Ecuații cuadratice ale sarcinii. vă puteți familiariza cu funcțiile și derivatele

Farafonova Natalia Igorevna

Subiect: Ecuații patratice incomplete.

Obiectivele lecției:- Introduceți conceptul de ecuație pătratică incompletă;

Aflați cum să rezolvați ecuații pătratice incomplete.

Obiectivele lecției:- Să fie capabil să determine forma unei ecuații pătratice;

Rezolvați ecuații patratice incomplete.

Webbook: Algebră: Proc. pentru 8 celule. educatie generala instituții / Sh. A. Alimov, Yu. M. Kolyagin, Yu. V. Sidorov și alții - M .: Educație, 2010.

În timpul orelor.

1. Amintiți-le elevilor că înainte de a rezolva orice ecuație pătratică, este necesar să o aduceți într-o formă standard. Amintiți-vă definiția ecuație pătratică completă:ax2+bx +c = 0,a ≠ 0.

În aceste ecuații pătratice, numiți coeficienții a, b, c:

a) 2x 2 - x + 3 = 0; b) x 2 + 4x - 1 = 0; c) x 2 - 4 \u003d 0; d) 5x 2 + 3x = 0.

2. Dați o definiție a unei ecuații pătratice incomplete:

Ecuația pătratică ax 2 + bx + c = 0 se numește incomplet, dacă cel puțin unul dintre coeficienți, b sau c, este egal cu 0. Atenție că coeficientul a ≠ 0. Din ecuațiile prezentate mai sus, alegeți ecuații patratice incomplete.

3. Este mai convenabil să prezentați tipurile de ecuații pătratice incomplete cu exemple de soluții sub forma unui tabel:

  1. Fără a rezolva, determinați numărul de rădăcini pentru fiecare ecuație pătratică incompletă:

a) 2x 2 - 3 = 0; b) 3x 2 + 4 = 0; c) 5x 2 - x \u003d 0; d) 0,6x2 = 0; e) -8x 2 - 4 = 0.

  1. Rezolvați ecuații patratice incomplete (soluție de ecuații, cu bifa la tablă, 2 opțiuni):


c) 2x 2 + 15 = 0

d) 3x 2 + 2x = 0

e) 2x 2 - 16 = 0

f) 5(x 2 + 2) = 2(x 2 + 5)

g) (x + 1) 2 - 4 = 0

c) 2x 2 + 7 = 0

d) x 2 + 9x = 0

e) 81x 2 - 64 = 0

f) 2(x 2 + 4) = 4(x 2 + 2)

g) (x - 2) 2 - 8 = 0.



6. Lucru independent asupra opțiunilor:


1 opțiune

a) 3x 2 - 12 = 0

b) 2x 2 + 6x = 0

e) 7x 2 - 14 = 0

Opțiunea 2

b) 6x 2 + 24 = 0

c) 9y 2 - 4 = 0

d) -y 2 + 5 = 0

e) 1 - 4y 2 = 0

f) 8y 2 + y = 0

3 optiune

a) 6y - y 2 = 0

b) 0,1y 2 - 0,5y = 0

c) (x + 1) (x -2) = 0

d) x(x + 0,5) = 0

e) x 2 - 2x = 0

f) x 2 - 16 = 0

4 optiune

a) 9x 2 - 1 = 0

b) 3x - 2x 2 = 0

d) x 2 + 2x - 3 = 2x + 6

e) 3x 2 + 7 = 12x + 7

5 optiune

a) 2x 2 - 18 = 0

b) 3x 2 - 12x = 0

d) x 2 + 16 = 0

e) 6x 2 - 18 = 0

f) x 2 - 5x = 0

6 optiune

b) 4x 2 + 36 = 0

c) 25y 2 - 1 = 0

d) -y 2 + 2 = 0

e) 9 - 16y 2 = 0

f) 7y 2 + y = 0

7 optiune

a) 4y - y 2 = 0

b) 0,2y 2 - y = 0

c) (x + 2)(x - 1) = 0

d) (x - 0,3)x = 0

e) x 2 + 4x = 0

f) x 2 - 36 = 0

8 optiune

a) 16x 2 - 1 = 0

b) 4x - 5x 2 = 0

d) x 2 - 3x - 5 = 11 - 3x

e) 5x 2 - 6 = 15x - 6


Răspunsuri pentru munca independentă:

Opțiunea 1: a) 2, b) 0;-3; c) 0; d) nu există rădăcini; e);

Opțiunea 2 a) 0; b) rădăcini; în); G); e); f)0;-;

