Введение в общую химию. Химическая связь и строение молекул


Интерактивный список. Начните вводить искомое слово.

СВЯЗЬ

СВЯЗЬ, -и, о связи, в связи и в связи, ж.

1. (в связи). Отношение взаимной зависимости, обусловленности, общности между чем-н. С. теории и практики. Причинная с.

2. (в связи). Тесное общение между кем-чем-н. Дружеская с. Укреплять международные связи.

3. (в связи и в связи). Любовные отношения, сожительство. Любовная с. Быть в связи с кем-н.

4. мн. ч. Близкое знакомство с кем-н., обеспечивающее поддержку, покровительство, выгоду. Иметь связи во влиятельных кругах. Большие связи.

5. (в связи). Сообщение с кем-чем-н., а также средства, к-рые дают возможность сноситься, сообщаться. Космическая с. Живая с. (через связных). Воздушная с. Междугородная телефонная с.

6. (в связи). Отрасль народного хозяйства, относящаяся к средствам такого сообщения (почта, телеграф, телефон, радио), а также совокупности таких средств, сосредоточенные в соответствующих учреждениях. Служба связи. Работники связи.

7. (в связи), обычно мн. ч. Часть строительной конструкции, соединяющая её основные элементы (спец. ).

В связи с чем , предлог с тв. п. вследствие чего-н., из-за чего-н., будучи обусловлено чем-н. Опоздание в связи с заносами.

В связи с тем что , союз по той причине что, на основании того что. Осведомился, в связи с тем что нужны точные сведения.

СВЯЗЬ это, что такое СВЯЗЬ , значение слова СВЯЗЬ , синонимы к СВЯЗЬ , происхождение (этимология) СВЯЗЬ , СВЯЗЬ ударение, формы слова в других словарях

+ СВЯЗЬ - Т.Ф. Ефремова Новый словарь русского языка. Толково- словообразовательный

СВЯЗЬ это

связь

ж.

а) Взаимные отношения между кем-л., чем-л.

б) Общность, взаимопонимание, внутреннее единство.

а) Общение с кем-л.

б) Любовные отношения, сожительство.

3) Отношения между кем-л., создающие взаимную зависимость, обусловленность.

4) Последовательность, согласованность, стройность (в мыслях, изложении и т.п.).

5) Возможность общения с кем-л., чем-л. на расстоянии.

6) Средства, с помощью которых осуществляется общение на расстоянии.

7) Совокупность учреждений, обеспечивающих средствами общения на расстоянии (телеграф, почта, телефон, радио).

а) Соединение, скрепление чего-л.

б) Сцепление, взаимное притяжение (молекул, атомов, электронов и т.п.).

+ СВЯЗЬ - Современный толковый словарь изд. «Большая Советская Энциклопедия»

СВЯЗЬ это

СВЯЗЬ

1) передача и прием информации с помощью различных технических средств. В соответствии с характером применяемых средств связи разделяется на почтовую (см. Почта) и электрическую (см. Электросвязь).2) Отрасль народного хозяйства, обеспечивающая передачу и прием почтовых, телефонных, телеграфных, радио- и др. сообщений. В СССР в 1986 насчитывалось 92 тыс. предприятий связи; отправлено 8,5 млрд. писем, 50,3 млрд. газет и журналов, 248 млн. посылок, 449 млн. телеграмм; количество телефонных аппаратов на общей телефонной сети составило 33,0 млн. С сер. 60-х гг. в СССР внедряется Единая автоматизированная сеть связи (ЕАСС).3) Связь военная обеспечивается Войсками связи.---в философии - взаимообусловленность существования явлений, разделенных в пространстве и во времени. Связи классифицируют по объектам познания, по формам детерминизма (однозначные, вероятностные и корреляционные), по их силе (жесткие и корпускулярные), по характеру результата, который дает связь (связь порождения, связь преобразования), по направлению действия (прямые и обратные), по типу процессов, которые определяет данная связь (связь функционирования, связь развития, связь управления), по содержанию, которое является предметом связи (связь, обеспечивающая перенос вещества, энергии или информации).

+ СВЯЗЬ - Малый академический словарь русского языка

СВЯЗЬ это

связь

И, предл. о связи, в связи и в связи, ж.

Взаимные отношения между кем-, чем-л.

Связь между промышленностью и сельским хозяйством. Связь науки и производства. Торговые связи. Хозяйственная связь районов. Родственные связи.

Взаимная зависимость, обусловленность.

Причинная связь.

Мы хотим только сказать, --- что все науки находятся между собою в тесной связи и что прочные приобретения одной науки должны не оставаться бесплодны для других. Чернышевский, Грамматические заметки. В. Классовского.

Связь творчества Петрова-Водкина с традициями древнерусской живописи очевидна.

Л. Мочалов, Неповторимость таланта.

Согласованность, стройность, последовательность (в соединении мыслей, в изложении, речи).

Мысли мешались в его голове, и слова не имели никакой связи. Пушкин, Дубровский.

В мыслях недостаточно последовательности, и, когда я излагаю их на бумаге, мне всякий раз кажется, что я утратил чутье к их органической связи. Чехов, Скучная история.

Близость с кем-л., внутреннее единство.

