются на субкомплексы по 1 мДа. После окончания деления они снова собираются. При этом ядерные поры перемещаются не отдельно, а массивами. Это является одним из доказательств того, что ядерный поровый комплекс - слаженная система.

Разрушенная мембрана превращается пузырьковое скопление, которое окружает область ядра в периоде интерфазы. В метафазе, когда хромосомы удерживаются в экваториальной плоскости, эти элементы оттесняются к периферийным зонам клетки. В конце анафазы данное скопление начинает контактировать с хромосомами и запускается рост зачатков ядерной мембраны.

Пузырьки превращаются в вакуоли, которые постепенно обволакивают хромосомы. Затем они сливаются и отгораживают новое интерфазное ядро от цитоплазмы. Поры появляются уже на самой ранней стадии, когда еще не произошло замыкание оболочек.

Лекция №5

ЯДРО

Строение и функции ядра

Морфология и химический состав ядра

Термин «ядро» впервые применен Р. Броуном в 1833 г., который описал и изучил ядро в растительных клетках и доказал, что оно – обычная составная часть любой клетки.

Ядро имеется во всех эукариотических клетках (безъядерность некоторых из них – вторичное приспособление). От цитоплазмы ядра обычно отделяются четкой границей. Во всех случаях отчетливо выделяется имеющее округлую форму ядрышко. Бактерии и сине-зеленые водоросли не имеют сформированного ядра: их ядро лишено ядрышка, не отделено от цитоплазмы отчетливо выраженной ядерной мембраной и носит название нуклеоид.

Количество ядер в клетках . Имеются безъядерные клетки, например, эритроциты и кровяные пластинки у млекопитающих. Основная масса клеток имеет одно ядро. Встречаются и многоядерные клетки, например, остеокласты (клетки, разрушающие хрящ, содержат до 10 ядер), поперечно-полосатые мышечные волокна – от нескольких сот до 2-3 тысяч ядер. Увеличение количества ядер указывает на повышенную функциональную активность органа.

Форма ядра . Форма ядер довольно разнообразна, и находится в прямой зависимости от формы тела клетки. Например, в нейронах, у которых тело имеет округлую форму, а отростки ветвятся, ядро округлое.

В большинстве клеток ядро имеет округлую или овальную форму, но может быть линзовидным (эритроциты земноводных), палочковидным (мышечные клетки), а также многолопастным (нейтрофилы, у которых такая форма обеспечивает значительно большую площадь соприкосновения ядерной оболочки с цитоплазмой и тем самым способствует увеличению скорости биохимических реакций).

Локализация ядра . Обычно ядро расположено в центре, рядом с клеточным центром. В некоторых клетках оно смещено к базальному полюсу (клетки цилиндрического эпителия). В крайнетелолецитальных яйцеклетках, имеющих в цитоплазме большое количество желтка, и в клетках, вырабатывающих антитела, ядро смещено на периферию, к цитоплазматической мембране.

Размеры ядра. Своеобразны для разных типов клеток (5-20 мкм в диаметре для округлых ядер).

Размеры ядер можно охарактеризовать таким показателем, как ядерно-плазменное отношение (индекс Гертвига). Оно выражается формулой:

Где

NP – индекс Гертвига;

V n – объем ядра; V c – объем цитоплазмы.

Ядерно-плазменное отношение постоянно для клеток определенного типа. Биологический смысл такого постоянства заключается в том, что определенный объем ядра может контролировать определенный объем цитоплазмы. При нарушении ядерно-плазменного отношения клетка либо быстро восстанавливает его (например, секреторные клетки с апокриновым типом секреции), либо погибает (например, направительные тельца в процессе оогенеза).

Химический состав ядра. Основную массу сухого вещества ядра составляют белковые соединения (60-70%) и нуклеиновые кислоты (19-25%); кроме того, в ядре содержатся липиды и все другие вещества, характерные для цитоплазмы клеток. Из неорганических веществ в ядре больше всего ионов Ca 2+ , Mg 2+ , Fe 3+ , Na + , K + .

Белки ядра относятся к двум типам:

1) гистоны (основные белки); их количество относительно постоянно и пропорционально содержанию ДНК, с которой они образуют комплекс дезоксирибонуклеопротеид (он входит в состав хромосом);

2) негистонные (кислые) белки; к ним относится основная часть ферментов ядра, в том числе ферментов, обеспечивающих авторепродукцию молекул ДНК и образование молекул РНК на ДНК-матрицах.

Основные белки входят в состав хроматина ядра; кислые белки преимущественно локализованы в оболочке ядра, ядрышке и кариоплазме.

Нуклеиновые кислоты – ДНК и РНК – содержатся во всех без исключения ядрах, причем вся ДНК клетки локализована в ядре. В гигантской двухцепочечной молекуле ДНК азотистые основания – тимин, аденин, гуанин и цитозин – соединяются так, что тимину одной цепочки соответствует аденин в другой, а гуанину комплементарен цитозин. Количество ДНК в ядрах клеток организмов различных видов может очень резко варьировать, но для неделящихся диплоидных ядер каждого вида оказывается постоянным. В созревших половых клетках содержится половинный (гаплоидный) набор хромосом и соответственно половинное количество ДНК. В ядре вся ДНК связана с хромосомами.

