Золотое сечение и гармония. Шкруднев Фёдор Дмитриевич - Золотое сечение

Кандидат технических наук В. БЕЛЯНИН, ведущий научный сотрудник РНЦ "Курчатовский институт", Е. РОМАНОВА, студентка МАДИ (ГТУ)

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Золотую пропорцию в школе не "проходят". И когда один из авторов предлагаемой ниже статьи (кандидат технических наук В. Белянин) рассказал о золотом сечении абитуриентке, собравшейся поступать в МАДИ, в процессе подготовки к экзаменам в институт, задача неожиданно вызвала живой интерес и массу вопросов, на которые "с ходу" не было ответов. Решили искать их вместе, и тогда обнаружились тонкости в золотой пропорции, ускользавшие от исследователей ранее. Совместное творчество привело к работе, которая лишний раз подтверждает созидательные возможности молодежи и вселяет надежду, что язык науки утерян не будет.

Узоры математики, как и узоры художника или узоры поэта, должны быть красивы; идеи, как и краски или слова, должны сочетаться гармонически. Красота является первым критерием: в мире нет места для безобразной математики.
Дж. Х. Харди

Красота математической задачи служит одним из важнейших стимулов ее нескончаемого развития и причиной порождения многочисленных приложений. Порой проходят десятки, сотни, а иногда и тысячи лет, но люди вновь и вновь находят неожиданные повороты в хорошо известном решении и его интерпретации. Одной из таких долгоживущих и увлекательных задач оказалась задача о золотом сечении (ЗС), отражающая элементы изящества и гармонии окружающего нас мира. Нелишне напомнить, кстати, что, хотя сама пропорция была известна еще Евклиду, термин "золотое сечение" ввел Леонардо да Винчи (см. "Наука и жизнь" ).

Геометрически золотое сечение подразумевает деление отрезка на две неравные части так, чтобы большая часть была средним пропорциональным между всем отрезком и меньшей частью (рис. 1).

Алгебраически это выражается следующим образом:

Исследование этой пропорции еще до ее решения показывает, что между отрезками a и b существуют по крайней мере два удивительных соотношения. Например, из пропорции (1) легко получается выражение,

которое устанавливает пропорцию между отрезками a , b , их разностью и суммой. Поэтому о золотом сечении можно сказать иначе: два отрезка находятся в гармоничном соотношении, если их разность относится к меньшему отрезку так, как больший отрезок относится к их сумме.

Второе соотношение получается, если исходный отрезок принять равным единице: a + b = 1, что очень часто используется в математике. В таком случае

a 2 - b 2 = a - b = ab .

Из этих результатов следуют два удивительных соотношения между отрезками а и b :

a 2 - b 2 = a - b = ab ,(2)

которые будут использованы в дальнейшем.

Перейдем теперь к решению пропорции (1). На практике используют две возможности.

1. Обозначим отношение a /b через. Тогда получим уравнение

x 2 - x - 1 = 0, (3)

Обычно рассматривают только положительный корень x 1 , дающий простое и наглядное деление отрезка в заданной пропорции. Действительно, если принять целый отрезок за единицу, то, используя значение этого корня x 1 , получим a ≈ 0,618, b ≈ 0,382.

Именно положительный корень x 1 уравнения (3) наиболее часто называют золотой пропорцией или пропорцией золотого сечения. Соответствующее геометрическое деление отрезка называют золотым сечением (точка С на рис. 1).

Для удобства дальнейшего изложения обозначим x 1 = D . Общепризнанного обозначения для золотого сечения до сих пор нет. Обусловлено это, видимо, тем, что под ним понимают иногда и другое число, о чем будет сказано ниже.

Оставляемый по обыкновению в стороне отрицательный корень x 2 приводит к менее наглядному делению отрезка на две неравные части. Дело в том, что он дает делящую точку С , которая лежит вне отрезка (так называемое внешнее деление). Действительно, если a + b = 1, то, используя корень x 2 , получим a ≈ -1,618, b ≈ 2,618. Поэтому отрезок a необходимо откладывать в отрицательном направлении (рис. 2).

2. Второй вариант решения пропорции (1) принципиально не отличается от первого. Будем считать неизвестным отношение b /a и обозначим его через y . Тогда получим уравнение

y 2 + y -1 = 0 , (4)

которое имеет иррациональные корни

Если a + b = 1, то, используя корень y 1 , получим a = y 1 ≈ 0,618, b ≈ 0,382. Для корня y 2 получим a ≈ -1,618, b ≈ 2,618. Геометрическое деление отрезка в пропорции золотого сечения с использованием корней y 1 и y 2 полностью идентично предыдущему варианту и соответствует рис. 1 и 2.

Положительный корень y 1 непосредственно дает искомое решение задачи, и его также называют золотой пропорцией .

Для удобства обозначим значение корня y 1 = d.

Таким образом, в литературе золотую пропорцию математически выражают числом D 1,618 или числом d 0,618, между которыми существуют две изумительные связи:

Dd = 1 и D - d = 1. (5)

Доказано, что другой подобной пары чисел, обладающих этими свойствами, не существует.

Используя оба обозначения для золотой пропорции, запишем решения уравнений (3) и (4) в симметричном виде: = D , = -d , = d , = -D .

