Время отвердевания. Время застывания бетона: теория полимеризации

Представляем вашему вниманию видеоурок по теме «Плавление и отвердевание кристаллических тел. График плавления и отвердевания». Здесь мы начинаем изучение новой обширной темы: «Агрегатные состояния вещества». Здесь мы дадим определение понятию агрегатного состояния, рассмотрим примеры таких тел. И рассмотрим, как называются и что представляют собой процессы, при которых вещества переходят из одного агрегатного состояния в другое. Более подробно остановимся на процессах плавления и кристаллизации твердых тел и составим температурный график подобных процессов.

Тема: Агрегатные состояния вещества

Урок: Плавление и отвердевание кристаллических тел. График плавления и отвердевания

Аморфные тела - тела, в которых атомы и молекулы упорядочены определенным образом только вблизи рассматриваемого участка. Такой тип расположения частиц называют ближним порядком.

Жидкости - вещества без упорядоченной структуры расположения частиц, молекулы в жидкостях движутся свободнее, а межмолекулярные силы слабее, чем у твердых тел. Важнейшее свойство: сохраняют объем, легко меняют форму и принимают из-за свойства текучести форму сосуда, в котором находятся (рис. 3).

Рис. 3. Жидкость принимает форму колбы ()

Газы - вещества, молекулы которых слабо взаимодействуют между собой и движутся хаотически, часто сталкиваясь друг с другом. Важнейшее свойство: не сохраняют объем и форму и занимают весь объем сосуда, в котором находятся.

Важно знать и понимать, каким образом осуществляются переходы между агрегатными состояниями веществ. Схему таких переходов изобразим на рисунке 4.

1 - плавление;

2 - отвердевание (кристаллизация);

3 - парообразование: испарение или кипение;

4 - конденсация;

5 - сублимация (возгонка) - переход из твердого состояния в газообразное, минуя жидкое;

6 - десублимация - переход из газообразного состояния в твердое, минуя жидкое.

На сегодняшнем уроке мы уделим внимание таким процессам, как плавление и отвердевание кристаллических тел. Начать рассмотрение таких процессов удобно на примере наиболее часто встречающихся в природе плавления и кристаллизации льда.

Если поместить лед в колбу и начать его нагревать с помощью горелки (рис. 5), то можно будет заметить, что его температура начнет повышаться, пока не достигнет температуры плавления (0 o C), затем начнется процесс плавления, но при этом температура льда повышаться не будет, и только после окончания процесса плавления всего льда температура образовавшейся воды начнет повышаться.

Рис. 5. Плавление льда.

Определение. Плавление - процесс перехода из твердого состояния в жидкое. Этот процесс происходит при постоянной температуре.

Температура, при которой происходит плавление вещества, называется температурой плавления и является измеренной величиной для многих твердых веществ, а потому табличной величиной. Например, температура плавления льда равна 0 o C, а температура плавления золота 1100 o C.

Обратный плавлению процесс - процесс кристаллизации - также удобно рассматривать на примере замерзания воды и превращения ее в лед. Если взять пробирку с водой и начать ее охлаждать, то сначала будет наблюдаться уменьшение температуры воды, пока она не достигнет 0 o C, а затем ее замерзание при постоянной температуре (рис. 6), и уже после полного замерзания дальнейшее охлаждение образовавшегося льда.

Рис. 6. Замерзание воды.

Если описанные процессы рассматривать с точки зрения внутренней энергии тела, то при плавлении вся полученная телом энергия расходуется на разрушение кристаллической решетки и ослабление межмолекулярных связей, таким образом, энергия расходуется не на изменение температуры, а на изменение структуры вещества и взаимодействия его частиц. В процессе же кристаллизации обмен энергиями происходит в обратном направлении: тело отдает тепло окружающей среде, а его внутренняя энергия уменьшается, что приводит к уменьшению подвижности частиц, увеличению взаимодействия между ними и отвердеванию тела.