Рибонуклеиновые кислоты ядра – информационная, рибосомальная и транспортная – являются одноцепочечными молекулами, в которых, в отличие от ДНК, вместо тимина содержится урацил. Большая часть РНК локализована в ядрышке, но она также находится в хроматине и в кариоплазме. Количество РНК в ядре непостоянно и сильно изменяется в зависимости от функционального состояния клетки.

Липиды присутствуют в ядре в небольшом количестве и локализованы главным образом в оболочке.

Функции ядра

Ядро представляет собой не только вместилище генетического материала, но и место, где этот материал функционирует и воспроизводится. Выпадение или нарушение любой из его функций гибельно для клетки в целом. Ядро осуществляет:

1). Сохранение наследственной информации в виде специфической последовательности нуклеотидов в молекуле ДНК.

2). Реализацию этой наследственной информации через синтез специфических для данной клетки белков. Посредством этого белкового синтеза происходит управление процессами жизнедеятельности клеток.

3). Передачу наследственной информации дочерним клеткам при делении. В основе этого процесса лежит способность ДНК к авторепродукции.

Все это указывает на ведущее значение ядерных структур в процессах, связанных с синтезом нуклеиновых кислот и белков – главных функционеров в жизнедеятельности клетки.

Структурные компоненты интерфазного ядра

Различают ядро в состоянии интерфазы и ядро в процессе клеточного деления. Прежде чем говорить о структуре интерфазного ядра, надо уяснить себе, что не все интерфазные ядра одинаковы. Выделяют 3 состояния (или типа) интерфазных ядер в зависимости от их дальнейших возможностей:

1) ядра размножающихся клеток между двумя делениями (основная масса клеток);

2) ядра не делящихся, но способных к делению клеток (функционирующие лимфоциты, часть из которых через большой промежуток времени делится, в то время как остальные могут и не делиться);

3) ядра клеток, утративших способность к делению навсегда (эритриты, клетки нервной системы, гранулоциты – нейтрофилы, базофилы, эозинофилы).

Рассмотрим строение интерфазного ядра первого типа. Основными компонентами ядра являются:

1). Ядерная оболочка (кариолемма).

2). Ядерный сок (кариоплазма).

3). Ядрышко.

4). Хромосомы.

Ядерная оболочка . Эта структура характерна для всех эукариотических клеток. Ядерная оболочка состоит из наружной и внутренней мембран, разделенных перинуклеарным пространством . Ширина его составляет от 10 до 100 нм. В состав ядерной оболочки входят ядерные поры.

Мембраны ядерной оболочки в морфологическом отношении не отличаются от остальных внутриклеточных мембран: они имеют толщину около 7 нм и построены по жидкостно-мозаичному типу.

Наружная, граничащая с цитоплазмой, мембрана имеет сложную складчатую структуру, местами соединенную с каналами ЭПС. На ней расположены рибосомы. Внутренняя мембрана связана с хроматином ядра, контактирует с кариоплазмой и лишена рибосом.

Ядерная оболочка пронизана множеством пор, диаметр их велик – 30-90 нм (для сравнения, в наружной плазмалемме диаметр пор составляет всего 1 нм). Численность их также колеблется: в зависимости от типа и физиологического состояния клетки на 1 мкм 2 их насчитывается от 10 до 30. В молодых клетках количество ядерных пор больше, чем в старых. Благодаря порам обеспечивается обмен веществ между ядром и цитоплазмой, например, выход в цитоплазму и-РНК и рибосомных субъединиц, поступление в ядро белков, нуклеотидов и молекул, регулирующих активность ДНК.

Поры имеют сложное строение. В этом месте две ядерные мембраны сливаются, образуя круглые отверстия, имеющие диафрагменное устройство (или поровый комплекс ). В его состав входят три пластинки, каждая из которых образована 8-ю гранулами размером 25 нм каждая, связанными друг с другом микрофибриллами. В центре порового отверстия часто имеется еще и центральная гранула.

Кариолемма, в отличие от плазмалеммы, не способна к регенерации.

После деления материнского ядра ядерная оболочка дочерних ядер образуется из цистерн гранулярной ЭПС (наружная мембрана) и частично из фрагментов старой ядерной оболочки (внутренняя мембрана), распавшейся во время деления.

Функции ядерной оболочки:

1). Обмен веществ между ядром и цитоплазмой.

2). Барьер, отделяющий ядро от цитоплазмы.

3). Фиксация хромосом.

Кариоплазма (ядерный сок ) – гелеобразное вещество, заполняющее пространство между структурами ядра. В ней находятся ядрышки, значительное количество РНК и ДНК, различные белки, в том числе большинство ферментов ядра, а также свободные нуклеотиды, аминокислоты, промежуточные продукты обмена веществ. Вязкость ее примерно соответствует вязкости цитоплазмы, в то время как кислотность выше, т.к. здесь содержится много нуклеиновых кислот.