Необычные свойства золотого сечения достаточно подробно описаны в литературе . Они настолько удивительны, что покоряли разум многих выдающихся мыслителей и создали вокруг себя ореол таинственности.

Золотая пропорция встречается в конфигурации растений и минералов, строении частей Вселенной, музыкальном звукоряде. Она отражает глобальные принципы природы, пронизывая все уровни организации живых и неживых объектов. Ее используют в архитектуре, скульптуре, живописи, науке, вычислительной технике, при проектировании предметов быта. Творения, несущие в себе конфигурацию золотого сечения, представляются соразмерными и согласованными, всегда приятны взгляду, да и сам математический язык золотой пропорции не менее изящен и элегантен.

Кроме равенств (5) из соотношения (2) можно выделить три интересные соотношения, которые обладают определенным совершенством, выглядят вполне привлекательно и эстетично:

(6)

Величие и глубину природы можно ощущать не только, например, при созерцании звезд или горных вершин, но и вглядываясь в некоторые удивительные формулы, очень ценимые математиками за их красоту. К ним можно отнести изящные соотношения золотой пропорции, фантастическую формулу Эйлера e iπ = -1 (где i = √-1), формулу, определяющую знаменитое число Непера (основание натуральных логарифмов): e = lim(1 + 1/n ) n = 2,718 при n → ∞, и многие другие.

После решения пропорции (1) ее идея кажется довольно простой, но, как это часто бывает со многими на первый взгляд простыми задачами, в ней скрыто немало тонкостей. Одной из таких замечательных тонкостей, мимо которой до сих пор проходили исследователи, является связь корней уравнений (3) и (4) с углами трех замечательных треугольников.

Чтобы убедиться в этом, рассмотрим, каким образом одномерный отрезок, разделенный в пропорции золотого сечения, может быть легко преобразован в двумерный образ в виде треугольника. Для этого, используя вначале рис. 1, отложим на отрезке АВ длину отрезка a дважды - от точки А в сторону точки В и, наоборот, от точки В в сторону А . Получим две точки С 1 и С 2 , делящие отрезок АВ с разных концов в пропорции золотого сечения (рис. 3). Считая равные отрезки АС 1 и ВС 2 радиусами, а точки А и В центрами окружностей, проведем две дуги до их пересечения в верхней точке С . Соединив точки А и С , а также В и С, получим равнобедренный треугольник АВС со сторонами АВ = a + b = 1, АС = = ВС = a = d ≈ 0,618. Величину углов при вершинах А и В обозначим α, при вершине С - β. Вычислим эти углы.

По теореме косинусов

(АВ ) 2 = 2(АС ) 2 (1 - cos β).

Подставив численные значения отрезков АВ и АС в эту формулу, получим

Аналогично получаем

(8)

Выход золотой пропорции на двумерный образ позволил связать корни уравнений (3) и (4) с углами треугольника АВС , который можно назвать первым треугольником золотой пропорции.

Выполним аналогичное построение, используя рис. 2. Если на продолжении отрезка АВ отложить от точки В вправо отрезок, равный по величине отрезку a , и повернуть вокруг центров А и В вверх оба отрезка как радиусы до их соприкосновения, то получим второй треугольник золотой пропорции (рис. 4). В этом равнобедренном треугольнике сторона АВ = a + b = 1, сторона АС = ВС = D ≈1,618, и поэтому по формуле теоремы косинусов получаем

(9)

Угол a при вершине С равен 36 о и связан с золотой пропорцией соотношением (8). Как и в предыдущем случае, углы этого треугольника связаны с корнями уравнений (3) и (4).

Второй треугольник золотой пропорции служит основным составляющим элементом правильного выпуклого пятиугольника и задает пропорции правильного звездчатого пятиугольника (пентаграммы), свойства которых подробно рассмотрены в книге .

Звездчатый пятиугольник - фигура симметричная, и в то же время в соотношениях ее отрезков проявляется асимметрическая золотая пропорция. Подобное сочетание противоположностей всегда притягивает глубоким единством, познание которого позволяет проникнуть в скрытые законы природы и понять их исключительную глубину и гармонию. Пифагорейцы, покоренные созвучием отрезков в звездчатом пятиугольнике, выбрали его символом своего научного сообщества.

Со времен астронома И. Кеплера (XVII век) иногда высказываются различные точки зрения относительно того, что обладает большей фундаментальностью - теорема Пифагора или золотая пропорция. Теорема Пифагора лежит в основании математики, это один из ее краеугольных камней. Золотое сечение лежит в основании гармонии и красоты мироздания. На первый взгляд оно несложно для понимания и не обладает значительной основательностью. Тем не менее некоторые его неожиданные и глубокие свойства постигаются только в последнее время , что говорит о необходимости с почтением относиться к его скрытой тонкости и возможной универсальности. Теорема Пифагора и золотая пропорция в своем развитии тесно переплетаются одна с другой и геометрическими и алгебраическими свойствами. Между ними нет ни пропасти, ни принципиальных различий. Они не конкурируют, у них разные предназначения.

Вполне возможно, что обе точки зрения равноправны, так как существует прямоугольный треугольник, содержащий в себе разнообразные особенности золотой пропорции. Другими словами, существует геометрическая фигура, достаточно полно объединяющая два математических восхитительных факта - теорему Пифагора и золотую пропорцию.