Между ними выросла та невидимая связь, которая не высказывалась словами, а только чувствовалась. Мамин-Сибиряк, Приваловские миллионы.

Когда писатель глубоко чувствует свою кровную связь с народом - это дает красоту и силу ему. М. Горький, Письмо Д. Н. Мамину-Сибиряку, 18 окт. 1912.

Общение (дружеское или деловое), сношения с кем-, чем-л.

Поддерживать связь с кем-л. Завязать связи в литературном мире.

{Иван Иванович и Иван Никифорович} прервали все связи, между тем как прежде были известны за самых неразлучных друзей! Гоголь, Повесть о том, как поссорился Иван Иванович с Иваном Никифоровичем.

Были установлены связи Дроздова с одною из революционных организаций, произведены аресты. М. Горький, Рассказ о герое.

Любовные отношения; сожительство.

{Матвей} вступил в связь с одной мещанкой и имел от нее ребенка. Чехов, Убийство.

{Софья:} Какое ты имеешь право говорить о моей неверности?.. У тебя были десятки связей. М. Горький, Последние.

|| мн. ч. (связи, -ей).

Близкое знакомство с влиятельными лицами, могущее обеспечить поддержку, покровительство.

Добрый Б. решился пристроить отчима. Он уже тогда имел большие связи и немедленно стал просить и рекомендовать своего бедного товарища. Достоевский, Неточка Незванова.

Благодаря связям покойного отца-инженера я был зачислен в Михайловское училище. Перцов, Из автобиографии.

Сообщение, сношение с кем-, чем-л. с помощью различных средств.

В каюте при помощи переговорной трубы командир мог держать связь с мостиком, а по телефону - с любым отделением корабля. Новиков-Прибой, Капитан 1-го ранга.

Морозка был в числе конных, выделенных для связи со взводами во время боя. Фадеев, Разгром.

Теперь оставался только один путь связи - через Волгу. Симонов, Дни и ночи.

|| Тех.

Передача и прием информации при помощи специальных средств.

5. обычно с определением.

Средства, с помощью которых осуществляются сношения и передача информации.

Радиотелефонная связь. Телеграфная связь. Диспетчерская связь.

Ночью связисты артиллерийского полка сумели провести к танку телефонную связь. В. Кожевников, Семь дней.

Совокупность учреждений, обслуживающих техническими средствами общение на расстоянии (телеграф, почта, телефон, радио ).

Работники связи.

|| Воен.

Служба, обеспечивающая общение между воинскими подразделениями (с помощью телефона, радио , посыльных и т. п.).

Начальником разведки и связи стал Архип Хромков. Марков, Строговы.

Из штаба армии прибыл офицер связи со срочным пакетом. Поповкин, Семья Рубанюк.

Соединение, скрепление чего-л.

Связь камней и кирпича с помощью глины.

В Троицком соборе для связи углов он вводит в кладку здания железо. Пилявский, Работы В. П. Стасова в Ленинграде.

Сцепление, взаимное притяжение (молекул, атомов, электронов и т. п.).

Связь электронов с ядром.

Приспособление, связывающее, скрепляющее части какого-л. здания или сооружения; скрепа.

Это была огромная декоративная мастерская - купол, переплетенный наверху железными стропилами и связями. А. Н. Толстой, Егор Абозов.логичность, связность, непрерывность, складность, последовательность, стройность, взаимодействие, соединение, сочленение, конкатенация, сцепление, коммуникация, средство сообщения, сношение, общение, контакт, ассоциация, касательство, отношение, зависимость, привязка, узы, роман, соединительное звено, союз, причинность, паблик рилейшнз, томба, интимные отношения, интрига, соотношение, дуплекс, пуповина, сношения, бондинг, религия, сожительство, паратаксис, связующая нить, преемственность, спайка, взаимосвязанность, корреляция, обусловленность, связишка, родство, замазка, скрепа, амуры, интрижка, синапс, контекст, любовь, нить, почта, сообщение, квадруплекс. Ant. разрозненность

Почему атомы могут соединяться друг с другом и образовывать молекулы? Какова причина возможного существования веществ, в состав которых входят атомы совершенно разных химических элементов? Это глобальные вопросы, затрагивающие основополагающие понятия современной физической и химической науки. Ответить на них можно, имея представление об электронном строении атомов и зная характеристики ковалентной связи, являющейся базовой основой для большинства классов соединений. Цель нашей статьи - ознакомиться с механизмами образования различных типов химической связи и соединений, содержащих их в своих молекулах.

Электронное строение атома

Электронейтральные частицы материи, являющиеся ее структурными элементами, имеют строение, зеркально отражающее устройство Солнечной системы. Как планеты вращаются вокруг центральной звезды - Солнца, так и электроны в атоме движутся вокруг положительно заряженного ядра. Для характеристики ковалентной связи значимыми будут электроны, располагающиеся на последнем энергетическом уровне и наиболее удаленные от ядра. Так как их связь с центром собственного атома минимальна, они способны легко притягиваться ядрами других атомов. Это очень важно для возникновения межатомных взаимодействий, приводящих к образованию молекул. Почему же именно молекулярная форма является основным видом существования материи на нашей планете? Давайте разберемся.