Кариоплазма осуществляет взаимосвязь всех ядерных структур в единое целое.

Ядрышко. Форма, размеры и количество ядрышек зависят от функционального состояния ядра и от интенсивности биосинтеза белка в клетке. Их может быть от 1 до 10 (а в клетках дрожжей их нет совсем). Часто в молодых клетках ядрышек несколько, а с возрастом остается только одно. Это связано с более активным синтезом белка молодой клеткой. Диаметр ядрышек – 1-2 мкм.

Основными химическими компонентами, из которых состоят ядрышки, являются кислые белки типа фосфопротеинов (около 80%) и РНК (10-15%). Кроме того, в нем обнаруживаются свободные или связанные фосфаты кальция, калия, магния, железа, цинка. Наличие ДНК в ядрышке не доказано, но при исследовании фиксированных клеток вокруг ядрышка всегда выделяется зона хроматина, часто отождествляемая с гетерохроматином ядрышкового организатора. Этот околоядрышковый хроматин, по данным электронной микроскопии, представляется как интегральная часть сложной структуры ядрышка.

Ядрышко – это немембранная структура ядра. Электронно-микроскопические исследования показали, что основу ядрышка образуют две субстанции:

1) фибриллярная – белковые нити толщиной 4-8 нм, свернутые в виде «клубка»;

2) гранулярная – плотные гранулы диаметром примерно 15 нм, расположенные в этом «клубке». Они состоят из РНК и белка (в весовом соотношении 50:50) и, таким образом, являются предшественниками рибосом.

Следовательно, функция ядрышка состоит в образовании или сборке рибосом, которыми снабжается цитоплазма.

Ядрышко присутствует только в интерфазном ядре. Во время митоза оно исчезает в профазе и появляется вновь в средней телофазе. Причем образуется ядрышко в районе ядрышкового организатора. Ядрышковый организатор – это определенные участки хромосом, расположенные за вторичными перетяжками, которые ответственны за образование ядрышка. Ядрышковые организаторы имеются не у всех хромосом. Так, в кариотипе человека их содержат 13, 14, 15, 21 и 22 пары хромосом.

Нарушения в ядре клетки . Они приводят к патологии хранения генетической информации в ДНК и передачи ее при делении клеток, генетического контроля клеточных процессов.

В связи с этим механизмы нарушений в ядре были рассмотрены при описании нарушений функций генетического аппарата и механизмов его реализации.

Восстановление клеток после повреждения, особенно в тканях, где основные популяции клеток не способны к делению (нервная, сердечная мышечная ткани), в зонах опухолевого роста, при патологической гипертрофии и гиперфункции органов может происходить путем образования полиплоидных клеток с многократным увеличением числа хромосом и размеров клеток. Такая полиплоидия сопровождается повышением функциональной активности клетки, однако это может привести к снижению ее резервных возможностей. Например, если гипертрофированный кардиомиоцит достигает очень больших размеров, то его трофическое обеспечение значительно затрудняется и приводит к гибели клетки. При ускорении синтеза белка и нуклеиновых кислот при гиперфункции и регенерации образуются множественные выпячивания и впячивания в связи с увеличением поверхности ядра. Эти явления сопровождаются увеличением количества хроматина и ядерных пор, возрастанием числа и размеров ядрышек.

Выделяют следующие патологии ядерного аппарата.

Уменьшение генетического материала наблюдают в злокачественных опухолевых клетках. Это приводит к уменьшению размеров таких клеток и изменению их свойств. Такие клетки по своим свойствам резко отличаются от нормальных клеток организма, имеют иные антигенные свойства, значительно изменяется их способность к дифференцировке.

Атипичные митозы (в том числе так называемый дегенеративный амитоз) сопровождаются анэуплоидией, хромосомными аберрациями. Это резко изменяет функциональные особенности клетки. В результате цитокинеза формируются две клетки со случайно распределенными наборами хромосом и содержимым цитоплазмы. Эти клетки являются атипичными, нередко опухолевыми. Подобные нарушения характерны для злокачественного опухолевого роста. Встречается неполный амитоз, когда цитотомии не происходит, и формируется многоядерная клетка - такой амитоз в патологии иногда называют дегенеративным.

Патология синтеза субъединиц рибосом и тРНК в ядрышке сопровождается нарушением синтетических процессов в клетке. В эту же группу включают нарушения экспрессии генов, транскрипции и сплайсинга, переноса генетической информации в составе иРНК из ядра в цитоплазму. Все эти изменения связаны с фенотипической изменчивостью.

Изменения генома и/или механизмов его реализации сопровождаются патологией строения ядер (полиморфизм, деформация, формирование инвагинаций цитоплазмы вплоть до включений цитоплазмы в ядре, выпячивания кариоплазмы в цитоплазму).