3 varianta a) 0; 6; b) 0;5; c) -1;2; d) 0, -0,5; e) 0;2; f)4

4 varianta a); b) 0, 1,5; c) 0;3; d) 3; e)0;4 e)5

5 varianta a)3; b) 0;4; c) 0; d) nu există rădăcini; e) f) 0; 5

6 varianta a) 0; b) nu există rădăcini; c) d) e) f) 0;-

7 varianta a) 0;4; b) 0;5; c) -2;1; d) 0, 0,03; e) 0;-4; f)6

8 varianta a) b) 0; c) 0;7; d) 4; e) 0;3; e)

Rezumatul lecției: Se formulează conceptul de „ecuație pătratică incompletă”; sunt prezentate modalităţi de rezolvare a diferitelor tipuri de ecuaţii pătratice incomplete. În cursul îndeplinirii diferitelor sarcini, s-au dezvoltat abilitățile de rezolvare a ecuațiilor pătratice incomplete.


7. Teme pentru acasă: №№ 421(2), 422(2), 423(2,4), 425.

Sarcină suplimentară:

Pentru ce valori ale lui a este ecuația o ecuație pătratică incompletă? Rezolvați ecuația pentru valorile obținute ale lui a:

a) x 2 + 3ax + a - 1 = 0

b) (a - 2)x 2 + ax \u003d 4 - a 2 \u003d 0

Sarcinile pentru o ecuație pătratică sunt studiate atât în ​​programa școlară, cât și în universități. Ele sunt înțelese ca ecuații de forma a * x ^ 2 + b * x + c \u003d 0, unde X- variabilă, a,b,c – constante; A<>0 . Problema este de a găsi rădăcinile ecuației.

Sensul geometric al ecuației pătratice

Graficul unei funcții care este reprezentată printr-o ecuație pătratică este o parabolă. Soluțiile (rădăcinile) unei ecuații pătratice sunt punctele de intersecție ale parabolei cu axa x. Rezultă că există trei cazuri posibile:
1) parabola nu are puncte de intersecție cu axa x. Aceasta înseamnă că se află în planul superior cu ramurile în sus sau cel inferior cu ramurile în jos. În astfel de cazuri, ecuația pătratică nu are rădăcini reale (are două rădăcini complexe).

2) parabola are un punct de intersecție cu axa Ox. Un astfel de punct se numește vârful parabolei, iar ecuația pătratică din el își dobândește valoarea minimă sau maximă. În acest caz, ecuația pătratică are o rădăcină reală (sau două rădăcini identice).

3) Ultimul caz este mai interesant în practică - există două puncte de intersecție ale parabolei cu axa absciselor. Aceasta înseamnă că există două rădăcini reale ale ecuației.

Pe baza analizei coeficienților la puterile variabilelor se pot trage concluzii interesante despre plasarea parabolei.

1) Dacă coeficientul a este mai mare decât zero, atunci parabola este îndreptată în sus, dacă este negativă, ramurile parabolei sunt îndreptate în jos.

2) Dacă coeficientul b este mai mare decât zero, atunci vârful parabolei se află în semiplanul stâng, dacă ia o valoare negativă, atunci în dreapta.

Derivarea unei formule pentru rezolvarea unei ecuații pătratice

Să transferăm constanta din ecuația pătratică

pentru semnul egal, obținem expresia

Înmulțiți ambele părți cu 4a

Pentru a obține un pătrat complet în stânga, adăugați b ^ 2 în ambele părți și efectuați transformarea

De aici găsim

Formula discriminantului și rădăcinilor ecuației pătratice

Discriminantul este valoarea expresiei radicalului.Dacă este pozitivă, atunci ecuația are două rădăcini reale, calculate prin formula Când discriminantul este zero, ecuația pătratică are o soluție (două rădăcini care coincid), care sunt ușor de obținut din formula de mai sus pentru D=0. Când discriminantul este negativ, nu există rădăcini reale. Cu toate acestea, pentru a studia soluțiile ecuației pătratice în plan complex, iar valoarea lor este calculată prin formula

teorema lui Vieta

Luați în considerare două rădăcini ale unei ecuații pătratice și construiți o ecuație pătratică pe baza lor.Teorema Vieta însăși rezultă ușor din notația: dacă avem o ecuație pătratică de forma atunci suma rădăcinilor sale este egală cu coeficientul p, luat cu semnul opus, iar produsul rădăcinilor ecuației este egal cu termenul liber q. Formula pentru cele de mai sus va arăta ca Dacă constanta a din ecuația clasică este diferită de zero, atunci trebuie să împărțiți întreaga ecuație la ea și apoi să aplicați teorema Vieta.

Schema ecuației pătratice pe factori

Să fie stabilită sarcina: să descompunem ecuația pătratică în factori. Pentru a o realiza, mai întâi rezolvăm ecuația (găsește rădăcinile). În continuare, înlocuim rădăcinile găsite în formula de extindere a ecuației pătratice, această problemă va fi rezolvată.