Основное свойство атомов

Способность электронейтральных частиц к взаимодействию, приводящая к выигрышу в энергии, - их важнейшая особенность. Ведь в обычных условиях молекулярное состояние вещества более стойкое, чем атомное. Основные положения современного атомно-молекулярного учения объясняют как принципы образования молекул, так и характеристики ковалентной связи. Напомним, что на атома может находиться от 1 до 8 электронов, в последнем случае слой будет завершенным, а значит, очень устойчивым. Такую структуру внешнего уровня имеют атомы благородных газов: аргона, криптона, ксенона - инертных элементов, завершающих каждый период в системе Д. И. Менделеева. Исключением здесь будет гелий, у которого на последнем уровне находится не 8, а только 2 электрона. Причина проста: в первом периоде - всего два элемента, атомы которых имеют единственный электронный слой. У всех остальных химических элементов на последнем, незавершенном слое располагается от 1 до 7 электронов. В процессе взаимодействия между собой атомы будут стремиться заполниться электронами до октета и восстановить конфигурацию атома инертного элемента. Такое состояние может быть достигнуто двумя путями: потерей собственных или принятием чужих отрицательно заряженных частиц. Эти формы взаимодействия объясняют, как определить, какая связь - ионная или ковалентная - возникнет между вступающими в реакцию атомами.

Механизмы образования стойкой электронной конфигурации

Представим, что в реакцию соединения вступают два простых вещества: металлический натрий и газообразный хлор. Образуется вещество класса солей - хлорид натрия. Оно имеет ионный тип химической связи. Почему и как она возникла? Снова обратимся к строению атомов исходных веществ. У натрия на последнем слое находится всего один электрон, слабо связанный с ядром вследствие большого радиуса атома. Энергия ионизации у всех щелочных металлов, к которым относится и натрий, мала. Поэтому электрон внешнего уровня покидает энергетический уровень, притягивается ядром атома хлора и остается в его пространстве. Это создает прецедент перехода атома Cl в форму отрицательно заряженного иона. Теперь мы имеем дело уже не с электронейтральными частицами, а с заряженными катионами натрия и анионами хлора. В соответствии с законами физики между ними возникают силы электростатического притяжения, и соединение образует ионную кристаллическую решетку. Рассмотренный нами механизм формирования ионного типа химической связи поможет более четко выяснить специфику и основные характеристики ковалентной связи.

Общие электронные пары

Если ионная связь возникает между атомами элементов, сильно отличающихся электроотрицательностью, т. е. металлами и неметаллами, то ковалентный тип появляется при взаимодействии атомов как одного и того же, так и разных неметаллических элементов. В первом случае принято говорить о неполярном, а в другом - о полярном виде ковалентной связи. Механизм их образования общий: каждый из атомов частично отдает в общее пользование электроны, которые объединяются попарно. А вот пространственное расположение электронных пар относительно ядер атомов будет неодинаковым. По этому признаку и различают типы ковалентной связи - неполярную и полярную. Наиболее часто в химических соединениях, состоящих из атомов неметаллических элементов, встречаются пары, состоящие из электронов с противоположными спинами, т. е. вращающихся вокруг своих ядер в противоположные стороны. Так как движение отрицательно заряженных частиц в пространстве ведет к образованию электронных облаков, что в конечном счете заканчивается взаимным их перекрыванием. Каковы последствия этого процесса для атомов и к чему он приводит?

Физические свойства ковалентной связи

Оказывается, что между центрами двух взаимодействующих атомов возникает двухэлектронное облако, имеющее большую плотность. Усиливаются электростатические силы притяжения между самим отрицательно заряженным облаком и ядрами атомов. Высвобождается порция энергии и уменьшаются расстояния между атомными центрами. Например, в начале образования молекулы H 2 расстояние между ядрами водородных атомов составляет 1,06 А, после перекрывания облаков и образования общей электронной пары - 0,74 А. Примеры ковалентной связи, формирующейся по вышеописанному механизму, можно встретить как среди простых, так и среди сложных неорганических веществ. Ее главная отличительная черта - наличие общих электронных пар. В итоге после возникновения ковалентной связи между атомами, например, водорода каждый из них приобретает электронную конфигурацию инертного гелия, и образовавшаяся молекула имеет устойчивую структуру.

Пространственная форма молекулы

Еще одно очень важное физическое свойство ковалентной связи - это направленность. Он нее зависит пространственная конфигурация молекулы вещества. Например, при перекрывании двух электронов со сферической формой облака вид молекулы линейный (хлороводород или бромоводород). Форма молекул воды, у которой гибридизируются s- и p- облака - угловая, а очень прочные частицы газообразного азота имеют вид пирамиды.

Строение простых веществ - неметаллов

Выяснив, какую связь называют ковалентной, какие признаки она имеет, теперь самое время разобраться с ее разновидностями. Если во взаимодействие между собой вступают атомы одного и того же неметалла - хлора, азота, кислорода, брома и т. д., то формируются соответствующие простые вещества. Их общие электронные пары располагаются на одинаковом расстоянии от центров атомов, не смещаясь. Для соединений с неполярным видом ковалентной связи присущи такие признаки: низкие температуры кипения и плавления, нерастворимость в воде, диэлектрические свойства. Далее мы выясним, для каких веществ характерна ковалентная связь, при которой происходит смещение общих электронных пар.