Чтобы построить такой треугольник, достаточно продолжить сторону ВС треугольника АВС (рис. 4) до пересечения в точке Е с перпендикуляром, восстановленным в точке А к стороне АВ (рис. 5).

Во внутреннем равнобедренном треугольнике АСЕ угол φ (угол АСЕ ) равен 144 о, а угол ψ (углы ЕАС и АЕС ) равен 18 о. Сторона АС = СЕ = СВ = D . Используя теорему Пифагора, легко получить, что длина катета

Используя этот результат, легко приходим к соотношению

Итак, найдена непосредственная связь корня y 2 уравнения (4) - последнего из корней уравнений (3) и (4) - с углом 144 о. В связи с этим треугольник АСЕ можно назвать третьим треугольником золотой пропорции.

Если в замечательном прямоугольном треугольнике АВЕ провести биссектрису угла САВ до пересечения со стороной ЕВ в точке F , то увидим, что вдоль стороны АВ располагаются четыре угла: 36 о, 72 о, 108 о и 144 о, с которыми корни уравнений золотой пропорции имеют непосредственную связь (соотношения (7) - (10)). Таким образом, в представленном прямоугольном треугольнике содержится вся плеяда равносторонних треугольников, обладающих особенностями золотого сечения. Кроме того, весьма примечательно то, что на гипотенузе любые два отрезка, ЕС = D и СF = 1,0 находятся в соотношении золотой пропорции с = d . Угол ψ связан с корнями D и d уравнений (3) и (4) соотношениями

.

В основу представленных выше построений равнобедренных треугольников, углы которых связаны с корнями уравнений золотой пропорции, положены исходный отрезок АВ и его части a и b . Однако золотое сечение позволяет моделировать не только описанные выше треугольники, но и различные другие геометрические фигуры, несущие в себе элементы гармоничных отношений.

Приведем два примера подобных построений. В первом - рассмотрим отрезок АВ , представленный на рис. 1. Пусть точка С - центр окружности, отрезок b - радиус. Проведем радиусом b окружность и касательные к ней из точки А (рис. 6). Соединим точки касания E и F с точкой С . В результате получим асимметричный ромб АЕСF , в котором диагональ АС делит его на два равных прямоугольных треугольника АСЕ и АСF .

Обратим более пристальное внимание на один из них, например на треугольник АСЕ . В этом треугольнике угол АЕС - прямой, гипотенуза АС = a , катет СЕ = b и катет АЕ = √ab ≈ 0,486, что следует из соотношения (2). Следовательно, катет АЕ является средним геометрическим (пропорциональным) между отрезками a и b , то есть выражает геометрический центр симметрии между числами a ≈ 0,618 и b ≈ 0,382.

Найдем значения углов этого треугольника:

Как и в предыдущих случаях, углы δ и ε связаны через косинус с корнями уравнений (3) и (4).

Заметим, что асимметричный ромб, подобный ромбу AECF , получается при проведении касательных из точки В к окружности радиуса a и c центром в точке А .

Асимметричный ромб AECF получен иным путем в книге при анализе формообразования и явлений роста в живой природе. Прямоугольный треугольник АЕС назван в этой работе "живым" треугольником, так как способен порождать наглядные образы, соответствующие различным структурным элементам природы, и служить ключом при построении геометрических схем начала развития некоторых живых организмов.

Второй пример связан с первым и третьим треугольниками золотого сечения. Образуем из двух равных первых треугольников золотой пропорции ромб с внутренними углами 72 о и 108 о. Аналогично объединим два равных третьих треугольника золотой пропорции в ромб с внутренними углами 36 о и 144 о. Если стороны этих ромбов равны между собой, то ими можно заполнить бесконечную плоскость без пустот и перекрытий. Соответствующий алгоритм заполнения плоскости разработал в конце 70-х годов ХХ века физик-теоретик из Оксфордского университета Р. Пенроуз. Причем выяснилось, что в получающейся мозаике невозможно выделить элементар ную ячейку с целым числом ромбов каждого вида, трансляция которой позволяла бы получить всю мозаику. Но самым замечательным оказалось то, что в бесконечной мозаике Пенроуза отношение числа "узких" ромбов к числу "широких" точно равно значению золотой пропорции d = 0,61803...!

В этом примере удивительным образом соединились все корни золотого сечения, выраженные через углы, с одним из случаев нетривиального заполнения бесконечной плоскости двумя элементарными фигурами - ромбами.

В заключение отметим, что приведенные выше разнообразные примеры связи корней уравнений золотой пропорции с углами треугольников иллюстрируют тот факт, что золотая пропорция более емкая задача, чем это представлялось ранее. Если прежде сферой приложения золотой пропорции считались в конечном итоге соотношения отрезков и различные последовательности, связанные с численными значениями ее корней (числа Фибоначчи), то теперь обнаруживается, что золотая пропорция может генерировать разнообразные геометрические объекты, а корни уравнений имеют явное тригонометрическое выражение.