При нарушениях ядро набухает с вакуолизацией (расширением) перинуклеарной цистерны или сморщивается. Набухшие ядра становятся более светлыми, изменяется ядерно-цитоплазматическое отношение. Это часто предшествует разрушению ядерной оболочки со слиянием содержимого кариоплазмы и цитоплазмы (кариолизис). Кариолизис предшествует паранекрозу и/или некрозу, с последующим самоперевариванием клетки (аутолизом). Увеличение (конденсация) или уменьшение количества хроматина, разрыв ядра могут быть вызваны гипоксией, ионизирующим излучением и др. Данные нарушения сопровождаются снижением синтеза нуклеиновых кислот и белка.

При сморщивании ядро (кариопикноз) уменьшается в размерах, в нем накапливается гетерохроматин, что приводит к усилению окрашивания кариоплазмы (гиперхроматоз). Ядрышки уплотняются, уменьшаются в размерах, нередко распадаются. Синтез РНК и субъединиц рибосом в таком ядре резко снижается. Прогрессируя, эти изменения приводят к сегментации ядра с последующим его распадом на глыбки (кариорексис), которые затем разрушаются. Эти последствия гибельные для клетки. Такая клетка распадается на части, которые подвергаются фагоцитозу макрофагами.

При гибели клетки хроматин коагулируется и собирается в грубые конгломераты.

При подавлении синтеза рРНК ядрышко сжимается и фрагментируется, утрачивает гранулы. В ядрышке появляются «полости» с низкой плотностью.

Нарушение созревания рибосом (ингибиция процессинга рРНК) вызывает увеличение размеров ядрышек, но в них отсутствуют зрелые субъединицы рибосом.

Изменения в цитозоле (гиалоплазме) . Для них характерны патологии циклоза, обеспечения взаимодействия клеточных структур друг с другом, анаэробного гликолиза, обмена углеводов, белков, липидов и других веществ, депонирования гликогена, жиров, пигментов.

Гипоксия, протеолитические процессы, аутолиз, преобладание анаэробно-гликолитических процессов могут приводить к накоплению низкомолекулярных органических соединений, изменять онкотическое давление. Повышение онкотического давления вызывает диффузию воды в гиалоплазму и набухание клетки. Подобные же явления могуг сопровождать гипоосмолярную гипергидрию. При резком набухании разрывается цитомембрана и содержимое гиалоплазмы сливается с межклеточным веществом.

Повышенная проницаемость цитомембраны при различных патологических воздействиях вызывает выход ионов калия из клетки и поступление в нее ионов натрия, хлора и кальция. Повышается осмотическое давление гиалоплазмы. В нее поступает вода, и клетка набухает.

Обезвоживание, гиперосмолярность межклеточного вещества приводят к выходу воды из гиалоплазмы и сморщиванию клетки. Потеря клеткой воды (дегидратация) понижает функциональную активность, замедляет циклоз, происходит накопление продуктов жизнедеятельности (аутоинтоксикация).

При патологии изменяется кислотно-щелочное равновесие в матриксе клетки. Недоокисленные продукты, накапливающиеся в матриксе, вызывают метаболический ацидоз, повышают проницаемость мембран. Нарушение проницаемости активизирует протеолитические ферменты, что вызывает внутриклеточное самопереваривание - аутолиз.

Патофизиология митохондрий . Она связана с нарушением аэробного фосфорилирования и энергетического обеспечения. Изменения в митохондриях возникают при гипоксии, действии токсинов, блокирующих цепи окислительного фосфорилирования.

Нарушение функций митохондрий наблюдают при гипертиреозе за счет трийодтиронина, рецепторы к которому имеются в органелле. α-Динитрофенол, глюкокортикоиды, инсулин, интерлейкин-1, избыток кальция и тиреоидных гормонов вызывают набухание митохондрий и разобщение цепей окислительного фосфорилирования. В результате клетка не может выработать достаточного количества АТФ, и энергозависимые процессы затухают. Эти функциональные нарушения сопровождаются структурными перестройками в виде набухания митохондрий, изменения структуры их крист и плотности матрикса.

При нарушении обмена веществ, гипоксии, интоксикации митохондрии набухают, их матрикс просветляется и вакуолизируется. Все это приводит к снижению образования АТФ и эффективности окислительного фосфорилирования.

Разобщение цепей окислительного фосфорилирования происходит при лихорадке в момент повышения температуры и при гипотермии как механизм, обеспечивающий повышенную теплопродукцию.

Кроме набухания можно наблюдать конденсацию и фрагментацию митохондрий. Формируются органические (белковые, липидные) и минеральные (нерастворимые соли кальция) включения. Все это также снижает эффективность синтеза АТФ за счет полной или частичной блокады окислительных процессов.

Иногда встречаются гигантские митохондрии с соответствующей гипертрофией крист. Эти нарушения имеют место в случае гипертрофии органелл или за счет их слияния. Изменяются также число и форма крист внутренней мембраны. Увеличение числа крист обычно указывает на повышение активности митохондрий. Иногда трансформируется форма крист и появляются не только трабекулярные, но и мультивезикулярные (трубчатые). Динамике подвергается и направлен на крист. Может встречаться продольная и поперечная направленность. Фрагментация крист, нарушение их правильного расположения появляются при гипоксии.