Электроотрицательность и ее влияние на тип химической связи

Свойство определенного элемента притягивать к себе электроны от атома другого элемента в химии называют электроотрицательностью. Шкалу величин данного параметра, предложенную Л. Полингом, можно встретить во всех учебниках по неорганической и общей химии. Наибольшее его значение - 4,1 эВ - имеет фтор, меньшее - другие активные неметаллы, а наименьший показатель характерен для щелочных металлов. Если между собой реагируют элементы, отличающиеся своей электроотрицательностью, то неизбежно один, более активный, будет притягивать к своему ядру отрицательно заряженные частицы атома более пассивного элемента. Таким образом, физические свойства ковалентной связи напрямую зависят от способности элементов отдавать электроны в общее пользование. Образующиеся при этом общие пары уже не располагаются симметрично относительно ядер, а смещаются в сторону более активного элемента.

Особенности соединений с полярной связью

К веществам, в молекулах которых совместные электронные пары несимметричны относительно ядер атомов, можно отнести галогеноводороды, кислоты, соединения халькогенов с водородом и кислотные оксиды. Это сульфатная и нитратная кислоты, оксиды серы и фосфора, сероводород, и т. д. Например, молекула хлороводорода содержит одну общую электронную пару, образованную неспаренными электронами водорода и хлора. Она смещена ближе к центру атома Cl, являющегося более электроотрицательным элементом. Все вещества с полярной связью в водных растворах диссоциируют на ионы и проводят электрический ток. Соединения, имеющие которых мы привели, имеют также более высокие температуры плавления и кипения по сравнению с простыми веществами-неметаллами.

Способы разрыва химических связей

В органической химии предельных углеводородов с галогенами идут по радикальному механизму. Смесь метана и хлора на свету и при обычной температуре реагирует таким образом, что молекулы хлора начинают расщепляться на частицы, несущие неспаренные электроны. Иначе говоря, наблюдается разрушение общей электронной пары и образование очень активных радикалов -Cl. Они способны так воздействовать на молекулы метана, что у тех происходит разрыв ковалентной связи между атомами углерода и водорода. Образуется активная частица -H, а свободная валентность атома углерода принимает радикал хлора, и первым продуктом реакции становится хлорметан. Такой механизм расщепления молекул называется гомолитическим. Если же общая пара электронов полностью переходит во владение к одному из атомов, то говорят о гетеролитическом механизме, характерном для реакций, проходящих в водных растворах. В этом случае полярные молекулы воды будут усиливать скорость разрушения химических связей растворяемого соединения.

Двойные и тройные связи

Подавляющее большинство органических веществ и некоторые неорганические соединения содержат в своих молекулах не одну, а несколько общих электронных пар. Кратность ковалентной связи уменьшает расстояние между атомами и увеличивает стабильность соединений. О них принято говорить как о химически стойких. Например, в молекуле азота имеется три пары электронов, они обозначаются в структурной формуле тремя черточками и обусловливают ее прочность. Простое вещество азот химически инертен и может реагировать с другими соединениями, например с водородом, кислородом или металлами только при нагревании или повышенном давлении, а также в присутствии катализаторов.

Двойные и тройные связи присущи таким классам органических соединений, как непредельные диеновые углеводороды, а также вещества ряда этилена или ацетилена. Кратные связи обусловливают основные химические свойства: реакции присоединения и полимеризации, идущие в местах их разрыва.

В нашей статье мы дали общую характеристику ковалентной связи и рассмотрели ее основные виды.

Исключительно большое значение в биологических системах имеет особый тип межмолекулярного взаимодействия, водородная связь, которая осуществляется между атомами водорода, химически соединенными в одной молекуле, и электроотрицательными атомами F, О, N, Cl, S, принадлежащими другой молекуле. Понятие «водородная связь» было введено впервые в 1920 г. Латимером и Родебушем для объяснения свойств воды и других ассоциированных веществ. Рассмотрим отдельные примеры такой связи.

В п. 5.2 речь шла о молекуле пиридина и было отмечено, что атом азота в ней имеет два внешних электрона с антипараллельными спинами, не участвующих в образовании химической связи. Эта «свободная» или «неподеленная» пара электронов будет притягивать протон и образовывать с ним химическую связь. При этом молекула пиридина перейдет в ионное состояние . Если имеются две пиридиновые молекулы, то они будут соревноваться в захвате протона, в результате образуется соединение

в котором тремя точками обозначен новый тип межмолекулярного взаимодействия, называемый водородной связью. В этом соединении протон находится ближе к левому атому азота. С таким же успехом протон может оказаться ближе к правому атому азота. Следовательно, потенциальная энергия протона как функция расстояния до правого или левого атома азота при фиксированном расстоянии между ними (примерно ) должна изображаться кривой с двумя минимумами. Квантовомеханический расчет такой кривой, проведенный Рейном и Харрисом , приведен на рис. 4.