Авторы отдают себе отчет, что высказанная выше точка зрения относительно изящества математических соотношений, связанных с золотой пропорцией, отражает личные эстетические переживания. В современной философской литературе понятия эстетики и красоты трактуются довольно широко и используются скорее на интуитивном уровне. Эти понятия отнесены главным образом к искусству. Содержание научного творчества в эстетическом плане в литературе практически не рассматривается. В первом приближении к эстетическим параметрам научных исследований можно отнести их сравнительную простоту, присущую им симметрию и способность порождать наглядные образы. Всем этим эстетическим параметрам отвечает задача, получившая название "золотая пропорция". В целом же проблемы эстетики в науке далеки от своего решения, хотя и представляют большой интерес.

Интуитивно чувствуется, что золотая пропорция все еще скрывает свои тайны. Некоторые из них, вполне возможно, лежат на поверхности, ожидая необычного взгляда своих новых исследователей. Знание свойств золотой пропорции может служить творческим людям хорошим фундаментом, придавать им уверенность и в науке и в жизни .

ЛИТЕРАТУРА

1. Шевелев И. Ш., Марутаев И. А., Шмелев И. П. Золотое сечение: Три взгляда на природу гармонии. - М.: Стройиздат, 1990. - 343 с.

2. Стахов А. П. Коды золотой пропорции. - М.: Радио и связь, 1984. - 152 с.

3. Васютинский Н. А. Золотая пропорция. - М.: Молодая гвардия, 1990. - 238 с.

4. Коробко В. И. Золотая пропорция: Некоторые философские аспекты гармонии. - М. - Орел: 2000. - 204 с.

5. Урманцев Ю. А. Золотое сечение // Природа, 1968, № 11.

6. Попков В. В., Шипицын Е. В. Золотое сечение в цикле Карно // УФН, 2000, т. 170, № 11.

7. Константинов И. Фантазии с додекаэдром // Наука и жизнь, 2001, № 2.

8. Шевелев И. Ш. Геометрическая гармония // Наука и жизнь, 1965, № 8.

9. Гарднер М. От мозаик Пенроуза к надежным шифрам . - М. : Мир, 1993.

Золотое сечение - это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве – во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло.

Определение

Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому. Приблизительная его величина – 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени. Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как «ассиметричную симметрию», называя его в широком смысле универсальным правилом отражающим структуру и порядок нашего мироустройства.

История

Принято считать, что понятие о золотом делении ввёл в научный обиход Пифагор , древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор своё знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзьенашёл, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображённый на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящён математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

Рис. Античный циркуль золотого сечения

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида . Во 2-й книге «Начал» даётся геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвящённым.

Представление о золотых пропорциях имели и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге «Божественная пропорция» (1509), иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой – Отца, а целое – Святой дух. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г. по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи.

Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи . В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. На отношение этой последовательности к золотой пропорции обратил внимание Кеплер: «Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». Сейчас ряд Фибоначчи это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях.

Леонардо да Винчи также много времени посвятил изучению особенностей золотого сечения, скорее всего именно ему принадлежит и сам термин. Его рисунки стереометрического тела, образованного правильными пятиугольниками, доказывают, что каждый из полученных при сечении прямоугольников дает соотношения сторон в золотом делении.

Со временем правило золотого сечения превратилось в академическую рутину, и только философ Адольф Цейзинг в 1855 году вернул ему вторую жизнь. Он довел до абсолюта пропорции золотого сечения, сделав их универсальными для всех явлений окружающего мира. Впрочем, его «математическое эстетство» вызывало много критики.

Природа

Астроном XVI в. Иоганн Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причём та же пропорция сохраняется до бесконечности».

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m , рядом откладываем отрезок M . На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов.

Рис. Построение шкалы отрезков золотой пропорции

Рис. Цикорий

Даже не вдаваясь в расчеты, золотое сечение можно без труда обнаружить в природе. Так, под него попадают соотношение хвоста и тела ящерицы, расстояния между листьями на ветке, есть золотое сечение и в форме яйца, если условную линию провести через его наиболее широкую часть.

Рис. Ящерица живородящая

Рис. Яйцо птицы

Белорусский ученый Эдуард Сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять свое место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали.

Еще Архимед , уделяя внимание спирали, вывел на основе ее формы уравнение, которое и сейчас применяется в технике. Позднее Гёте отмечал тяготение природы к спиральным формам, называя спираль «кривой жизни» . Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение ДНК и даже структура галактик заключают в себе ряд Фибоначчи.

Человек

Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек – это универсальная форма для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды.

В дневнике Леонардо да Винчи есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя «Витрувианского человека» Леонардо, создал собственную шкалу «гармонических пропорций», повлиявшую на эстетику архитектуры XX века. Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке ему подчинены практически все части тела, но главный показатель золотого сечения это деление тела точкой пупа.

В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению, чем пропорции женского тела – 8:5.

Искусство пространственных форм

Художник Василий Суриков говорил, «что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая математика». Долгое время художники следователи этому закону интуитивно, но после Леонардо да Винчи процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек золотого сечения использовал изобретенный им пропорциональный циркуль.

Искусствовед Ф. В. Ковалев, подробно исследовав картину Николая Ге «Александр Сергеевич Пушкин в селе Михайловском», отмечает, что каждая деталь полотна будь-то камин, этажерка, кресло или сам поэт строго вписаны в золотые пропорции. Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы , Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон.

И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение.

Гёте, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввёл в научный обиход термин морфология .