Sarcini pentru o ecuație pătratică

Sarcina 1. Găsiți rădăcinile unei ecuații pătratice

x^2-26x+120=0 .

Rezolvare: Notați coeficienții și înlocuiți în formula discriminantă

Rădăcina acestei valori este 14, este ușor să o găsiți cu un calculator sau să o amintiți cu o utilizare frecventă, totuși, pentru comoditate, la sfârșitul articolului vă voi oferi o listă de pătrate de numere care pot fi adesea găsite în astfel de sarcini.
Valoarea găsită este înlocuită în formula rădăcină

și primim

Sarcina 2. rezolva ecuatia

2x2+x-3=0.

Rezolvare: Avem o ecuație pătratică completă, scriem coeficienții și găsim discriminantul


Folosind formule binecunoscute, găsim rădăcinile ecuației pătratice

Sarcina 3. rezolva ecuatia

9x2 -12x+4=0.

Rezolvare: Avem o ecuație pătratică completă. Determinați discriminantul

Avem cazul când rădăcinile coincid. Găsim valorile rădăcinilor prin formula

Sarcina 4. rezolva ecuatia

x^2+x-6=0 .

Soluție: În cazurile în care există coeficienți mici pentru x, este indicat să se aplice teorema Vieta. Prin condiția sa, obținem două ecuații

Din a doua condiție, obținem că produsul trebuie să fie egal cu -6. Aceasta înseamnă că una dintre rădăcini este negativă. Avem următoarea pereche posibilă de soluții(-3;2), (3;-2) . Ținând cont de prima condiție, respingem a doua pereche de soluții.
Rădăcinile ecuației sunt

Sarcina 5. Aflați lungimile laturilor unui dreptunghi dacă perimetrul acestuia este de 18 cm și aria este de 77 cm 2.

Rezolvare: Jumătate din perimetrul unui dreptunghi este egal cu suma laturilor adiacente. Să notăm x - partea mai mare, apoi 18-x este latura sa mai mică. Aria unui dreptunghi este egală cu produsul acestor lungimi:
x(18x)=77;
sau
x 2 -18x + 77 \u003d 0.
Aflați discriminantul ecuației

Calculăm rădăcinile ecuației

În cazul în care un x=11, apoi 18x=7 , viceversa este de asemenea adevărată (dacă x=7, atunci 21-x=9).

Problema 6. Factorizați ecuația pătratică 10x 2 -11x+3=0.

Rezolvare: Calculați rădăcinile ecuației, pentru aceasta găsim discriminantul

Înlocuim valoarea găsită în formula rădăcinilor și calculăm

Aplicam formula de extindere a ecuatiei patratice in termeni de radacini

Extindem parantezele, obținem identitatea.

Ecuație pătratică cu parametru

Exemplul 1. Pentru ce valori ale parametrului A , ecuația (a-3) x 2 + (3-a) x-1 / 4 \u003d 0 are o rădăcină?

Rezolvare: Prin înlocuirea directă a valorii a=3, vedem că nu are soluție. În plus, vom folosi faptul că, cu un discriminant zero, ecuația are o rădăcină a multiplicității 2. Să scriem discriminantul

simplificați-l și echivalați cu zero

Am obținut o ecuație pătratică față de parametrul a, a cărei soluție este ușor de obținut folosind teorema Vieta. Suma rădăcinilor este 7, iar produsul lor este 12. Prin simpla enumerare, stabilim ca numerele 3.4 vor fi radacinile ecuatiei. Deoarece am respins deja soluția a=3 la începutul calculelor, singura corectă va fi - a=4. Astfel, pentru a = 4, ecuația are o rădăcină.

Exemplul 2. Pentru ce valori ale parametrului A , ecuația a(a+3)x^2+(2a+6)x-3a-9=0 are mai multe rădăcini?

Soluție: Luați în considerare mai întâi punctele singulare, acestea vor fi valorile a=0 și a=-3. Când a=0, ecuația va fi simplificată la forma 6x-9=0; x=3/2 și va fi o rădăcină. Pentru a= -3 obținem identitatea 0=0 .
Calculați discriminantul

și găsiți valorile lui a pentru care este pozitiv

Din prima condiție obținem a>3. Pentru al doilea, găsim discriminantul și rădăcinile ecuației


Să definim intervalele în care funcția ia valori pozitive. Inlocuind punctul a=0 obtinem 3>0 . Deci, în afara intervalului (-3; 1/3) funcția este negativă. Nu uitați punctul a=0 care ar trebui exclus, deoarece ecuația originală are o rădăcină în ea.
Ca rezultat, obținem două intervale care satisfac condiția problemei

Vor exista multe sarcini similare în practică, încercați să vă ocupați singur de sarcini și nu uitați să țineți cont de condiții care se exclud reciproc. Studiați bine formulele de rezolvare a ecuațiilor pătratice, ele sunt destul de des necesare în calcule în diverse probleme și științe.