Квантовомеханическую теорию водородной связи А-Н...В на основе донорно-акцепторных взаимодействий одним из первых развивал Н. Д. Соколов . Причиной связи является вызываемое протоном перераспределение электронной плотности между атомами А и В. Кратко говорят, что происходит обобществление «неподеленной пары» электронов. В действительности же в

Рис. 4. Потенциальная кривая энергии протона в зависимости от расстояния между атомами азота двух пиридиновых молекул.

образовании потенциальных кривых водородной связи участвуют и другие электроны молекул, хотя и в меньшей степени (см. ниже).

Энергия типичных водородных связей варьирует в пределах от 0,13 до 0,31 эВ. Она на порядок меньше энергии химических ковалентных связей, но на порядок больше энергии вандерваальсовых взаимодействий.

Наиболее простым межмолекулярным комплексом, образованным водородной связью, является комплекс Этот комплекс имеет линейную структуру. Расстояние между атомами фтора 2,79 А. Расртояние между атомами в полярной молекуле равно 0,92 А. При образовании комплекса выделяется энергия около 0,26 эВ.

С помощью водородной связи образуется димер воды с энергией связи около 0,2 эВ. Эта энергия равна примерно двадцатой части энергии ковалентной связи ОН. Расстояние меж двумя атомами кислорода в комплексе равно примерно 2,76 А. Оно меньше сумш вандерваальсовых радиусов атомов кислорода, равной 3,06 А. На рис. 5 указано рассчитанное в работе изменение электронной плотности атомов воды при образовании комплекса. Эти расчеты подтверждают, что при образовании комплекса изменяется распределение электронной плотности вокруг всех атомов реагирующих молекул.

О роли всех атомов в установлении водородных связей в комплексе можно судить также по взаимному влиянию двух водородных связей между азотистыми основаниями, тимином и аденином, входящими в состав двойной спирали молекулы ДНК . Расположение минимумов потенциальных кривых протонов в двух связях отражает их взаимную корреляцию (рис. 6).

Наряду с обычной или слабой водородной связью, образованной водородом с выделением энергии, меньшей 1 эВ, и характеризуемой потенциальной энергией с двумя минимумами, водород образует некоторые комплексы с большим энерговыделением. Например, при создании комплекса выделяется энергия, равная 2,17 эВ. Такой тип взаимодействия называют сильной

Рис. 5. Изменение электронной плотности около атомов в комплексе, образованном водородными связями из двух молекул воды.

Заряд электрона принят равным единице. В свободной молекула воды заряд 10 электронов распределен так, что около атома кислорода находится заряд 8,64, а у атомов водорода

Рис. 6. Водородные связи междк азотистыми основаниями: а - тимином (Т) и аденипом (А), входящими в состав молекул ДНН (стрелками указаны места присоединения оснований к цепям молекул сахара и фоофорной кислоты); - потенциальные кривые водородных связей; О - кислород; - водород; - углерод; - азот.

водородной связью. При образовании комплексов с сильной водородной связью значительно изменяется конфигурация молекул. Потенциальная энергия протона имеет один сравнительно плоский минимум, расположенный примерно в центре связи. Поэтому протон легко смещается. Легкая смещаемость протона под влиянием внешнего поля обусловливает большое значение поляризуемости комплекса.

Сильная водородная свягь не проявляется в биологических системах. Что же касается слабой водородной связи, то она имеет решающее значение во всех живых организмах.

Исключительно большая роль водородной связи в биологических системах обусловлена прежде всего тем, что она определяет вторичную структуру белков, имеющую основное значение для всех жизненных процессов; с помощью водородных свявей удерживаются пары оснований в молекулах ДНК и обеспечивается их устойчивая структура в виде двойных спиралей, и, наконец, водородная связь ответственна за весьма необычные свойвтва воды, важные для существования живых систем.

Вода является одним из основных компонентов всего живого. Организмы животных почти на две трети состоят из воды. Человеческий эмбрион в течение первого месяца содержит около 93% воды. Бег воды не было бы жигни. Вода служит основной средой, в которой происходят биохимические реакции в клетке. Она образует жидкую часть крови и лимфы. Вода необходима для пищеварения, так как расщепление углеводов, белков и жиров происходит с присоединением молекул воды. Вода выделяется в клетке при построении белков из аминокислот. Физиологические

Рис. 7. Структура льда. Каждая молекула воды соединена водородными связями (три точки) с четырьмя молекулами воды, находящимися в вершинах тетраэдра.

Рис. 8. Водородная связь в димере и «линейная» водородная связь

свойства биополимеров и многих надмолекулярных структур (в частности, клеточных мембран) весьма существенно зависят от их взаимодействия с водой.

Рассмотрим некоторые свойства воды. Каждая молекула воды обладает большим электрическим моментом. Вследствие высокой электроотрицательности атомов кислорода молекула воды может образовывать водородные связи с одной, двумя, тремя и четырьмя другими молекулами воды. В результате получаются сравнительно устойчивые димеры и другие полимерные комплексы. В среднем каждая молекула в жидкой воде имеет четыре соседа. Состав и структура межмолекулярных комплексов зависят от температуры воды.