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Золотое сечение и симметрия

Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г.В. Вульф (1863...1925) считал золотое сечение одним из проявлений симметрии.

Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии. Согласно современным представлениям золотое деление – это асимметричная симметрия. В науку о симметрии вошли такие понятия, как статическая и динамическая симметрия . Статическая симметрия характеризует покой, равновесие, а динамическая – движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она – свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.

Слово, звук и кинолента

Формы временно̀го искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду Фибоначчи – 5, 8, 13, 21, 34.

Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом «Пиковой дамы» является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) – это и есть точка золотого сечения.

Советский музыковед Э. К. Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение.

Кинорежиссер Сергей Эйзенштейн сценарий своего фильма «Броненосец Потёмкин» сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух – в Одессе. Переход на сцены в городе и есть золотая середина фильма.

Приглашаем к обсуждению темы в нашей группе -

Золотое сечение на протяжении нескольких веков считается символом гармонии, идеальных пропорций в природной среде и во многих сферах жизни человека – точных науках, музыке, изобразительном искусстве, архитектуре. Учитывается оно и в дизайне – предполагается, что чем ближе к идеально возможным пропорции предмета, расположение объектов относительно друг друга, тем лучше такой интерьер воспринимается человеческим мозгом, тем комфортнее в нем находиться. О золотом сечении в дизайне интерьера и ландшафта, примерах его использования, подробно в тексте данной статьи.

Что такое «Золотое сечение», как оно появилось?

Золотое сечение — так называемая «божественная пропорция», просматриваемая в большинстве природных объектов: раковинах моллюсков, листьев дерева, пчелиных сотах, строении цветов, паучьих сетях, теле человека, молекулах ДНК, птичьих яйцах. Также его наблюдают в геометрии египетских пирамид, многих античных скульптурах, полотнах известных художников.

Сама суть «золотой пропорции» — деление целого на две неодинаковых части. Отношение меньшей части к большей, а большей к целому, выглядит как 0,618 к 1,0. Монах Лука Пачоли объяснял это как «божественное триединство»: меньшая часть целого — Сын Божий, большая – Бог-Отец, а целое – Дух Святой. Кто впервые начал применять ее, достоверно неизвестно, но максимально точно описал Леонардо да Винчи. Есть предположение, что хорошие художники, музыканты, архитекторы, другие люди искусства используют золотое сечение интуитивно – ведь так получается красивее.

Частный случай «божественной пропорции» — правило третей. Оно обусловлено зрительным восприятием человека – при взгляде на картинку, глаз «цепляется» в первую очередь за основные четыре точки, находящиеся на пересечении вертикальных линий с горизонтальными, при условии, что рисунок поделен на девять одинаковых фрагментов. Именно в пределах этих точек размещают основные акценты картинки, ее сюжетный центр.

Спираль золотого сечения

К «божественным пропорциям» относится и так называемый ряд Фибоначчи или спираль Фибоначчи. Средневековый математик составил последовательность чисел, следующего вида: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946 и др., где сумма каждых двух чисел, которые следуют друг за другом, начиная со второго, равна третьему. Яркий пример последовательности Фибоначчи – фаланги пальцев человека, соотношение первой ко второй и третьей. Спирали Фибоначчи просматриваются при взгляде сверху на цветок подсолнуха, ананас, шишки. Раковины большинства моллюсков, рога горной козы также соответствуют им.

Использование золотых пропорций в интерьере вашего дома, квартиры

При взгляде на красиво обустроенный домашний интерьер, первое, что бросается в глаза – это легкая асимметрия, едва уловимый беспорядок. Помещение, оформленное в соответствии с золотыми пропорциями, дает ощущение спокойствия, умиротворенности. В идеальном по форме помещении соотношение ширины к длине будет 5 к 8, или 1 к 1,62.

В начале 20 века, для планирования приемлемых жилых пространств человека, архитектор Ле Корбюзье придумал систему антропометрических пропорций, названную «модулор». Она представляет собой стилизованную фигурку человека с поднятой рукой. Рост, пропорции взяты идеальные, усредненные, изначально они использовались в строительстве первых многоквартирных домов.

При планировке пространства

На стадии расчетов рисуется планировка, которая разбивается на части по принципу «золотой» спирали. Зонирование пространства, особенно большого, производится в четком соответствии с точками пересечения основных линий – здесь расставляется мебель, ширмы, экраны или перегородки в квартире-студии. Основные акценты, на которые хочется обратить внимание, также размещают в данных точках.

Когда в доме много помещений, их также можно идеально распланировать: тогда самая большая комната станет относиться к площади всей квартиры как 0,62 к 1, меньшая – точно также к площади большей, кухня – к меньшей комнате, прихожая к кухне, санузел к прихожей, балкон – к санузлу.

Если использовать свой рост, как модуль, при строительстве дома, то пространство легко «подогнать» под себя.

Желательно, чтобы диван не занимал больше, чем две трети стены, около которой он стоит, а журнальный столик – максимум две трети размера дивана. Высота прикроватных тумбочек, с расположенными на них лампами, выбирается высотой 2/3 стены.