Primul nivel

Ecuații cuadratice. Ghid cuprinzător (2019)

În termenul „ecuație pătratică” cuvântul cheie este „quadratic”. Aceasta înseamnă că ecuația trebuie să conțină în mod necesar o variabilă (același X) în pătrat și, în același timp, nu ar trebui să existe X-uri în gradul trei (sau mai mare).

Soluția multor ecuații se reduce la soluția ecuațiilor pătratice.

Să învățăm să determinăm că avem o ecuație pătratică și nu alta.

Exemplul 1

Scăpați de numitor și înmulțiți fiecare termen al ecuației cu

Să mutăm totul în partea stângă și să aranjam termenii în ordinea descrescătoare a puterilor lui x

Acum putem spune cu încredere că această ecuație este pătratică!

Exemplul 2

Înmulțiți părțile din stânga și din dreapta cu:

Această ecuație, deși a fost inițial în ea, nu este un pătrat!

Exemplul 3

Să înmulțim totul cu:

Infricosator? Gradul al patrulea și al doilea... Totuși, dacă facem o înlocuire, vom vedea că avem o ecuație pătratică simplă:

Exemplul 4

Se pare că este, dar să aruncăm o privire mai atentă. Să mutăm totul în partea stângă:

Vedeți, s-a micșorat - și acum este o simplă ecuație liniară!

Acum încercați să determinați singuri care dintre următoarele ecuații sunt pătratice și care nu:

Exemple:

Raspunsuri:

  1. pătrat;
  2. pătrat;
  3. nu pătrat;
  4. nu pătrat;
  5. nu pătrat;
  6. pătrat;
  7. nu pătrat;
  8. pătrat.

Matematicienii împart în mod condiționat toate ecuațiile pătratice în următoarele tipuri:

  • Completează ecuațiile pătratice- ecuații în care coeficienții și, precum și termenul liber c, nu sunt egali cu zero (ca în exemplu). În plus, printre ecuațiile pătratice complete, există dat sunt ecuații în care coeficientul (ecuația din exemplul unu este nu numai completă, ci și redusă!)
  • Ecuații patratice incomplete- ecuații în care coeficientul și/sau termenul liber c sunt egali cu zero:

    Sunt incomplete deoarece lipsește un element din ele. Dar ecuația trebuie să conțină întotdeauna x pătrat !!! În caz contrar, nu va mai fi o ecuație pătratică, ci o altă ecuație.

De ce au venit cu o asemenea împărțire? S-ar părea că există un X pătrat, și bine. O astfel de împărțire se datorează metodelor de soluție. Să luăm în considerare fiecare dintre ele mai detaliat.

Rezolvarea ecuațiilor pătratice incomplete

În primul rând, să ne concentrăm pe rezolvarea ecuațiilor pătratice incomplete - sunt mult mai simple!

Ecuațiile patratice incomplete sunt de tipuri:

  1. , în această ecuație coeficientul este egal.
  2. , în această ecuație termenul liber este egal cu.
  3. , în această ecuație coeficientul și termenul liber sunt egali.

1. i. Din moment ce știm să luăm rădăcina pătrată, să exprimăm din această ecuație

Expresia poate fi fie negativă, fie pozitivă. Un număr pătrat nu poate fi negativ, deoarece la înmulțirea a două numere negative sau a două numere pozitive, rezultatul va fi întotdeauna un număr pozitiv, deci: dacă, atunci ecuația nu are soluții.

Și dacă, atunci obținem două rădăcini. Aceste formule nu trebuie memorate. Principalul lucru este că ar trebui să știți întotdeauna și să vă amintiți că nu poate fi mai puțin.

Să încercăm să rezolvăm câteva exemple.

Exemplul 5:

Rezolvați ecuația

Acum rămâne să extragi rădăcina din părțile din stânga și din dreapta. La urma urmei, îți amintești cum să extragi rădăcinile?

Răspuns:

Nu uita niciodată de rădăcinile cu semn negativ!!!

Exemplul 6:

Rezolvați ecuația

Răspuns:

Exemplul 7:

Rezolvați ecuația

Ai! Pătratul unui număr nu poate fi negativ, ceea ce înseamnă că ecuația

fara radacini!

Pentru astfel de ecuații în care nu există rădăcini, matematicienii au venit cu o pictogramă specială - (set gol). Și răspunsul poate fi scris astfel:

Răspuns:

Astfel, această ecuație pătratică are două rădăcini. Nu există restricții aici, deoarece nu am extras rădăcina.
Exemplul 8:

Rezolvați ecuația

Să scoatem factorul comun din paranteze:

Prin urmare,

Această ecuație are două rădăcini.