Наиболее упорядоченную структуру имеет кристаллическая вода (лед) при нормальном давлении и температуре ниже нуля градусов Цельсия. Кристаллы ее имеют гексагональную структуру. В элементарную ячейку входят четыре молекулы воды. Структура ячейки изображена на рис. 7. Вокруг центрального атома кислорода располдженьг в вершинах правильного тетраэдра на расстояниях 2,76 А четыре других атома кислорода. Каждая молекула воды соединена с соседними четырьмя водородными связями. При этом угол между ОН-связями в молекуле приближается к «тетраэдрическому» значению 109,1°. В свободной молекуле он равен приблизительно 105°.

Структура льда напоминает структуру алмаза. Однако в алмазе между атомами углерода действуют химические силы. Кристалл алмаза - это большая молекула. Кристаллы льда относятся к молекулярным кристаллам. Молекулы в кристалле сохраняют в основном свою индивидуальность и удерживают друг друга водородными связями.

Рис. 9. Экспериментальное значение смещения инфракрасной частоты колебаний в воде при образовании водородной связи под углом .

Решетка льда весьма рыхлая и содержит много «пустот», так как число ближайших молекул воды у каждой молекулы (координационное число) равно только четырем. При расплавлении решетка льда частично разрушается, одновременно заполняются некоторые пустоты и плотность воды становится больше плотности льда. Это одна из основных аномалий воды. При дальнейшем нагревании до 4° С процесс уплотнения продолжается. При нагревании выше 4° С возрастает амплитуда ангармонических колебаний, уменьшается число ассоциированных молекул в комплексах (роях) и плотность воды уменьшается. По грубым оценкам в состав роев при комнатной температуре входит около 240 молекул, при 37° С - около 150, при 45 и 100° С соответственно 120 и 40.

Вклад водородной связи в полную энергию межмолекулярных взаимодействий (11,6 ккал/моль) составляет около 69%. Вследствие водородных связей температуры плавления (0° С) и кипения (100° С) воды существенно отличаются от температур плавления и кипения других молекулярных жидкостей, между молекулами которых действуют только вандерваальсовы силы. Например, для метана эти значения соответственно равны-186 и -161° С.

В жидкой воде наряду с остатками тетраэдрической структуры льда имеются линейные и циклические димеры и другие комплексы, содержащие 3, 4, 5, 6 и более молекул. Существенно, что в зависимости от числа молекул в цикле меняется угол Р, образованный между связью ОН и водородной связью (рис. 8). В димере этот угол равен 110°, в пятичленном кольце 10°, а в шестичленном кольце и гексагональной структуре льда он близок к пулю («линейная» водородная связь).

Оказывается, что наибольшая энергия одной водородной связи соответствует углу Энергия водородной связи пропорциональна (правило Бадгера - Бауера) смещению частоты валентных инфракрасных колебаний группы ОН в молекуле воды но сравнению с частотой колебаний свободной молекулы. Максимальное смещение наблюдается в случае «линейной» водородной связи. В молекуле воды в этом случае частота уменьшается на , а частота - на . На рис. 9 приведен график зависимости отношения смещения

частоты к максимальному смещению от угла . Следовательно, этот график характеризует также зависимость энергии водородной связи от угла . Такая зависимость является проявлением кооперативного характера водородной связи.

Предпринимались многократные попытки теоретического вычисления структуры и свойств воды при учете водородных связей и других межмолекулярных взаимодействий. Согласно статистической физике термодинамические свойства системы взаимодействующих молекул, находящейся в объеме V при постоянном давлении Р в статистическом равновесии с термостатом, определяются через статистическую сумму состояний

Здесь V - объем системы; к - постоянная Больцмана; Т - абсолютная температура; означает, что надо взять след от статистического оператора, стоящего в фигурных скобках, где Н - квантовый оператор энергии всей системы. Этот оператор равен сумме операторов кинетической энергии поступательного и вращательного движений молекул и оператора потенциальной энергии взаимодействия всех молекул.

Если известны все собственные функции и полный спектр энергий Е, оператора Н, то (6.2) принимает вид

Тогда свободная энергия Гиббса G системы при давлении Р и температуре Т определяется простым выражением

Зная гиббсовскую свободную энергию, находим полную энергию энтропию объем .

К сожалению, вследствие сложного характера взаимодействий между молекулами в воде (анизотропные дипольные молекулы, водородные связи, приводящие к комплексам переменного состава, в которых энергия водородных связей сама зависит от состава и структуры комплекса и т. д.) мы не можем записать оператор Н в явном виде. Поэтому приходится прибегать к очень большим упрощениям. Так, Намети и Шерага вычислили статистическую сумму, исходя того, что можно учесть только пять энергетических состояний молекул в комплексах соответствии

с числом образуемых ими водородных связей (0, 1, 2, 3, 4) с соседними молекулами. С помощью этой модели им даже удалось показать, что плотность воды максимальна при 4° С. Однако в дальнейшем сами авторы подвергли критике развитую ими теорию, так как она не описывала многие экспериментальные факты. С другими попытками теоретических расчетов структуры воды можно познакомиться в обзоре Бен-Наима и Стиллингера .