При гиповитаминозах, алкогольной интоксикации, в опухолевых клетках изменяется форма митохондрий и крист.

Количественные изменения содержания митохондрий в клетке могут быть как в виде увеличения, так и уменьшения. Увеличение числа митохондрий в клетке обычно возникает при усилении ее функциональной активности (гиперфункции и гипертрофии), в процессе восстановления нарушенных функций, при апоптозе. Уменьшение абсолютного содержания митохондрий в клетке указывает на снижение ее функциональной активности, деструктивные атрофические процессы.

Высокой динамичностью отличается распределение митохондрий. Так, при различных патологических ситуациях они локализуются вокруг ядра или на одном из полюсов клетки. В результате математического моделирования показано, что эти изменения в числе прочих могут быть обусловлены динамикой диффузии кислорода и глюкозы.

Часть антибиотиков специфически нарушает белковый синтез на рибосомах митохондрий, например левомицетин, эритромицин. Если в выделенные митохондрии добавить подобные антибиотики, то нарушаются синтетические процессы и органеллы гибнут. Подобные явления в целом организме не наблюдаются, так как указанные антибиотики не накапливаются внутри эукариотической клетки, плохо проникая через ее мембрану.

Патологические процессы в рибосомах . Они сопровождаются нарушением трансляции с образованием полипептидных цепочек в цитозоле, гр. ЭПС и митохондриях.

Эти нарушения возникают при влиянии некоторых патологических факторов, например противоопухолевых препаратов, блокирующих синтез белков у эукариот.

Изменения рибонуклеопротеидных комплексов рибосом, а также рецепторов к ним могут сопровождаться снижением связывания рибосом и полисом с гр. ЭПС в ходе образования секреторных белков. Такие вновь образованные полипептидные цепочки быстро разрушаются в матриксе цитоплазмы.

Патология ядрышкового аппарата приводит к снижению содержания рибосом в цитоплазме и подавлению пластических процессов в организме.

Некоторые особенности имеет патология митохондриальных рибосом. Их нарушения вызывают препараты, блокирующие белковый синтез у бактерий, например левомицетин, эритромицин, которые не влияют на активность цитоплазматических рибосом.

Нарушения в ЭПС . Изменения в гр. и глад. ЭПС по проявлениям близки и сводятся к ниже перечисленным.

Расширение цистерн ЭПС с вакуолизацией цитоплазмы клеток . Наблюдается при повышении активности ЭПС с накоплением в ее структуре синтезированных веществ, при нарушении транспорта веществ в комплекс Гольджи, накоплении патологических веществ. При избыточном накоплении нормальных и патологических веществ развивается дистрофия клетки.

Фрагментация ЭПС , накопление в канальцах обрывков мембран, остатков клеточных органелл характерны для большого числа повреждений клетки, в том числе некроза и паранекроза, «шоковой» клетки, и сопровождаются значительным снижением синтетической активности ЭПС.

Гипертрофия ЭПС наблюдается при гиперфункции секреторных клеток, возникающей от избыточных стимулирующих воздействий на клетку. Это дисфункции вегетативной нервной системы, дисгормонозы, раздражающие воздействия на секреторные клетки, опухолевое их перерождение.

Гипотрофия ЭПС сопровождается снижением секреторной активности клеток и скорости замещения мембранных комплексов. Это характерно для гипотрофии, атрофии, апоптоза и может являться следствием подавления вегетативного нервного

контроля, гормонального блокирования секреции, гипоксии и голодания.

Упрощение структуры и изменение распределения ЭПС возникают при гипотрофии и атрофии в зонах хронических воспалительных процессов, дедифференцировке клеток в опухолях.

Нарушения в гранулярной ЭПС проявляются блокадой, избыточным синтезом полипептидов либо синтезом измененных полипептидных цепочек (мембранных, лизосомальных, секреторных).

Гипертрофия гр. ЭПС нередко сопровождается гиперсекрецией того или иного вещества. Это связано с чрезмерной внешней активацией специфической активности клетки при дисгормональных нарушениях и патологии нервной регуляции.

Патология гр. ЭПС с блокадой синтетических и/или транспортных процессов в клетке сопровождается вакуолизацией, фрагментацией органеллы, нарушением связи с рибосомами и др. Это приводит к дистрофиям, нарушению ресинтетических процессов в клетке.

Гипоксия, различного рода интоксикации изменяют форму цистерн и их размеры. Наблюдается фрагментация цистерн, изменяется их распределение в клетке. На цистернах исчезают рибосомы или они распределяются неравномерно. Эти явления значительно снижают эффективность синтетической функции клетки, в первую очередь восстановление мембранных структур, синтез секрета, восполнение лизосомальных ферментов. Это ведет к угнетению пластических (анаболических) процессов в клетке.