Полезно уметь графически изобразить процессы плавления и кристаллизации вещества на графике (рис. 7).

По осям графика расположены: ось абсцисс - время, ось ординат - температура вещества. В качестве исследуемого вещества примем лед при отрицательной температуре, т. е. такой, который при получении тепла не начнет сразу плавиться, а будет нагревать до температуры плавления. Опишем участки на графике, которые представляют собой отдельные тепловые процессы:

Начальное состояние - a: нагревание льда до температуры плавления 0 o C;

a - b: процесс плавления при постоянной температуре 0 o C;

b - точка с некоторой температурой: нагревание образовавшейся из льда воды до некоторой температуры;

Точка с некоторой температурой - c: охлаждение воды до температуры замерзания 0 o C;

c - d: процесс замерзания воды при постоянной температуре 0 o C;

d - конечное состояние: остывание льда до некоторой отрицательной температуры.

Сегодня мы рассмотрели различные агрегатные состояния вещества и уделили внимание таким процессам, как плавление и кристаллизация. На следующем уроке мы обсудим главную характеристику процесса плавления и отвердевания веществ - удельную теплоту плавления.

1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. /Под ред. Орлова В. А., Ройзена И. И. Физика 8. - М.: Мнемозина.

2. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.

3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. - М.: Просвещение.

1. Словари и энциклопедии на Академике ().

2. Курс лекций «Молекулярная физика и термодинамика» ().

3. Региональная коллекция Тверской области ().

1. Стр. 31: вопросы №1-4; стр. 32: вопросы №1-3; стр. 33: упражнения №1-5; стр. 34: вопросы №1-3. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.

2. В кастрюле с водой плавает кусок льда. При каком условии он не будет таять?

3. При плавлении температура кристаллического тела остается неизменной. А что происходит со внутренней энергией тела?

4.Опытные садовники в случае весенних ночных заморозков во время цветения плодовых деревьев вечером обильно поливают ветки водой. Почему это значительно уменьшает риск потери будущего урожая?

Агрегатные состояния вещества. Плавление и отвердевание кристаллических тел. График плавления и отвердевания

Цель: агрегатные состояния вещества, расположение, характер движения и взаимодействия молекул в разных агрегатных состояниях, кристаллические тела, плавление и отвердевание кристаллических тел, температура плавления, график плавления и отвердевания кристаллических тел (на примере льда)

Демонстрации. 1.Модель кристаллической решетки.

2.Плавление и отвердевание кристаллических тел (на примере льда).

3.Образование кристаллов.

Этап

Время, мин

Приемы и методы

1.Постановка задач урока. Вводная беседа.

2. Изучение нового материала.

3.Закрепление

материала

4.Физкультминутка

4.Проверка усвоения темы

4.Подведение итогов

Сообщение учителя

Фронтальная беседа, демонстрационный эксперимент, групповая работа, индивидуальное задание

Групповое решение качественных и графических задач, фронтальный опрос.

Тестирование

Выставление оценок, записи на доске и в дневниках

1.Организация класса

2.Изучение темы

I . Контрольные вопросы:

    Что называют агрегатным состоянием вещества?

    Для чего надо изучать переход вещества из одного агрегатного состояния в другое?

    Что называется плавлением?

II . Объяснение нового материала:

Постигая законы природы и используя, их в своей практической деятельности человек становится все более могущественным. Канули в вечность времена мистического страха перед природой. Современный человек все в большей мере приобретает власть над силами природы, все шире использует эти силы, богатства природы для ускорения научно - технического прогресса.

Сегодня мы с вами будем постигать новые законы природы, новые понятия, которые позволят нам лучше узнать окружающий нас мир, а значит и правильно их использовать на благо человека.

I .Агрегатные состояния вещества

Фронтальная беседа по вопросам:

    Что называется веществом?

    Что вы знаете о веществе?

Демонстрация : модели кристаллических решеток

    Какие состояния вещества вам известны?

    Охарактеризуйте каждое состояние вещества.