Вследствие дипольного характера молекул воды и большой роли водородных связей исключительно важную роль играют и взаимодействия молекул воды с ионами и нейтральными молекулами в живых организмах. Взаимодействия, приводящие к гидратации ионов и особому типу взаимодействий, получивших название гидрофобных и гидрофильных, будут рассмотрены в следующих разделах этой главы»

Говоря о роли воды в биологических явлениях, следует отметить, что все живые организмы весьма успешно приспособились к определенной величине водородной связи между молекулами . Об этом свидетельствует тот факт, что замена молекулами тяжелой воды оказывает весьма существенное влияние на биологические системы . Уменьшается растворимость полярных молекул, уменьшается скорость прохождения нервного импульса, нарушается работа ферментов, замедляется рост бактерий и грибов и т. д. Возможно, все эти явления связаны с тем, что водородное взаимодействие между молекулами сильнее, чем взаимодействие между молекулами На большее значение водородной связи между молекулами тяжелой воды указывает бояее высокая температура ее плавления (3,8° С) и большая теплота плавления (1,51 ккал/моль). Для обычной воды теплота плавления 1,43 ккал/моль.

Химическая связь

Все взаимодействия, приводящие к объединению химических частиц (атомов, молекул, ионов и т. п.) в вещества делятся на химические связи и межмолекулярные связи (межмолекулярные взаимодействия).

Химические связи - связи непосредственно между атомами. Различают ионную, ковалентную и металлическую связь.

Межмолекулярные связи - связи между молекулами. Это водородная связь, ион-дипольная связь (за счет образования этой связи происходит, например, образование гидратной оболочки ионов), диполь-дипольная (за счет образования этой связи объединяются молекулы полярных веществ, например, в жидком ацетоне) и др.

Ионная связь - химическая связь, образованная за счет электростатического притяжения разноименно заряженных ионов. В бинарных соединениях (соединениях двух элементов) она образуется в случае, когда размеры связываемых атомов сильно отличаются друг от друга: одни атомы большие, другие маленькие - то есть одни атомы легко отдают электроны, а другие склонны их принимать (обычно это атомы элементов, образующих типичные металлы и атомы элементов, образующих типичные неметаллы); электроотрицательность таких атомов также сильно отличается.
Ионная связь ненаправленная и не насыщаемая.

Ковалентная связь - химическая связь, возникающая за счет образования общей пары электронов. Ковалентная связь образуется между маленькими атомами с одинаковыми или близкими радиусами. Необходимое условие - наличие неспаренных электронов у обоих связываемых атомов (обменный механизм) или неподеленной пары у одного атома и свободной орбитали у другого (донорно-акцепторный механизм):

а) H· + ·H H:H H-H H 2 (одна общая пара электронов; H одновалентен);
б) NN N 2 (три общие пары электронов; N трехвалентен);
в) H-F HF (одна общая пара электронов; H и F одновалентны);
г) NH 4 + (четыре общих пары электронов; N четырехвалентен)
    По числу общих электронных пар ковалентные связи делятся на
  • простые (одинарные) - одна пара электронов,
  • двойные - две пары электронов,
  • тройные - три пары электронов.

Двойные и тройные связи называются кратными связями.

По распределению электронной плотности между связываемыми атомами ковалентная связь делится на неполярную и полярную . Неполярная связь образуется между одинаковыми атомами, полярная - между разными.

Электроотрицательность - мера способности атома в веществе притягивать к себе общие электронные пары.
Электронные пары полярных связей смещены в сторону более электроотрицательных элементов. Само смещение электронных пар называется поляризацией связи. Образующиеся при поляризации частичные (избыточные) заряды обозначаются + и -, например: .

По характеру перекрывания электронных облаков ("орбиталей") ковалентная связь делится на -связь и -связь.
-Связь образуется за счет прямого перекрывания электронных облаков (вдоль прямой, соединяющей ядра атомов), -связь - за счет бокового перекрывания (по обе стороны от плоскости, в которой лежат ядра атомов).

Ковалентная связь обладает направленностью и насыщаемостью, а также поляризуемостью.
Для объяснения и прогнозирования взаимного направления ковалентных связей используют модель гибридизации.

Гибридизация атомных орбиталей и электронных облаков - предполагаемое выравнивание атомных орбиталей по энергии, а электронных облаков по форме при образовании атомом ковалентных связей.
Чаще всего встречается три типа гибридизации: sp -, sp 2 и sp 3 -гибридизация. Например:
sp -гибридизация - в молекулах C 2 H 2 , BeH 2 , CO 2 (линейное строение);
sp 2 -гибридизация - в молекулах C 2 H 4 , C 6 H 6 , BF 3 (плоская треугольная форма);
sp 3 -гибридизация - в молекулах CCl 4 , SiH 4 , CH 4 (тетраэдрическая форма); NH 3 (пирамидальная форма); H 2 O (уголковая форма).

Металлическая связь - химическая связь, образованная за счет обобществления валентных электронов всех связываемых атомов металлического кристалла. В результате образуется единое электронное облако кристалла, которое легко смещается под действием электрического напряжения - отсюда высокая электропроводность металлов.
Металлическая связь образуется в том случае, когда связываемые атомы большие и потому склонны отдавать электроны. Простые вещества с металлической связью - металлы (Na, Ba, Al, Cu, Au и др.), сложные вещества - интерметаллические соединения (AlCr 2 , Ca 2 Cu, Cu 5 Zn 8 и др.).
Металлическая связь не обладает направленностью насыщаемостью. Она сохраняется и в расплавах металлов.