Răspuns:

Cel mai simplu tip de ecuații pătratice incomplete (deși toate sunt simple, nu?). Evident, această ecuație are întotdeauna o singură rădăcină:

Aici ne vom descurca fără exemple.

Rezolvarea ecuațiilor pătratice complete

Vă reamintim că ecuația pătratică completă este o ecuație a ecuației de formă unde

Rezolvarea ecuațiilor pătratice complete este puțin mai complicată (doar puțin) decât cele date.

Tine minte, orice ecuație pătratică poate fi rezolvată folosind discriminantul! Chiar incomplet.

Restul metodelor te vor ajuta să o faci mai repede, dar dacă ai probleme cu ecuațiile pătratice, mai întâi stăpânește soluția folosind discriminantul.

1. Rezolvarea ecuațiilor pătratice folosind discriminantul.

Rezolvarea ecuațiilor pătratice în acest fel este foarte simplă, principalul lucru este să vă amintiți succesiunea de acțiuni și câteva formule.

Dacă, atunci ecuația are o rădăcină.O atenție deosebită trebuie acordată pasului. Discriminantul () ne spune numărul de rădăcini ale ecuației.

  • Dacă, atunci formula de la pas se va reduce la. Astfel, ecuația va avea doar o rădăcină.
  • Dacă, atunci nu vom putea extrage rădăcina discriminantului la pas. Aceasta indică faptul că ecuația nu are rădăcini.

Să ne întoarcem la ecuațiile noastre și să vedem câteva exemple.

Exemplul 9:

Rezolvați ecuația

Pasul 1 ocolire.

Pasul 2

Găsirea discriminantului:

Deci ecuația are două rădăcini.

Pasul 3

Răspuns:

Exemplul 10:

Rezolvați ecuația

Ecuația este în formă standard, deci Pasul 1 ocolire.

Pasul 2

Găsirea discriminantului:

Deci ecuația are o singură rădăcină.

Răspuns:

Exemplul 11:

Rezolvați ecuația

Ecuația este în formă standard, deci Pasul 1 ocolire.

Pasul 2

Găsirea discriminantului:

Aceasta înseamnă că nu vom putea extrage rădăcina din discriminant. Nu există rădăcini ale ecuației.

Acum știm cum să scriem corect astfel de răspunsuri.

Răspuns: fara radacini

2. Rezolvarea ecuațiilor pătratice folosind teorema Vieta.

Dacă vă amintiți, atunci există un astfel de tip de ecuații care se numesc reduse (când coeficientul a este egal cu):

Astfel de ecuații sunt foarte ușor de rezolvat folosind teorema lui Vieta:

Suma rădăcinilor dat ecuația pătratică este egală, iar produsul rădăcinilor este egal.

Exemplul 12:

Rezolvați ecuația

Această ecuație este potrivită pentru rezolvare folosind teorema lui Vieta, deoarece .

Suma rădăcinilor ecuației este, i.e. obținem prima ecuație:

Iar produsul este:

Să creăm și să rezolvăm sistemul:

  • și. Suma este;
  • și. Suma este;
  • și. Suma este egală.

și sunt soluția sistemului:

Răspuns: ; .

Exemplul 13:

Rezolvați ecuația

Răspuns:

Exemplul 14:

Rezolvați ecuația

Ecuația este redusă, ceea ce înseamnă:

Răspuns:

ECUAȚII CADRATICE. NIVEL MIJLOCIU

Ce este o ecuație pătratică?

Cu alte cuvinte, o ecuație pătratică este o ecuație de forma, unde - necunoscut, - unele numere, de altfel.

Numărul se numește cel mai mare sau primul coeficient ecuație pătratică, - al doilea coeficient, A - membru liber.

De ce? Pentru că dacă, ecuația va deveni imediat liniară, deoarece va disparea.

În acest caz, și poate fi egal cu zero. În această ecuație de scaun se numește incomplet. Dacă toți termenii sunt la locul lor, adică, ecuația este completă.

Soluții la diferite tipuri de ecuații pătratice

Metode de rezolvare a ecuațiilor pătratice incomplete:

Pentru început, vom analiza metodele de rezolvare a ecuațiilor pătratice incomplete - sunt mai simple.

Se pot distinge următoarele tipuri de ecuații:

I. , în această ecuație coeficientul și termenul liber sunt egali.

II. , în această ecuație coeficientul este egal.

III. , în această ecuație termenul liber este egal cu.

Acum luați în considerare soluția fiecăruia dintre aceste subtipuri.

Evident, această ecuație are întotdeauna o singură rădăcină:

Un număr la pătrat nu poate fi negativ, deoarece atunci când înmulțim două numere negative sau două pozitive, rezultatul va fi întotdeauna un număr pozitiv. Asa de:

dacă, atunci ecuația nu are soluții;

dacă avem două rădăcini

Aceste formule nu trebuie memorate. Principalul lucru de reținut este că nu poate fi mai puțin.