Большие темные предметы размещают снизу, маленькие, более светлые – выше, чтобы создавалось своеобразное ощущение покоя. Любые длинные отрезки, направленные сверху вниз, создают давящее впечатление, восходящие – наоборот. Картины разного размера следует тщательно подбирать по отношению друг к другу, развешивать на соответствующей высоте.

Большая часть композиционного прямоугольника должна быть самой насыщенной, освещенной.

Весьма гармонично смотрится помещение, где 62-65% всего пространства уделяется основному цвету, остальные 35-38% — второстепенному, до 5% — разнообразным цветовым акцентам. Оклейка стен обоями разного цвета, но схожей фактуры, осуществляется по такому же принципу.

Второстепенный цвет включает до трех оттенков, а на акценты в отдельных случаях выделяют до 10% пространства.

Высота прикроватных тумбочек, с расположенными на них лампами, выбирается в размере 2/3 стены. Если выбрана облицовка стен пластиковыми, деревянными панелями, керамической плиткой, то она также займет две трети высоты – остальное пойдет под покраску, оклейку обоями. Примерно одну треть высоты шкафов займут диваны со спинками, кухонные столешницы, а низенькие «восточные» столики – треть их высоты.

Нижние точки любых потолочных светильников не опускают ниже, чем на пять восьмых высоты комнаты. Если данную пропорцию соблюсти не удается, то расположение светильников «привязывают» к другим предметам интерьера. Стоящие рядом друг с другом однотипные элементы декора также должны соотноситься друг с другом как 1 к 1,62.

При расстановке меблировки следует учитывать, что ею занимают не более 65% площади комнаты – иначе комната будет выглядеть тесной. Идеальное количество, габариты мебели рассчитывают, исходя из размеров самых крупных ее предметов – шкафа, дивана, большого стола, кухонного гарнитура. Например, шкаф-стенка займет две трети всего помещения, тогда диван-кровать выйдет 2/3 размера шкафа. Таким же образом стол будет относиться к дивану, кресла к столу, стулья к креслам и др. Крупные элементы декора дублируются на разных местах пространства такими же более мелкими, но с соблюдением пропорций.

Некоторые фирмы выпускают целые наборы мебели, соотносящиеся друг с другом по высоте, габаритам.

Золотое сечение в ландшафтном дизайне — как использовать

Применение методов «божественных пропорций» в дизайне приусадебных участков, городских парков также обосновано. Любимое соотношение у большинства дизайнеров – 8-5-3, так обычно относится общее пространство к площади газонов и садовых дорожек. Удачным будет и симметричное решение, где центральная и меньшая части равны, а каждая из боковых составляет половину большей. Яркий пример тому – звезда, вписанная в правильный пятиугольник, в котором соотношение диагонали и сторону соответствует «золоту» в пропорциях.

Существуют некоторые другие параметры:

  • линейная, воздушная перспектива – это визуальное изменение размеров, четкости в случае увеличения расстояния. Кажется, что параллельные линии сходятся в одну – таким образом, постепенно сужая дорожку, создают впечатление большего пространства, чем есть;
  • соподчиненность, единство форм – выделение акцентов, соотношение высоты растений, садовых скульптур, хозяйственных построек;
  • равновесие композиционных решений – выделяется значимый центр, а по отношению к нему размещают все остальные объекты, стараясь не перегружать тот или иной сектор сада.

При планировании ландшафта, следует продумать основную «сюжетную» линию, стилистическое направление дизайна, соотношение не только всех размеров, но и цветовых «пятен».

Где еще используется золотое сечение

Золотое сечение пропорций человека наиболее точно изображено в «Витрувианском человеке». Они используются и в графическом оформлении современного мира. В логотипе компании Apple угадывается «обрезанная» спираль, круги чисел Фибоначчи, а оформление значка Toyota составлено из овалов, аккуратно вписанных в прямоугольник, также в соответствии с золотым сечением, которое также угадывается и в логотипах:

Для правильного оформления сайтов, веб-страниц, также применяются принципы спирали – самый важный контент размещается в ее центре, находящемся обычно в верхней левой или правой части. Ясность, интуитивность, акцент в определенных местах – главное кредо такого оформления. Наилучшая форма прямоугольных картинок – это соотношение их сторон, стремящееся к пропорции 1 к 1,62.
Применение идеальных пропорций в тексте делит его на две неравные части, каждая из которых имеет свою главную мысль, сюжет. Примерно на таком же принципе основано успокаивающее «чудотворное» действие народных заговоров, молитв.

В «газетном» дизайне модульные сетки создают в соответствии с «золотыми» пропорциями. Соблюдение правил золотого сечения в одежде, выборе обуви, прически, также пойдет на пользу общему внешнему виду человека. В музыке один из приемов идеального, стремительно развивающегося соотношения, называют «крещендо».

Заключение

«Божественные пропорции» окружают человека повсеместно, радуя глаз, создавая уют в быту. Его принципы используются профессиональными дизайнерами интерьеров при расстановке предметов, моделировании формы помещений, планировании ландшафтного дизайна земельного участка. При желании «золотые» пропорции для собственного дома, квартиры, сада, легко рассчитать самостоятельно, с помощью онлайн-конструкторов, калькуляторов, присутствующих в интерфейсе некоторых сайтов по дизайну.