    Объясните свойства вещества в твердом,жидком, газообразном состояниях.

Вывод: вещество может находиться в трех состояниях -жидком, твердом и газообразном, их называют агрегатными состояниями вещества.

II .Для чего нужно изучать агрегатные состояния вещества

Удивительное вещество вода

Вода обладает многими удивительными свойствами, резко отличающими ее от всех других жидкостей. И если бы вода вела себя как положено, то Земля стала бы просто неузнаваемой

Все тела при нагревании расширяются, при охлаждении сжимаются. Все, кроме, воды. При температуре от 0 до + 4 0 С вода при охлаждении расширяется, при нагревании сжимается. При + 4 0 с вода имеет наибольшую плотность, равную 1000 кг\м 3 .При более низкой и более высокой температуре плотность воды несколько меньше. Благодаря этому осенью и зимой в глубоких водоемах конвекция происходит своеобразно. Вода, охлаждаясь сверху, опускается вниз, на дно только до тех пор, пока ее температура не снизится до + 4 0 С. Тогда в стоячем водоеме устанавливается распределение температуры. Чтобы нагреть 1 г воды на 1 0 с ей необходимо отдать в 5, 10, 30 раз большее количество теплоты, чем 1 г любого другого вещества.

Аномалия воды - отклонение от нормальных свойств тел – до конца не выяснены, но главная причина их известна: строение молекулы воды. Атомы водорода присоединяются к атому кислорода не симметрично с боков, а тяготеют к одной стороне. Ученые считают, что если бы не эта несимметричность, то свойства воды резко изменились бы. Например, вода отвердевала бы при -90 0 С и кипела бы при – 70 0 С.

III .Плавление и отвердевание

Под голубыми небесами

Великолепными коврами

Блестя на солнце снег лежит

Прозрачный лес один чернеет

И ель сквозь иней зеленеет

И речка подо льдом блестит

А.С.Пушкин

Неотвратимо снег идет

Как маятника мерный ход

Снег падает, кружится, вьется

Ложится мерно на дома

Украдкой проникает в закрома

Летит в машины в ямы и в колодцы

Э.Верхарга

А я все гладил снег рукой

А он все звездами отсвечивал

На свете нет тоски такой

Которой снег бы не излечивал

Он весь как музыка. Он весть

Его безудержность бескрайня

Ах, этот снег.… Не зря в нем есть

Всегда какая – нибудь тайна…

С.Г.Островой

    О каком веществе идет речь в этих четверостишиях?

    В каком состоянии находится вещество?

V .Самостоятельная работа учащихся в парах

2.Изучить таблицу «Температура плавления некоторых веществ»

3.Рассмотреть график на рис 16

4. Взаимоопрос в парах (каждой паре раздаются вопросы на карточках ):

    Что называется плавлением?

    Что называется температурой плавления?

    Что называется отвердеванием или кристаллизацией?

    Какое из веществ указанных в таблице имеет наиболее высокую температуру плавления? Какова температура его отвердевания?

    Какие из веществ, указанных в таблице отвердевают при температуре ниже 0 0 С?

    При какой температуре отвердевает спирт?

    Что происходит с водой в отрезке АВ, ВС, CD , DE , TF , FK .

    Как по графику можно судить об изменении температуры вещества при нагревании и охлаждении?

    Какие участки графика соответствуют плавлению и отвердеванию льда?

    Почему эти участки параллельны оси времени?

VII . Демонстрация: Плавление и отвердевание кристаллических тел (на примере льда).

Наблюдение явления

VIII .Фронтальная беседа по предлагаемым вопросам.

Выводы:

    Плавлением называется переход вещества из твердого состояния в жидкое;

    Отвердеванием или кристаллизацией называется переход вещества из жидкого в твердое.

    Температурой плавления называется температура при которой вещество плавится.

    Вещество отвердевает при той же температуре, что и плавится.

    Во время процессов плавления и отвердевания температура не меняется.