Exemple:

Solutii:

Răspuns:

Nu uita niciodată de rădăcinile cu semn negativ!

Pătratul unui număr nu poate fi negativ, ceea ce înseamnă că ecuația

fara radacini.

Pentru a scrie pe scurt că problema nu are soluții, folosim pictograma set goală.

Răspuns:

Deci, această ecuație are două rădăcini: și.

Răspuns:

Să scoatem factorul comun din paranteze:

Produsul este egal cu zero dacă cel puțin unul dintre factori este egal cu zero. Aceasta înseamnă că ecuația are o soluție atunci când:

Deci, această ecuație pătratică are două rădăcini: și.

Exemplu:

Rezolvați ecuația.

Decizie:

Factorizăm partea stângă a ecuației și găsim rădăcinile:

Răspuns:

Metode de rezolvare a ecuațiilor pătratice complete:

1. Discriminant

Rezolvarea ecuațiilor pătratice în acest fel este ușoară, principalul lucru este să vă amintiți succesiunea de acțiuni și câteva formule. Amintiți-vă, orice ecuație pătratică poate fi rezolvată folosind discriminantul! Chiar incomplet.

Ați observat rădăcina discriminantului în formula rădăcinii? Dar discriminantul poate fi negativ. Ce sa fac? Trebuie să acordăm o atenție deosebită pasului 2. Discriminantul ne spune numărul de rădăcini ale ecuației.

  • Dacă, atunci ecuația are rădăcină:
  • Dacă, atunci ecuația are aceeași rădăcină, dar de fapt, o rădăcină:

    Astfel de rădăcini se numesc rădăcini duble.

  • Dacă, atunci rădăcina discriminantului nu este extrasă. Aceasta indică faptul că ecuația nu are rădăcini.

De ce există un număr diferit de rădăcini? Să ne întoarcem la semnificația geometrică a ecuației pătratice. Graficul funcției este o parabolă:

Într-un caz particular, care este o ecuație pătratică, . Și aceasta înseamnă că rădăcinile ecuației pătratice sunt punctele de intersecție cu axa x (axa). Este posibil ca parabola să nu traverseze deloc axa sau o poate intersecta într-unul (când partea superioară a parabolei se află pe axă) sau două puncte.

În plus, coeficientul este responsabil pentru direcția ramurilor parabolei. Dacă, atunci ramurile parabolei sunt îndreptate în sus, iar dacă - atunci în jos.

Exemple:

Solutii:

Răspuns:

Răspuns: .

Răspuns:

Asta înseamnă că nu există soluții.

Răspuns: .

2. Teorema lui Vieta

Folosirea teoremei Vieta este foarte ușoară: trebuie doar să alegeți o pereche de numere al căror produs este egal cu termenul liber al ecuației, iar suma este egală cu al doilea coeficient, luat cu semnul opus.

Este important să ne amintim că teorema lui Vieta poate fi aplicată numai la date ecuații pătratice ().

Să ne uităm la câteva exemple:

Exemplul #1:

Rezolvați ecuația.

Decizie:

Această ecuație este potrivită pentru rezolvare folosind teorema lui Vieta, deoarece . Alți coeficienți: ; .

Suma rădăcinilor ecuației este:

Iar produsul este:

Să selectăm astfel de perechi de numere, al căror produs este egal și să verificăm dacă suma lor este egală:

  • și. Suma este;
  • și. Suma este;
  • și. Suma este egală.

și sunt soluția sistemului:

Astfel, și sunt rădăcinile ecuației noastre.

Răspuns: ; .

Exemplul #2:

Decizie:

Selectăm astfel de perechi de numere care dau în produs și apoi verificăm dacă suma lor este egală:

si: da in total.

si: da in total. Pentru a-l obține, trebuie doar să schimbați semnele presupuselor rădăcini: și, la urma urmei, munca.

Răspuns:

Exemplul #3:

Decizie:

Termenul liber al ecuației este negativ și, prin urmare, produsul rădăcinilor este un număr negativ. Acest lucru este posibil numai dacă una dintre rădăcini este negativă, iar cealaltă este pozitivă. Deci suma rădăcinilor este diferențele modulelor lor.

Selectăm astfel de perechi de numere care dau în produs și a căror diferență este egală cu:

și: diferența lor este - nepotrivit;

și: - nu este adecvat;

și: - nu este adecvat;

şi: - potrivite. Rămâne doar să ne amintim că una dintre rădăcini este negativă. Deoarece suma lor trebuie să fie egală, atunci rădăcina, care este mai mică în valoare absolută, trebuie să fie negativă: . Verificăm:

Răspuns:

Exemplul #4:

Rezolvați ecuația.