Патологические изменения могут возникать в функционировании свободных и связанных рибосом, что обусловлено несколькими механизмами. Свободные и связанные с гр. ЭПС рибосомы не связываются с иРНК, блокируются соединения с тРНК, не объединяются субъединицы рибосом, необходимые для процессов трансляции.

Дезагрегация рибосом и полисом на гр. ЭПС, их исчезновение вызывают нарушения синтеза секреторных и лизосомальных белков, белков клеточной мембраны.

Для гиповитаминоза С характерно неравномерное распределение рибосом на мембранах, что обусловлено нарушением рецепторной функции мембран гр. ЭПС и вызывает снижение синтетической активности клетки.

Нарушения в гладкой ЭПС выражаются патологией регенерации клеточных мембран, синтеза гликогена, липидов, стероидных гормонов, депонирования и высвобождения Са 2+ , детоксикации экзогенных и эндогенных веществ. Эти нарушения проявляются снижением обезвреживающей функции печеночных клеток, а также уменьшением секреторной активности экзокринных и эндокринных желез, уменьшением интенсивности сокращений в мышечной ткани. Может снижаться двигательная активность фагоцитов, нарушаться передача возбуждения в нейронах и т. д.

Нарушения в комплексе Гольджи . Это патологии модификации, сортировки и упаковки белков, которые или секретируются клеткой, или поступают в плазмолемму, изменения в лизосомах, нарушение образования полисахаридов, гликопротеинов, липопротеинов, гликолипидов.

Гиперфункция комплекса Гольджи с его гипертрофией вызывает избыточную секрецию и/или накопление секреторных продуктов внутри клетки. Гипертрофия с гиперфункцией комплекса Гольджи в секреторных клетках наблюдается при избыточной стимуляции секреции вегетативными нервными окончаниями, гиперфункции гормонов, стимулирующих секрецию. Гиперфункция комплекса Гольджи сопровождается набуханием цистерн, увеличением их числа и размеров. Подобным же образом изменяются вакуоли и пузырьки, участвующие в его формировании.

Гипофункция комплекса Гольджи нарушает репарацию мембранных комплексов клетки, снижает ее секреторную активность и переваривающую способность. Гипофункция возникает при гипотрофии и атрофии, денервации, гипофункции гормонов, стимулирующих секреторную активность клеток, и/или при повышенной активности гормонов, блокирующих секрецию, нарушениях питания. При вирусных инфекциях структуры комплекса Гольджи могут исчезнуть или их содержание резко уменьшается.

Парциальные нарушения функций комплекса Гольджи обусловлены врожденными или приобретенными ферментопатиями и сопровождаются блокадой созревания отдельных гликопротеиновых, липопротеиновых и других комплексов.

Патология лизосом . Она сопровождается активацией аутолиза при избыточной и дистрофией при недостаточной активности.

Повышение проницаемости мембран лизосом под действием гипоксии, СПОЛ, канцерогенных веществ и др. приводит к активизации переваривания с самоперевариванием клетки (аутолизом). Запускается аутолиз при гипоксии, кахексии (истощении) организма, травмах клетки, действии чрезмерно высокой или низкой температуры, кислот и щелочей, выраженной интоксикации, ионизирующих излучениях и др. Глюкокортикоиды, холестерин, противовоспалительные препараты поддерживают сохранность мембран, предотвращая самопереваривание.

Противоположное явление - недостаточное внутриклеточное переваривание - сопровождается накоплением в клетке продуктов неполного разрушения, что может приводить к дистрофии. Как вариант нарушения переваривания - невозможность разрушения патогенных микроорганизмов - нарушает защитные реакции организма. Уменьшение числа лизосом, снижение ферментативной активности встречаются при хронической гипоксии, избытке стероидных гормонов, некоторых инфекциях и нарушениях обмена веществ и др.

Патологию в лизосомах наблюдают при следующих явлениях: изменениях в самих лизосомах и реакции лизосом на нарушения в других клеточных компонентах. При генетических изменениях, вызывающих перестройку лизосомальных ферментов и снижающих их ферментативную активность, возникают «болезни накопления», при которых увеличивается количество остаточных телец и изменяются структуры вторичных митохондрий. Отравление клеток каротином при гипервитаминозе повышает проницаемость мембран клетки, в том числе мембран лизосом, лизосомальным ферментам становятся доступны клеточные субстраты, активируется аутолиз.

Нарушение функций пероксисом . Это снижает эффективность обезвреживания кислородных радикалов и активизирует перекисные процессы в клетке, приводит к накоплению недоокисленных продуктов и активизации свободнорадикальных перекисных процессов, что нарушает проницаемость мембран, вызывает мутации и аутолиз. Снижается содержание пероксисом при ионизирующем излучении и в опухолевых клетках.

Увеличение количества пероксисом встречается при патологических процессах и носит защитно-компенсаторный характер, например при лептоспирозе и вирусном гепатите.

Нарушения структуры и функций центриолей . Это нарушает деление, структурирование клетки вне деления, образование ресничек и жгутиков.