Когда смотрим на красивый пейзаж, мы охватываемых все вокруг. Потом уделяем внимание деталям. Речке журчащей или дереву величественному. Видим поле зеленое. Замечаем, как ветер его обнимает нежно и журя шатает со стороны в сторону траву. Можем почувствовать аромат природы и услышать пение птиц…Все гармонично, все взаимосвязано и даёт чувство умиротворения, чувство прекрасного. Восприятие идёт поэтапно чуть меньшими долями.Куда вы сядете на скамье: на край, на середину или в любое место? Большинство ответит, что чуть дальше от середины. Приблизительное число в пропорции скамьи от вашего тела до края будет 1,62. Так и в кинотеатре, в библиотеке,- везде. Инстинктивно создаём гармонию красоту, которую во всем мире называю “Золотым сечением”.

Золотое сечение в математике

Вы задумывались, можно ли определить меру красоте? Оказывается, с математической точки зрения возможно. Простая арифметика даёт понятие об абсолютной гармонии, которая и отображается в безупречной красоте, благодаря принципу Золотого сечения. Архитектурные сооружения др. Египта и Вавилона первыми начали соответствовать данному принципу. Но сформулировал принцип первым Пифагор. В математике это деление отрезка чуть больше половины, а точнее 1,628. Данное соотношение представляется как φ =0,618= 5/8. Маленький отрезок = 0,382 = 3/8, а полностью отрезок принимаем за единицу.

А:B=B:C и C:B=B:A

От принципа золотого сечения отталкивались и великие писатели, архитекторы, скульпторы, музыканты, – люди искусства, и христиане, рисующие пиктограммы (пятиконечные звезды и т.д.) с его элементами в храмах, спасаясь от нечисти, и люди, изучающие точные науки, решающая проблемы кибернетики.

Золотое сечение в природе и явлениях.

Все на земле приобретая форму растет вверх, в сторону или по спирали. Последнему пристально уделил внимание Архимед, составив уравнение. По ряду Фибоначчи устроена шишка, ракушка, ананас, подсолнух, ураган, паутина, молекула ДНК, яйцо, стрекоза, ящерица…

Тицириус доказал, что вся наша Вселенная, космос, галактическое пространство, – все спланировано исходя из Золотого принципа. Абсолютно во всем живом и не живом можно прочесть высшую красоту.

Золотое сечение в человеке.

Кости продуманы природой тоже согласно пропорции 5 /8 . Это и исключает оговорки людей про “кости широкие “. Большинство частей тела в соотношениях применяются к уравнению . Если все частички тела подчиняются Золотой формуле , тогда внешние данные будут весьма привлекательны и идеально сложены .

Отрезок от плеч до верха головы и ее размера = 1 :1 .618
Отрезок от пупа до верха головы и от плеч до верха головы = 1 :1 .618
Отрезок от пупа до коленок и от них до ступней ног = 1 :1 .618
Отрезок от подбородка до крайней точки верхней губы и от неё до носа = 1 :1 .618


Все
расстояния лица дают общее представление об идеальных пропорциях , привлекающих взгляд .
Пальцы , ладонь , тоже подчиняются закону . Необходимо ещё отметить , что отрезок расставленных рук с туловищем равен росту человека . Да что там , все органы , кровь , молекулы , соответствуют Золотой формуле . Истинная гармония внутри и снаружи нашего пространства .

Параметры с физической стороны окружающих факторов.

Громкость звука. Высшая точка звука, вызывающая не комфортное ощущение и боль в ушной раковине = 130 децибелам. Это число можно разделить пропорцией 1,618, тогда выходит, что звук человеческого крика будет = 80 децибел.
Тем же методом двигаясь дальше получаем 50 децибел, что характерно для нормальной громкости речи человека. И последний звук, который получим благодаря формуле – приятный звук шепота = 2,618.
По данному принципу можно определить оптимально-комфортное, минимальное и максимальное число температуры, давления, влажности. Простая арифметика гармонии заложена во всем нашем окружении.

Золотое сечение в искусстве.

В архитектуре самые известные здания и сооружения: египетские пирамиды, пирамиды Майя в Мексике, Нотр-дам де Пари, Парфенон греческий, Петровский дворец, и другие.

В музыке: Аренский, Бетховен, Гаван, Моцарт, Шопен, Шуберт, и другие.

В живописи: почти все картины знаменитых художников написаны согласно сечению: разносторонний Леонардо да Винчи и неподражаемый Микеланджело, такие родные в писании Шишкин с Суриковым, идеал чистейшего художества – испанец Рафаэль, и подаривший идеал женской красоты – итальянец Боттичелли, и многие-многие другие.

В поэзии: упорядоченная речь Александра Сергеевича Пушкина, в особенности “Евгений Онегин” и стихотворение “Сапожник”, поэзия замечательных Шота Руставели и Лермонтова, и многих других великих мастеров слова.

В скульптуре: статуя Аполлона Бельведерского, Зевса Олимпийского, прекрасной Афины и грациозной Нефертити, и другие скульптуры и статуи.

В фотографии используется “правило третьей”. Принцип такой: композиция делится на 3 равные части по вертикали и по горизонтали, ключевые моменты располагаются либо на линиях пересечения (горизонт), либо в точках пересечений (объекте). Таким образом пропорции равны 3/8 и 5/8.
В согласно Золотого сечения имеется много уловок, которые стоит разобрать детально. Их опишу подробно в следующей .