Decizie:

Ecuația este redusă, ceea ce înseamnă:

Termenul liber este negativ și, prin urmare, produsul rădăcinilor este negativ. Și acest lucru este posibil numai atunci când o rădăcină a ecuației este negativă, iar cealaltă este pozitivă.

Selectăm astfel de perechi de numere al căror produs este egal și apoi determinăm care rădăcini ar trebui să aibă semn negativ:

Evident, numai rădăcini și sunt potrivite pentru prima condiție:

Răspuns:

Exemplul #5:

Rezolvați ecuația.

Decizie:

Ecuația este redusă, ceea ce înseamnă:

Suma rădăcinilor este negativă, ceea ce înseamnă că cel puțin una dintre rădăcini este negativă. Dar, deoarece produsul lor este pozitiv, înseamnă că ambele rădăcini sunt minus.

Selectăm astfel de perechi de numere, al căror produs este egal cu:

Evident, rădăcinile sunt numerele și.

Răspuns:

De acord, este foarte convenabil - să inventați rădăcinile oral, în loc să numărați acest discriminant urât. Încercați să utilizați teorema lui Vieta cât mai des posibil.

Dar teorema Vieta este necesară pentru a facilita și accelera găsirea rădăcinilor. Pentru a vă face profitabil să îl folosiți, trebuie să aduceți acțiunile la automatism. Și pentru asta, rezolvă încă cinci exemple. Dar nu înșela: nu poți folosi discriminantul! Doar teorema lui Vieta:

Soluții pentru sarcini pentru munca independentă:

Sarcina 1. ((x)^(2))-8x+12=0

Conform teoremei lui Vieta:

Ca de obicei, începem selecția cu produsul:

Nu este potrivit pentru că suma;

: suma este ceea ce ai nevoie.

Răspuns: ; .

Sarcina 2.

Și din nou, teorema noastră preferată Vieta: suma ar trebui să funcționeze, dar produsul este egal.

Dar din moment ce nu ar trebui să fie, dar, schimbăm semnele rădăcinilor: și (în total).

Răspuns: ; .

Sarcina 3.

Hmm... Unde este?

Este necesar să transferați toți termenii într-o singură parte:

Suma rădăcinilor este egală cu produsul.

Da, oprește-te! Ecuația nu este dată. Dar teorema lui Vieta este aplicabilă numai în ecuațiile date. Deci mai întâi trebuie să aduceți ecuația. Dacă nu o puteți aduce în discuție, renunțați la această idee și rezolvați-o într-un alt mod (de exemplu, prin discriminant). Permiteți-mi să vă reamintesc că a aduce o ecuație pătratică înseamnă a face coeficientul de conducere egal cu:

Amenda. Atunci suma rădăcinilor este egală, iar produsul.

Este mai ușor să ridici aici: până la urmă - un număr prim (scuze pentru tautologie).

Răspuns: ; .

Sarcina 4.

Termenul liber este negativ. Ce este atât de special? Și faptul că rădăcinile vor fi de semne diferite. Și acum, în timpul selecției, verificăm nu suma rădăcinilor, ci diferența dintre modulele lor: această diferență este egală, ci produsul.

Deci, rădăcinile sunt egale și, dar una dintre ele este cu minus. Teorema lui Vieta ne spune că suma rădăcinilor este egală cu al doilea coeficient cu semnul opus, adică. Aceasta înseamnă că rădăcina mai mică va avea un minus: și, din moment ce.

Răspuns: ; .

Sarcina 5.

Ce trebuie făcut mai întâi? Așa este, dați ecuația:

Din nou: selectăm factorii numărului, iar diferența lor ar trebui să fie egală cu:

Rădăcinile sunt egale și, dar una dintre ele este minus. Care? Suma lor trebuie să fie egală, ceea ce înseamnă că cu un minus va exista o rădăcină mai mare.

Răspuns: ; .

Lasă-mă să rezum:
  1. Teorema lui Vieta este folosită numai în ecuațiile pătratice date.
  2. Folosind teorema Vieta, puteți găsi rădăcinile prin selecție, oral.
  3. Dacă ecuația nu este dată sau nu a fost găsită nicio pereche adecvată de factori ai termenului liber, atunci nu există rădăcini întregi și trebuie să o rezolvați în alt mod (de exemplu, prin discriminant).

3. Metoda de selecție a pătratului complet

Dacă toți termenii care conțin necunoscutul sunt reprezentați ca termeni din formulele de înmulțire prescurtată - pătratul sumei sau al diferenței - atunci după schimbarea variabilelor, ecuația poate fi reprezentată ca o ecuație pătratică incompletă de tip.