Физкультминутка

Упражнения для снятия утомления с плечевого пояса, рук и туловища.

VII .Закрепление.

1.Решение качественных задач

    Почему для измерения температуры наружного воздуха в холодных районах применяют термометры со спиртом, а не с ртутью?

    Какие металлы можно расплавить в медном котелке?

    Что произойдет с оловом, если его бросить в расплавленный свинец?

    Что произойдет с куском свинца, если его бросить в жидкое олово при температуре плавления?

    Что произойдет с ртутью, если ее вылить в жидкий азот?

2.Решение графических задач

    Опишите процессы, происходящие с веществом, по нижеприведенному графику. Какое это вещество?

40

    Опишите по нижеприведенному графику процессы, происходящие с алюминием. На каком участке происходит уменьшение внутренней энергии твердого тела?

800

600

400

200

200

400

    На рисунки изображены графики зависимости температуры от времени двух тел одинаковой массы. У какого из тел выше температура плавления? У какого тела больше удельная теплота плавления? Одинаковы ли удельные теплоемкости тел?

VIII .Сообщение учащегося «Горячий лед»

Стр.152 «Занимательная физика» Книга 2, Перельман

IX .Проверка усвоения темы- тест

1.Агрегатные состояния вещества отличаются

А. Молекулами, входящими в состав вещества

Б. Расположением молекул вещества

В.Расположением молекул, характером движения и взаимодействием молекул

2.Плавление вещества- это

А. Переход вещества из жидкого состояния в твердое

Б. Переход вещества из газообразного в жидкое

В.Переход вещества из твердого состояния в жидкое

3.Температурой плавления называется

А.Температура, при которой вещество плавится

Б. Температура вещества

В.Температура выше 100 0 С

4. Во время процесса плавления температура

А.Остается постоянной

Б. Увеличивается

В. Уменьшается

5.В алюминиевой ложке можно расплавить

А. Серебро

Б.Цинк

В.Медь

На дом. §12-14, упр.7(3-5), повторить план ответа о физическом явлении.

Подавляющее большинство самодеятельных строителей считают по не совсем понятным причинам, что за окончанием укладки в опалубку либо завершением работ по выравниванию стяжки процесс бетонирования законченным. Между тем, время схватывания бетона значительно больше, чем время на его укладку. Бетонная смесь – живой организм, в котором по окончании укладочных работ происходят сложные и протяженные по времени физико-химические процессы, связанные с превращением раствора в надежную основу строительных конструкций.

Прежде чем производить распалубку и наслаждаться результатами приложенных усилий, нужно создать максимально комфортные условия для созревания и оптимальной гидратации бетона, без которой невозможно достижение требуемой марочной прочности монолита. Строительные нормы и правила содержат выверенные данные, которые приведены в таблицах времени схватывания бетона.

Температура бетона, С Срок твердения бетона, сутки
1 2 3 4 5 6 7 14 28
Прочность бетона, %
0 20 26 31 35 39 43 46 61 77
10 27 35 42 48 51 55 59 75 91
15 30 39 45 52 55 60 64 81 100
20 34 43 50 56 60 65 69 87 -
30 39 51 57 64 68 73 76 95 -
40 48 57 64 70 75 80 85 - -
50 49 62 70 78 84 90 95 - -
60 54 68 78 86 92 98 - - -
70 60 73 84 96 - - - - -
80 65 80 92 - - - - - -

Уход за бетоном после заливки: основные цели и методы

Процессы, связанные с проведением мероприятий, которые предшествуют распалубке, содержат несколько технологических приемов. Цель выполнения таких мероприятий одна – создание железобетонной конструкции, максимально соответствующей по своим физико-техническим свойствам параметрам, которые заложены в проект. Основополагающим мероприятием, безусловно, является уход за уложенной бетонной смесью.

Уход заключается в выполнении комплекса мероприятий, которые призваны создать условия, оптимально соответствующие происходящим в смеси физико-химическим преобразованиям, во время набора прочности бетона. Неукоснительное следование предписанным технологией ухода требованиям позволяет:

  • свести к минимальным значениям усадочные явления в бетонном составе пластического происхождения;
  • обеспечить прочностные и временные значения бетонного сооружения в параметрах, предусмотренных проектом;
  • предохранить бетонную смесь от температурных дисфункций;
  • препятствовать прелиминарному отвердению уложенной бетонной смеси;
  • предохранить сооружение от различного происхождения воздействий механического или химического генеза.

Процедуры ухода за свежеобустроенной железобетонной конструкцией следует начинать непосредственно по окончании укладки смеси и продолжаться до тех пор, пока ей не будет достигнуто 70 % прочности, предусмотренной проектом. Это предусматривается требованиями, изложенными в пункте 2.66 СНиПа 3.03.01. Распалубку можно провести и в более ранние сроки, если это обосновано сложившимися параметрическими обстоятельствами.

После окончания укладки бетонной смеси следует провести осмотр опалубочной конструкции. Цель такого осмотра – выяснение сохранения геометрических параметров, выявление протечек жидкой составляющей смеси и механических повреждений элементов опалубки. С учетом того, сколько времени застывает бетон, точнее сказать – с учетом времени его схватывания, проявившиеся дефекты необходимо устранить. Среднее время, за которое может схватиться свежеуложенная бетонная смесь, составляет около 2-х часов, в зависимости от температурных параметров и марки портландцемента. Конструкцию необходимо предохранять от любого механического воздействия в виде ударов, сотрясений, вибрационных проявлений столько, сколько времени сохнет бетон.

Стадии набора прочности бетонной конструкцией

Бетонная смесь любого состава имеет свойство схватываться и получать необходимые прочностные характеристики при прохождении двух стадий. Соблюдение оптимального соотношения временных, температурных параметров и значений приведенной влажности имеет определяющее значение для получения монолитной конструкции с запланированными свойствами.

Стадийные характеристики процесса заключаются в:

  • схватывании бетонного состава. Время предварительного схватывания не велико и составляет ориентировочно 24 часа при средней температуре +20 Со. Начальные процессы схватывания происходят в течение первых двух часов по затворении смеси водой. Окончательное схватывание происходит, как правило, в течение 3–4 часов. Применение специализированных полимерных добавок позволяет, при определенных условиях, период начального схватывания смеси сократить до нескольких десятков минут, но целесообразность такого экстремального метода бывает оправданной по большей части при поточном производстве железобетонных элементов промышленных конструкций;
  • отвердевании бетона. Бетон набирает прочность, когда в его массе протекает процесс гидратации, иными словами – удаление воды из бетонной смеси. Часть воды при прохождении этого процесса удаляется при ее испарении, другая часть связывается на молекулярном уровне с составляющими смесь химическими соединениями. Гидратация может происходить при неукоснительном соблюдении температурно-влажностного режима отвердевания. Нарушение условий приводит к сбоям в прохождении физико-химических процессов гидратации и, соответственно, к ухудшению качества железобетонной конструкции.

Зависимость времени набора прочности от марки бетонной смеси

Логически понятно, что применение для приготовления бетонных составов разных марок портландцемента приводит к изменению времени твердения бетона. Чем выше марка портландцемента, тем меньше время для набора прочности требуется смеси. Но при использовании любой марки, будь это марка 300 либо 400, не следует прикладывать к железобетонной конструкции значительные механического характера нагрузки раньше, чем по истечении 28 дней. Хотя время схватывания бетона по таблицам, приведенным в строительных правилах, может быть и меньше. Особенно это касается бетонов, приготовленных с применением портландцемента марки 400.