На практике при выборе формата листа (картины) часто используют «классические» пропорции сторон прямоугольника, в котором отношение меньшей стороны к большей составляет число 0,6180339, а большей к меньшей — 1,6180339. Эти числа с древнейших времён называют золотыми, а отношение величин, необходимое для их получения, известно как золотая пропорция или золотое сечение.

Основа учения о гармонии мира, выраженная в числовых отношениях, была заложена древнегреческим учёным-математиком Пифагором (VI в до н.э). Им представлено золотое сечение как одна из закономерностей, математически точно определяющая наиболее красивое и гармоничное соотношение частей целого, разделённого на две неравные половины.

На соотношении частей отрезка в пропорциях золотого сечения основано построение прямоугольника. С помощью диагоналей осуществляется членение его на составные части, при котором образуется динамика пропорциональных фигур — квадрата, прямоугольника, а также прямоугольного и равнобедренного треугольников.

Т.о., используя диагонали можно получить последовательный ряд увеличивающихся прямоугольников, с соотношением сторон — 1:√ 2, 1:√3, 1:√4, 1:√5, производных от квадрата.


При стороне √4 образуется прямоугольник с удвоенным квадратом. При стороне √3 образуется два прямоугольных треугольника, у которых общая гипотенуза является диагональю прямоугольника, равная удвоенной величине меньшего катета (т.е. стороне квадрата), и они имеют острые углы 30 и 60 градусов.

Диагональ используется и в построении последовательно увеличивающихся квадратов, создающих «динамическое» развитие их величины.


В этом построении сторона каждого последующего квадрата относится к стороне предыдущего, как диагональ квадрата к его же стороне. Эти преобразования иногда называют «активным квадратом».

Геометрическая система динамических пропорций квадрата, прямоугольника и треугольника были основой в создании архитектурных сооружений в ранний период Древнего Египта. Кроме того, в условиях примитивной техники архитектурного строительства в те далёкие времена постоянно требовалось восстановление перпендикуляра к прямой, которое осуществлялось тогда при помощи верёвки с 12 узлами. С использованием такого приспособления получался прямоугольный треугольник с отношением строно - 3:4:5, который впоследствии стали называть египетским. В настоящее время на его основе строят прямые углы и проводят перпендикуляры к концу отрезка.

С древнейших времён золотое сечение используется в практике построения различных изображений. Это способствует созданию гармоничных образов и уравновешенности пропорций во всём, что на окружает. Пропорции золотого сечения присутствуют в мамематике, и особенно в геометрии, в изобразительном искусстве, в быту и в природе, в растительном и животном мире.

Золотое сечение получило широкое развитие в математике. Так, в XVI веке итальянский учёный Фибоначчи выстроил математический ряд цифр, при котором последующее число определяет сумму двух предыдущих - 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. Кроме того, устанавливается и другая зависимость этих чисел, при которой отношение каждого последующего к предыдущему выражается числом 1,618..., а предыдущего к последующему - 0,618. Таким образом, в этом математическом ряду образуется взаимосвязь чисел, содержащая пропорции золотого сечения.

Особенно часто золотое сечение используется в геометрии при делении окружности на равные части и построении правильных многоугольников.

В звёздчатом многоугольнике - пятиконечной звезде, каждая точка пересечения её сторон делит их на две неравные части в пропорциях золотого сечения.

С древнейших времён золотое сечение применялось в различных видах изобразительного искусства - в архитектуре, вкульптуре, живописи. Парфенон - классический пример применения золотого сечения в архитектуре.

Особенно широко использовал в своём творчестве соотношение величин золотого сечения Леонардо да Винчи, которое он назвал «божественная пропорция».

Числовой гармонии золотого сечения подчиняются также античные статуи греческого искусства, отражающие пропорции идеально сложённого человеческого тела.

Золотое сечение применяют в начертании букв и цифр различного шрифта.

Золотое сечение часто используют в определении величины прямоугольника при заданной его большей или меньшей стороне. Если у прямоугольной картины задана длина (АВ), то её высоту (АС) определяют следующим построением:


Сначала из конца отрезка (В) проводят дугу, равную его половине до пересечения с перпендикуляром (АО=ОВ=ВД). Полученную точку Д соединяют прямой с другим концом отрезка (А). Затем из точки Д проводят дугу радиусом ВД до пересечения с этой прямой и отмечают точку Е. Дуга, проведённая из конца отрезка А радиусом АЕ определяет по вертикальной прямой точку С и искомую высоту картины АС.

Если задана высота картины (АС), то её длину (АВ) определяют другим построением. Сначала строят квадрат АСДЕ со стороной равной АС. Затем из середины стороны квадрата (О) проводят дугу радиусом ОД и получают на горизонтальной прямой точку В, которая определит искомую длину стороны прямоугольной картины АВ.

По прямоугольнику с золотыми пропорциями можно построить любой величинны подобный формат листа.


Для этого его накладывают на лист бумаги в один из его углов (А) и проводят в нём диагональ. Затем от точки А откладывают заданный размер горизонтальной или вертикальной стороны формата листа и через его конец проводят перпендикуляр до пересечения с диагональю, которая определит вторую сторону прямоугольника.