De exemplu:

Exemplul 1:

Rezolvați ecuația: .

Decizie:

Răspuns:

Exemplul 2:

Rezolvați ecuația: .

Decizie:

Răspuns:

În general, transformarea va arăta astfel:

Asta implică: .

Nu-ți aduce aminte de nimic? Este discriminatorul! Exact așa s-a obținut formula discriminantă.

ECUAȚII CADRATICE. SCURT DESPRE PRINCIPALA

Ecuație cuadratică este o ecuație de formă, unde este necunoscuta, sunt coeficienții ecuației pătratice, este termenul liber.

Ecuația pătratică completă- o ecuație în care coeficienții nu sunt egali cu zero.

Ecuație pătratică redusă- o ecuaţie în care coeficientul, adică: .

Ecuație pătratică incompletă- o ecuație în care coeficientul și/sau termenul liber c sunt egale cu zero:

  • dacă coeficientul, ecuația are forma: ,
  • dacă este un termen liber, ecuația are forma: ,
  • dacă și, ecuația are forma: .

1. Algoritm pentru rezolvarea ecuațiilor pătratice incomplete

1.1. O ecuație pătratică incompletă de forma, unde:

1) Exprimați necunoscutul: ,

2) Verificați semnul expresiei:

  • dacă, atunci ecuația nu are soluții,
  • dacă, atunci ecuația are două rădăcini.

1.2. O ecuație pătratică incompletă de forma, unde:

1) Să luăm factorul comun din paranteze: ,

2) Produsul este egal cu zero dacă cel puțin unul dintre factori este egal cu zero. Prin urmare, ecuația are două rădăcini:

1.3. O ecuație pătratică incompletă de forma, unde:

Această ecuație are întotdeauna o singură rădăcină: .

2. Algoritm pentru rezolvarea ecuaţiilor pătratice complete de forma unde

2.1. Soluție folosind discriminantul

1) Să aducem ecuația la forma standard: ,

2) Calculați discriminantul folosind formula: , care indică numărul de rădăcini ale ecuației:

3) Aflați rădăcinile ecuației:

  • dacă, atunci ecuația are o rădăcină, care se găsește prin formula:
  • dacă, atunci ecuația are o rădăcină, care se găsește prin formula:
  • dacă, atunci ecuația nu are rădăcini.

2.2. Rezolvare folosind teorema lui Vieta

Suma rădăcinilor ecuației pătratice reduse (o ecuație de formă, unde) este egală, iar produsul rădăcinilor este egal, i.e. , A.

2.3. Soluție pătrat complet

Ecuațiile cuadratice sunt folosite în rezolvarea multor probleme. O parte semnificativă a problemelor care se rezolvă cu ușurință cu ajutorul ecuațiilor de gradul I pot fi rezolvate și pur aritmetic, deși uneori într-un mod mult mai dificil, mai lung și adesea artificial. Problemele care duc la ecuații pătratice, de regulă, nu se pretează deloc la soluții aritmetice. Numeroase și mai variate întrebări de fizică, mecanică, hidromecanică, aerodinamică și multe alte științe aplicate duc la astfel de probleme.

Etapele principale ale compilarii ecuatiilor patratice in functie de conditiile problemei sunt aceleasi ca si in rezolvarea problemelor care conduc la ecuatii de gradul I. Să dăm exemple.

Sarcină. 1. Două dactilografe au retasat manuscrisul în 6 ore. 40 min. Cât timp i-ar lua fiecărei dactilografe să retaseze manuscrisul, lucrând singur, dacă primul ar petrece cu 3 ore mai mult la această lucrare decât al doilea?

Decizie. Lăsați cel de-al doilea dactilograf să petreacă x ore retipărind manuscrisul. Aceasta înseamnă că prima dactilografă va petrece ore întregi la același loc de muncă.

Vom afla ce parte din întreaga muncă execută fiecare dactilograf într-o oră și ce parte - ambele împreună.

Prima dactilografă completează o parte într-o oră

A doua parte.

Ambele dactilografe interpretează o parte.

Prin urmare avem:

După semnificația problemei, un număr pozitiv

Înmulțiți ambele părți ale ecuației cu După simplificare, obținem o ecuație pătratică:

Deoarece , ecuația are două rădăcini. Prin formula (B) găsim:

Dar așa cum ar trebui să fie, această valoare nu este valabilă pentru această sarcină.

Răspuns. Prima dactilografă va petrece ore întregi la serviciu, a doua 12 ore.

Problema 2. Viteza proprie a aeronavei km pe oră. Avionul a zburat de două ori pe o distanță de 1 km: mai întâi în aval, apoi împotriva vântului, iar la al doilea zbor a petrecut mai multe ore. Calculați viteza vântului.

Vom descrie cursul soluției sub forma unei diagrame.