Марка цемента Время твердения различных марок бетона
за 14 суток за 28 суток
100 150 100 150 200 250 300 400
300 0.65 0.6 0.75 0.65 0.55 0.5 0.4 -
400 0.75 0.65 0.85 0.75 0.63 0.56 0.5 0.4
500 0.85 0.75 - 0.85 0.71 0.64 0.6 0.46
600 0.9 0.8 - 0.95 0.75 0.68 0.63 0.5

Проектирование, строительство и окончательное обустройство любых построек с применением железобетонных компонентов требует внимательного отношения ко всем стадиям возведения. Но от тщательности изготовления бетонных составляющих, в особенности фундаментов, в значительной степени зависит долговечность и надежность всего сооружения. Соблюдение сроков, за какое время схватываются бетонные смеси и составы, можно с уверенностью назвать основой успеха в любом строительном процессе.

Многим начинающим строителям знакомо неизбежное появление дефектов на поверхности бетона: мелкие трещины, сколы, быстрый выход из строя покрытия. Причина не только в несоблюдении правил бетонирования, или в создании цементного раствора с неправильным соотношением компонентов, чаще проблема кроется в отсутствии ухода за бетоном на этапе застывания.

Время схватывания цементного раствора зависит от многочисленных факторов: температуры, влажности, ветра, воздействия прямых солнечных лучей и т. п. Важно на этапе застывания увлажнять бетон, это позволит приобрести максимальную прочность и целостность покрытия.

Время схватывания цементного раствора зависит от многочисленных факторов

Общие сведения

В зависимости от того, при какой температуре застывает цемент, отличается и период затвердевания. Наилучшая температура - 20°С. В идеальных условиях процесс занимает 28 суток. В жарких регионах или в холодные периоды года обеспечить данную температуру сложно или невозможно.

Зимой бетонирование требуется по ряду причин:

  • закладывание фундамента под здание, которое располагается на осыпающихся грунтах. В тёплый период года невозможно выполнить строительство;
  • зимой производители делают скидки на цемент. Порой сэкономить на материале можно действительно неплохо, но хранение до наступления тепла является нежелательным решением, ведь качество цемента снизится. Заливание бетоном внутренних поверхностей зданий и даже наружные работы зимой вполне уместны при наличии скидок;
  • частные работы по бетонированию;
  • зимой больше свободного времени и проще взять отпуск.

Недостатком работы в холодное время является сложность копания траншеи и необходимость оборудования места обогрева для рабочих. С учётом дополнительных затрат экономия наступает не всегда.

Особенности заливки бетона при низких температурах

Время застывания цементного раствора зависит от температуры. При низкой температуре время существенно увеличивается. В строительной сфере принято называть погоду холодной при снижении уровня термометра в среднем до отметки 4°С. Чтобы успешно использовать цемент в холода, важно предпринять защитные меры для предотвращения замерзания раствора.


Особенности заливки бетона при низких температурах

Схватывание бетона в условиях низких температур протекает несколько иначе, наибольшее значение на итоговый результат оказывает температура воды. Чем теплее жидкость, тем быстрее протекает процесс. В идеале для зимы стоит обеспечить показатель термометра на уровне 7-15°. Даже в условиях подогрева воды окружающий холод замедляет скорость гидратации цементного раствора. Приобретение прочности и схватывание занимает больше времени.

Для расчёта сколько застывает цемент важно учесть закономерность, что падение температуры на 10° приводит к снижению скорости отвердения в 2 раза. Важно проводить расчёты, так как преждевременное снятие опалубки или эксплуатация бетона может привести к разрушению материала. Если окружающая температура опустится до -4°С и отсутствуют добавки, утеплители или подогрев, раствор кристаллизуется, а процесс гидратации цемента остановится. Конечное изделие утратит 50% прочности. Время застывания увеличится в 6-8 раз.

Несмотря на то, что следует определять, сколько времени застывает бетон, и приходится контролировать процесс твердения, есть обратная сторона – возможность улучшить качество результата. Снижение температуры увеличивает прочность бетона, но только до критической отметки -4°С, хотя процедура и требует больше времени.

Факторы, влияющие на застывание

На этапе планирования работ с цементом важным фактором, влияющим на конечный результат, является скорость обезвоживания бетона. На процесс гидратации влияют многочисленные факторы, точнее определить сколько застывает цементный раствор можно с учётом факторов:

  • окружающая среда. Учитывают влажность и температуру воздуха. При высокой сухости и жаре бетон застынет всего за 2-3 дня, но ожидаемую прочность он не успеет приобрести. В противном случае он останется мокрым на протяжении 40 дней или больше;

Факторы, влияющие на застывание бетона
  • плотность заливки. По мере уплотнения цемента снижается скорость отдачи влаги, это улучшает процедуру гидратации, но несколько уменьшает скорость. Уплотнять материал лучше с помощью виброплиты, но подойдёт и прокалывание раствора вручную. Если состав плотный, его будет сложно обрабатывать после застывания. На этапе финишной отделки или прокладывания коммуникаций в уплотнённом бетоне приходится использовать алмазное бурение, так как победитовые свёрла быстро подвергаются износу;
  • состав раствора. Фактор достаточно важен, ведь уровень пористости наполнителя влияет на темпы обезвоживания. Медленнее застывает раствор с керамзитом и шлаком, в наполнителе скапливается влага, а отдают её медленно. С гравием или песком состав высыхает быстрее;
  • наличие добавок. Снизить или ускорить этапы затвердевания раствора помогают специальные добавки с влагоудерживающими свойствами: раствор мыла, бетонит, противоморозные присадки. Приобретение подобных компонентов увеличивает сумму работ, но многие присадки упрощают работу с составом и увеличивают качество результата;
  • материал опалубки. Время застывания цемента зависит от склонности впитывать или сохранять влагу опалубкой. Влияние на скорость затвердения оказывают пористые стенки: нешлифованные доски, пластик со сквозными отверстиями или неплотным монтажом. Лучший способ выполнить строительные работы в срок и с сохранением технических характеристик бетона – применять щиты из металла или поверх дощатой опалубки устанавливать полиэтиленовую плёнку.

На то, сколько застывает цементный раствор, также оказывает влияние тип основания. Сухая земля быстро впитывает влагу. При затвердении бетона на солнце время затвердения увеличивается в разы, чтобы предотвратить получение низкой прочности материала следует постоянно увлажнять поверхность и затенять участок.

Искусственное увеличение скорости застывания

Время затвердевания цементного раствора в холодное время сильно увеличивается, но сроки все равно остаются ограниченными. Чтобы ускорить процедуру, разработаны различные методики.


BITUMAST Противоморозная добавка в бетон

В современном строительстве время высыхания можно ускорить с помощью:

  • внесение присадок;
  • электроподогрев;
  • повышение необходимых пропорций цемента.

Использование модификаторов

Самый простой способ выполнить работы в срок даже зимой – применять модификаторы. При внесении определенной пропорции наступает сокращение сроков гидратации, при использовании некоторых присадок происходит твердение даже в -30°С.

Условно добавки, влияющие на скорость затвердения, разделяются на несколько групп:

  • тип С – ускорители высыхания;
  • тип Е – водозамещающие добавки с ускоренным застыванием.

Калькулятор застывания фундамента и отзывы показывают максимальную эффективность при внесении в раствор хлорида калия. Материал расходится экономно, так как его массовая доля составляет до 2%.

Если применять смеси отвердения бетона типа С, стоит позаботиться о подогреве, так как они не защищают от замерзания.


Пластификаторы и добавки для бетона

Рекомендуется позаботиться о прокладке коммуникации в фундаменте или стяжке заранее, иначе потребуется бурение отверстий. Проделывание коммуникационных отверстий после застывания приведёт к необходимости в специальном инструменте и . Процедура достаточно трудоёмкая и снижает прочность конструкции.

Подогрев бетона

Преимущественно для подогрева состава применяют особый кабель, который преобразует электрический ток в тепло. Методика обеспечивает наиболее естественный путь застывания. Важным фактором является необходимость следования инструкции по монтажу провода. Способ защищает от кристаллизации жидкости, также существуют инструменты (фен, сварочный аппарат) и теплоизоляция для защиты от замерзания.

Увеличение дозировки цемента

Повышение концентрации цемента применяется исключительно при небольшом уменьшении температуры. Увеличение дозировки важно выполнять в небольшом количестве, иначе качество и долговечность значительно снизятся.

Бетон – многофункциональный состав, из которого можно возвести любые конструкции. В современном строительстве используются самые разные составы цемента и способы его обработки:

  • первым этапом строительства здания является составление схемы и расчёт нагрузки. Прочность и зависит от различных характеристик. Важно соблюсти все правила кладки для получения расчётной прочности;

  • в частном строительстве распространены . Они улучшают теплоизоляционные свойства, снижают нагрузку на фундамент, позволяют легко и быстро укладывать стены. Их можно изготавливать самостоятельно. формируются по аналогичному алгоритму с блоками;
  • во влажных помещениях есть необходимость в дополнительной защите бетона. Используется специальная , так как стандартные смеси не покрывают бетонную стену полностью;
  • одной из самых востребованных и частых процедур работы с раствором является стяжка. Пропорции цемента и песка для стяжки отличаются в зависимости от поставленной задачи.

Вывод

Бетонирование в условиях жары или холода требует принятия особых мер. Если создать идеальные условия для гидратации бетона, он приобретёт высокую прочность, будет способен выдерживать значительные несущие нагрузки и приобретёт устойчивость к разрушению. Главная задача строителя – предотвратить замерзание или преждевременное высыхание раствора.

Передавая телу энергию, можно перевести его из твёрдого состояния в жидкое (например, расплавить лёд), а из жидкого - в газообразное (превратить воду в пар).

Если газ отдаёт энергию, то может превратиться в жидкость, а жидкость, отдавая энергию, может превратиться в твёрдое тело.

    Переход вещества из твёрдого состояния в жидкое называют плавлением.

Чтобы расплавить тело, нужно сначала нагреть его до определённой температуры.

    Температуру, при которой вещество плавится, называют температурой плавления вещества.

Одни кристаллические тела плавятся при низкой температуре, другие - при высокой. Лёд, например, можно расплавить, внеся его в комнату. Кусок олова или свинца - в стальной ложке, нагревая её на спиртовке. Железо плавят в специальных печах, где достигается высокая температура.

Из таблицы 3 видно, в каких широких пределах лежат температуры плавления различных веществ.

Таблица 3.
Температура плавления некоторых веществ (при нормальном атмосферном давлении)

Например, температура плавления металла цезия 29 °С, т. е. его можно расплавить в тёплой воде.

    Переход вещества из жидкого состояния в твёрдое называют отвердеванием или кристаллизацией.

Чтобы началась кристаллизация расплавленного тела, оно должно остыть до определённой температуры.

    Температура, при которой вещество отвердевает (кристаллизуется), называют температурой отвердевания или кристаллизации.

Опыт показывает, что вещества отвердевают при той же температуре, при которой плавятся. Например, вода кристаллизуется (а лед плавится) при 0 °С, чистое железо плавится и кристаллизуется при температуре 1539°С.

Вопросы

  1. Какой процесс называют плавлением?
  2. Какой процесс называют отвердеванием?
  3. Как называют температуру, при которой вещество плавится и отвердевает?

Упражнение 11

  1. Будет ли плавиться свинец, если его бросить в расплавленное олово? Ответ обоснуйте.
  2. Можно ли в алюминиевом сосуде расплавить цинк? Ответ обоснуйте.
  3. Почему для измерения температуры наружного воздуха в холодных районах применяют термометры со спиртом, а не с ртутью?

Задание

  1. Какой из металлов, приведённых в таблице 3, самый легкоплавкий; самый тугоплавкий?
  2. Сравните температуры плавления твёрдой ртути и твёрдого спирта. У какого из этих веществ температура плавления выше?