Водородная связь - межмолекулярная связь, образованная за счет частичного акцептирования пары электронов высокоэлектроотрицательнного атома атомом водорода с большим положительным частичным зарядом. Образуется в тех случаях, когда в одной молекуле есть атом с неподеленной парой электронов и высокой электроотрицательностью (F, O, N), а в другой - атом водорода, связанный сильно полярной связью с одним из таких атомов. Примеры межмолекулярных водородных связей:

H—O—H ··· OH 2 , H—O—H ··· NH 3 , H—O—H ··· F—H, H—F ··· H—F.

Внутримолекулярные водородные связи существуют в молекулах полипептидов, нуклеиновых кислот, белков и др.

Мерой прочности любой связи является энергия связи.
Энергия связи - энергия необходимая для разрыва данной химической связи в 1 моле вещества. Единица измерений - 1 кДж/моль.

Энергии ионной и ковалентной связи - одного порядка, энергия водородной связи - на порядок меньше.

Энергия ковалентной связи зависит от размеров связываемых атомов (длины связи) и от кратности связи. Чем меньше атомы и больше кратность связи, тем больше ее энергия.

Энергия ионной связи зависит от размеров ионов и от их зарядов. Чем меньше ионы и больше их заряд, тем больше энергия связи.

Строение вещества

По типу строения все вещества делятся на молекулярные и немолекулярные . Среди органических веществ преобладают молекулярные вещества, среди неорганических - немолекулярные.

По типу химической связи вещества делятся на вещества с ковалентными связями, вещества с ионными связями (ионные вещества) и вещества с металлическими связями (металлы).

Вещества с ковалентными связями могут быть молекулярными и немолекулярными. Это существенно сказывается на их физических свойствах.

Молекулярные вещества состоят из молекул, связанных между собой слабыми межмолекулярными связями, к ним относятся: H 2 , O 2 , N 2 , Cl 2 , Br 2 , S 8 , P 4 и другие простые вещества; CO 2 , SO 2 , N 2 O 5 , H 2 O, HCl, HF, NH 3 , CH 4 , C 2 H 5 OH, органические полимеры и многие другие вещества. Эти вещества не обладают высокой прочностью, имеют низкие температуры плавления и кипения, не проводят электрический ток, некоторые из них растворимы в воде или других растворителях.

Немолекулярные вещества с ковалентными связями или атомные вещества (алмаз, графит, Si, SiO 2 , SiC и другие) образуют очень прочные кристаллы (исключение - слоистый графит), они нерастворимы в воде и других растворителях, имеют высокие температуры плавления и кипения, большинство из них не проводит электрический ток (кроме графита, обладающего электропроводностью, и полупроводников - кремния, германия и пр.)

Все ионные вещества, естественно, являются немолекулярными. Это твердые тугоплавкие вещества, растворы и расплавы которых проводят электрический ток. Многие из них растворимы в воде. Следует отметить, что в ионных веществах, кристаллы которых состоят из сложных ионов, есть и ковалентные связи, например: (Na +) 2 (SO 4 2-), (K +) 3 (PO 4 3-), (NH 4 +)(NO 3-) и т. д. Ковалентными связями связаны атомы, из которых состоят сложные ионы.

Металлы (вещества с металлической связью) очень разнообразны по своим физическим свойствам. Среди них есть жидкость (Hg), очень мягкие (Na, K) и очень твердые металлы (W, Nb).

Характерными физическими свойствами металлов является их высокая электропроводность (в отличие от полупроводников, уменьшается с ростом температуры), высокая теплоемкость и пластичность (у чистых металлов).

В твердом состоянии почти все вещества состоят из кристаллов. По типу строения и типу химической связи кристаллы ("кристаллические решетки") делят на атомные (кристаллы немолекулярных веществ с ковалентной связью), ионные (кристаллы ионных веществ), молекулярные (кристаллы молекулярных веществ с ковалентной связью) и металлические (кристаллы веществ с металлической связью).

Задачи и тесты по теме "Тема 10. "Химическая связь. Строение вещества"."

  • Типы химической связи - Строение вещества 8–9 класс

    Уроков: 2 Заданий: 9 Тестов: 1

  • Заданий: 9 Тестов: 1

Проработав эту тему, Вы должны усвоить следующие понятия: химическая связь, межмолекулярная связь, ионная связь, ковалентная связь, металлическая связь, водородная связь, простая связь, двойная связь, тройная связь, кратные связи, неполярная связь, полярная связь, электроотрицательность, поляризация связи, - и -связь, гибридизация атомных орбиталей, энергия связи.

Вы должны знать классификацию веществ по типу строения, по типу химической связи, зависимость свойств простых и сложных веществ от типа химической связи и типа "кристаллической решетки".

Вы должны уметь: определять тип химической связи в веществе, тип гибридизации, составлять схемы образования связей, пользоваться понятием электроотрицательность, рядом электроотрицательностей; знать как меняется электроотрицательность у химических элементов одного периода, и одной группы для определения полярности ковалентной связи.

Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


Рекомендованная литература:
  • О. С. Габриелян, Г. Г. Лысова. Химия 11 кл. М., Дрофа, 2002.
  • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.