Нарушения структуры и функции центриолей, формирующих клеточный центр, тесно взаимосвязаны с процессами полимеризации и деполимеризации микротрубочек. В результате распада центриолей и разрушения центросферы изменяется распределение органелл в гиалоплазме. Комплекс Гольджи локализуется вблизи клеточного центра. При нарушениях в клеточном центре могут быть значительные изменения распределения транспортных процессов как в пределах компартментов комплекса, так и от него в направлении цитомембраны (регулируемая секреция) и в цитозоле (прелизосомы).

Под действием колхицина и его аналогов, разрушающих клеточный центр, блокируются процессы митоза и нормальное распределение генетического и цитоплазматического материала при делении.

Изменения элементов цитоскелета (микротрубочек, микрофиламентов, микротрабекул) . Они изменяют форму и подвижность клеток, нарушают распределение и перемещение компонентов клетки, транспорта веществ в клетку и из нее, возникает дезагрегация в межклеточных соединениях.

Патология полимеризации микротрубочек может привести к нарушению процессов перемещения секреторных пузырьков, лизосом, органелл в клетке, нарушению митоза, затруднению экзоцитоза секреторных включений, изменениям в формировании и подвижности ресничек и жгутиков. Например, изменение активности динеина блокирует движения ресничек дыхательных путей и половых органов, ведет к застою.

Полимеризация тесно связана с содержанием ионов кальция. Она может быть блокирована колхицином. Недостаток АТФ также вызывает снижение подвижности ресничек и жгутиков. Нарушение функции кинезиновых и динеиновых комплексов в нейротубулах (микротрубочках нейронов) сопровождается грубыми нарушениями в транспорте веществ вдоль аксона. Снижается регенерация поврежденных отростков нейронов.

Патология формирования тонких филаментов сопровождается повреждением микроворсинок и стереоцилий, ленточных десмосом. Снижается подвижность клеток, нарушаются процессы фагоцитоза и циклоза, возникает дискинезия выводящих путей экзокринных желез. Деполимеризация тонких микрофиламентов (миофиламентов) мышечной ткани характеризуется блокадой сокращений. Подобные явления наблюдают при невозможности взаимодействия тонких и толстых миофиламентов и микромиозиновых комплексов, например, когда нарушаются кальциевый обмен, образование, транспорт и использование АТФ, изменяется строение тропомиозинов и др.

Нарушения синтеза и распределения промежуточных филаментов сопровождаются деформациями клеток и ядер, значительно снижается механическая прочность клеток и их соединений. Снижение прочности адгезивных соединений связано с десмосомальными и полудесмосомальными контактами.

Кроме изменений в полимеризации самих микротрубочек, промежуточных филаментов и тонких микрофиламентов может возникнуть дезинтеграция их связи со структурными белками цитомембран.

Нарушения функций плазматической мембраны . Под действием патогенных факторов в течение длительного времени может повышаться ионная проницаемость клеточной мембраны. Нарушается функция калий-натриевых, кальций-магниевых и других насосов. В результате происходит перераспределение ионов внутри и вне клетки. Накапливаются ионы натрия, кальция и хлора и уменьшается количество калия в клетке. Процесс нередко сопровождается уменьшением количества АТФ либо блокированием АТФаз. Проникновение ионов Na + и Cl — вызывает повышение внутриклеточного давления и набухание вплоть до разрыва цитомембраны. Изменения проницаемости мембран характерны для многочисленных повреждений, в том числе гипоксии, действия животных и растительных ядов, ионизирующих излучений, блокаторов АТФаз и др.

Кроме повреждения транспорта ионов происходит снижение всасывания глюкозы (при сахарном диабете), отдельных аминокислот и др.

Наряду с блокадой активного транспорта при повреждениях нередко изменяются процессы эндоцитоза и экзоцитоза. Дисфункция эндоцитоза, не связанного с белками-рецепторами, обусловлена повреждением белков слияния. Это приводит к изменению транспортных процессов в эпителиальной ткани, в том числе в эндотелии кровеносных сосудов.

Микроэндоцитоз, опосредуемый через рецепторы, нарушается в связи с изменением рецепторного аппарата мембраны клетки. Это может быть также обусловлено нарушением образования вторых посредников, патологией прикрепления клатринов к внутренней поверхности мембраны клетки.

При фагоцитозе бактерий, крупных частей клетки и др. может нарушаться взаимодействие фагоцитируемой частицы с рецепторами на поверхности клетки, изменяются содержание кальция и полимеризация тонких микрофиламентов и микротрубочек.

Снижение спонтанной секреции вызывает повреждения комплекса Гольджи, что ведет к недостаточному восстановлению цитомембраны. Регулируемая секреция патологически меняется за счет дисфункции гормонального и нервного контроля, патологической деполяризации или гиперполяризации мембраны, избыточной или недостаточной активации клетки через вторые посредники, патологии микротрубочек и уровня внутриклеточного кальция. Изменения сопровождаются нарушением выведения секреторных продуктов, в том числе гормонов, ферментов, слизи, медиаторов при синаптической передаче в нервной ткани и т. д.

Одним из ведущих повреждающих механизмов клеточных мембран является каскад свободно-радикальных перекисных реакций липидов, в конечном итоге сопровождающийся накоплением амфифильных соединений с резким усилением проницаемости цитомембраны и активизацией аутолитических процессов.

При изменении рецепторного аппарата клетки повышается или снижается количество рецепторов к гормонам или другим биологически активным веществам, уменьшается аффинность (специфичность) рецепторов. Причины нарушений могут быть первичными (генетически обусловленными) или вторичными (приобретенными). Примерами причин вторичных нарушений служат аутоиммунный процесс с разрушением рецепторов антителами, компенсаторное уменьшение чувствительности к гормонам при повышении их активности, например увеличение содержания инсулина в сочетании со снижением чувствительности к нему при ожирении и инсулиннезависимом сахарном диабете.

Увеличение количества рецепторов наблюдают при денервации, например, в зонах, лишенных симпатического нервного контроля, повышается содержание рецепторов к адреналину и норадреналину. Уменьшение содержания рецепторов приводит к развитию заболеваний, связанных с относительной недостаточностью гормона, которые не корректируются введением даже повышенных доз этого биологически активного вещества (инсулиннезависимый сахарный диабет, карликовость).

Иногда наблюдаются изменения в передаче сигнала от рецепторов внутрь клетки. Возбуждение, вызванное сигналом, может передаваться в глубь клетки несколькими способами: при взаимодействии рецептора с интегральным G-белком, активирующим образование сигнальных молекул цитоплазмы (вторых посредников) - цАМФ, ионов кальция, цГМФ; во втором случае рецептор связан с тирозинкиназами, которые запускают Ras-каскад, в результате чего образуется инозитол-1,4,5-трифосфат, диацилглицерол. Вторые посредники влияют на цепь каталитических реакций, в том числе транскрипцию. Изменение активности вторых посредников и образующих их белков может привести к снижению или усилению влияния гормональных факторов.

Нарушение аффинности (сродства) рецепторов к молекулам адгезии и агрегации приводит к снижению прилипания клеток к себе подобным и/или межклеточным структурам. Нарушение «узнавания» рецептором гликокаликса родственных клеток сопровождается патологической подвижностью клеток с возможностью их миграции в организме. Такой способностью обладают злокачественные опухолевые клетки, что ведет к формированию метастазов и вызывает инфильтративный рост. В то же время снижение адгезивных свойств селектинов и интегринов лейкоцитов приводит к синдрому так называемых «ленивых» лейкоцитов, когда они не могут проникнуть из сосуда в зону воспаления.

Патология белков цитомембран, выполняющих опорно-каркасную функцию, нарушает форму клеток и их механическую прочность. Например, анемии с нарушением формы эритроцитов обусловлены повреждением связи опорных белков с микротрубочками и тонкими микрофиламентами.

Снижение активности белков-ферментов цитомембраны столбчатых энтероцитов резко затрудняет процессы пристеночного пищеварения в тонкой кишке. Повреждение белков-ферментов гликокаликса тироцитов блокирует образование гормонов щитовидной железой, а у фибробластов подавляет синтез коллагеновых и эластических волокон.

Нарушения образования главных комплексов гистосовместимости первого класса сопровождаются активизацией аутоиммунных процессов. Некоторые патогенные микроорганизмы выделяют фермент нейраминидазу, обнажающий антигенные структуры на мембранах клеток организма, что приводит к уничтожению таких клеток лейкоцитами. Изменяются главные комплексы гистосовместимости и при опухолевом перерождении клеток.

Нарушение функции механических контактов клетки (десмосом, полудесмоеом, ленточных десмосом) приводит к снижению прочности таких соединений, к разрывам контактов клеток с соседними структурами даже при незначительных механических воздействиях.

Патология щелевидных контактов нарушает единство физиологических реакций в тканях. Так, в гладкой и сердечной мышечной тканях подавляется проведение импульса, в эпителиальной ткани происходит десинхронизация процессов регенерации и секреторной активности клеток.

Структурно-функциональные изменения плотных контактов приводят к диффузии веществ из полостей в межклеточное вещество эпителия и далее в соединительную ткань и наоборот, что нарушает гомеостаз.

Патология функции синапсов сопровождается блокадой или усилением синаптической передачи с нарушениями функций нервной системы.

Микроскопически на ранних этапах повреждения чаще происходит округление (выравнивание формы и границ) клеток и потеря числа клеточных выростов и микроворсинок. В дальнейшем, наоборот, появляются на поверхности различные выросты и мелкие пузырьки, в норме не встречающиеся. Часто поверхность клетки как бы вскипает.

Таким образом, в приведенных в разделе материалах рассмотрены только некоторые из узловых моментов возможных нарушений. Они не могут охватить весь спектр подобных явлений, но позволяют наметить те направления изменений, которые происходят в клетке под влиянием повреждающих факторов. Каждое из изменений происходит не отдельно, а тянет за собой цепь структурно-функциональных нарушений во взаимодействующих между собой макромолекулярных комплексах, органеллах, частях клетки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .