Tabel de derivate cu rădăcină pătrată. Rezolvarea derivatei pentru manechine: definiție, cum se găsește, exemple de soluții

Operația de găsire a unei derivate se numește diferențiere.

Ca urmare a rezolvării problemelor de găsire a derivatelor celor mai simple (și nu foarte simple) funcții prin definirea derivatei ca limită a raportului dintre increment și increment al argumentului, a apărut un tabel de derivate și reguli de diferențiere precis definite. . Isaac Newton (1643-1727) și Gottfried Wilhelm Leibniz (1646-1716) au fost primii care au lucrat în domeniul găsirii derivatelor.

Prin urmare, în timpul nostru, pentru a găsi derivata oricărei funcții, nu este necesar să se calculeze limita menționată mai sus a raportului dintre creșterea funcției și creșterea argumentului, ci trebuie doar să se utilizeze tabelul a derivatelor şi regulile de diferenţiere. Următorul algoritm este potrivit pentru găsirea derivatei.

Pentru a găsi derivata, aveți nevoie de o expresie sub semnul stroke descompune funcțiile simpleși stabiliți ce acțiuni (produs, sumă, coeficient) aceste funcții sunt legate. În plus, găsim derivatele funcțiilor elementare în tabelul de derivate, iar formulele pentru derivatele produsului, sumă și coeficient - în regulile de diferențiere. Tabelul derivatelor și regulile de diferențiere sunt date după primele două exemple.

Exemplul 1 Aflați derivata unei funcții

Decizie. Din regulile de diferențiere aflăm că derivata sumei funcțiilor este suma derivatelor funcțiilor, adică.

Din tabelul derivatelor, aflăm că derivata lui „X” este egală cu unu, iar derivata sinusului este cosinus. Inlocuim aceste valori in suma derivatelor si gasim derivata ceruta de conditia problemei:

Exemplul 2 Aflați derivata unei funcții

Decizie. Diferențiați ca derivată a sumei, în care al doilea termen cu factor constant, poate fi scos din semnul derivatei:

Dacă există încă întrebări despre unde vine ceva, acestea, de regulă, devin clare după citirea tabelului de derivate și a celor mai simple reguli de diferențiere. Mergem la ei chiar acum.

Tabel de derivate ale funcțiilor simple

1. Derivată a unei constante (număr). Orice număr (1, 2, 5, 200...) care se află în expresia funcției. Mereu zero. Acest lucru este foarte important de reținut, deoarece este necesar foarte des
2. Derivată a variabilei independente. Cel mai adesea „x”. Întotdeauna egal cu unu. Acest lucru este, de asemenea, important de reținut
3. Derivată de grad. Când rezolvați probleme, trebuie să convertiți rădăcinile nepătrate într-o putere.
4. Derivată a unei variabile la puterea lui -1
5. Derivată a rădăcinii pătrate
6. Derivat sinus
7. Derivat de cosinus
8. Derivată tangentă
9. Derivat de cotangente
10. Derivată a arcsinusului
11. Derivată a arccosinusului
12. Derivată de arc tangente
13. Derivată a tangentei inverse
14. Derivată a logaritmului natural
15. Derivata unei functii logaritmice
16. Derivată a exponentului
17. Derivată a funcției exponențiale

Reguli de diferențiere

1. Derivată a sumei sau a diferenței
2. Derivat al unui produs
2a. Derivată a unei expresii înmulțită cu un factor constant
3. Derivată a coeficientului
4. Derivată a unei funcții complexe

Regula 1Dacă funcţiile

sunt diferențiabile la un moment dat, apoi în același punct funcțiile

și

acestea. derivata sumei algebrice a funcțiilor este egală cu suma algebrică a derivatelor acestor funcții.

Consecinţă. Dacă două funcții diferențiabile diferă printr-o constantă, atunci derivatele lor sunt, adică

Regula 2Dacă funcţiile

sunt diferențiabile la un moment dat, atunci produsul lor este, de asemenea, diferențiabil în același punct

și

acestea. derivata produsului a două funcții este egală cu suma produselor fiecăreia dintre aceste funcții și derivata celeilalte.

Consecința 1. Factorul constant poate fi scos din semnul derivatei:

Consecința 2. Derivata produsului mai multor functii diferentiabile este egala cu suma produselor derivatei fiecaruia dintre factori si a tuturor celorlalti.

De exemplu, pentru trei multiplicatori:

Regula 3Dacă funcţiile

diferentiabil la un moment dat și , atunci în acest moment și câtul lor este diferențiabil.u/v și

acestea. derivata unui cât de două funcții este egală cu o fracție al cărei numărător este diferența dintre produsele numitorului și derivata numărătorului și numărătorului și derivata numitorului, iar numitorul este pătratul numărătorului anterior .

Unde să te uiți pe alte pagini

Când găsiți derivata produsului și coeficientul în probleme reale, este întotdeauna necesar să aplicați mai multe reguli de diferențiere simultan, așa că mai multe exemple despre aceste derivate sunt în articol.„Derivata unui produs și a unui coeficient”.

Cometariu. Nu trebuie să confundați o constantă (adică un număr) ca termen din sumă și ca factor constant! În cazul unui termen, derivata acestuia este egală cu zero, iar în cazul unui factor constant, se scoate din semnul derivatelor. Aceasta este o greșeală tipică care apare în etapa inițială a studiului derivatelor, dar pe măsură ce studentul obișnuit rezolvă mai multe exemple cu una-două componente, această greșeală nu mai face.

Și dacă, la diferențierea unui produs sau a unui coeficient, ai un termen u"v, în care u- un număr, de exemplu, 2 sau 5, adică o constantă, atunci derivata acestui număr va fi egală cu zero și, prin urmare, întregul termen va fi egal cu zero (un astfel de caz este analizat în exemplul 10) .

O altă greșeală comună este soluția mecanică a derivatei unei funcții complexe ca derivată a unei funcții simple. Asa de derivata unei functii complexe dedicat unui articol separat. Dar mai întâi vom învăța să găsim derivate ale funcțiilor simple.

Pe parcurs, nu te poți lipsi de transformări ale expresiilor. Pentru a face acest lucru, poate fi necesar să deschideți în noi manuale Windows Acțiuni cu puteri și rădăciniși Acțiuni cu fracții .

Dacă cauți soluții la derivate cu puteri și rădăcini, adică atunci când funcția arată ca , apoi urmează lecția „Derivată a sumei fracțiilor cu puteri și rădăcini”.

Dacă aveți o sarcină ca , atunci te afli la lecția „Derivate ale funcțiilor trigonometrice simple”.

Exemple pas cu pas - cum să găsiți derivatul

Exemplul 3 Aflați derivata unei funcții

Decizie. Determinăm părțile expresiei funcției: întreaga expresie reprezintă produsul, iar factorii săi sunt sume, în al doilea dintre care unul dintre termeni conține un factor constant. Aplicam regula de diferentiere a produsului: derivata produsului a doua functii este egala cu suma produselor fiecareia dintre aceste functii si derivata celeilalte:

În continuare, aplicăm regula de diferențiere a sumei: derivata sumei algebrice a funcțiilor este egală cu suma algebrică a derivatelor acestor funcții. În cazul nostru, în fiecare sumă, al doilea termen cu semnul minus. În fiecare sumă, vedem atât o variabilă independentă, a cărei derivată este egală cu unu, cât și o constantă (număr), a cărei derivată este egală cu zero. Deci, „x” se transformă în unu, iar minus 5 - în zero. În a doua expresie, „x” este înmulțit cu 2, așa că înmulțim doi cu aceeași unitate ca și derivata lui „x”. Obținem următoarele valori ale derivatelor:

Inlocuim derivatele gasite in suma produselor si obtinem derivata intregii functii ceruta de conditia problemei:

Exemplul 4 Aflați derivata unei funcții

Decizie. Ni se cere să găsim derivata coeficientului. Aplicam formula de diferentiere a unui cat: derivata unui cat de doua functii este egala cu o fractiune al carei numarator este diferenta dintre produsele numitorului si derivata numaratorului si numaratorului si derivata numitorului, si numitorul este pătratul fostului numărător. Primim:

Am găsit deja derivata factorilor din numărător în Exemplul 2. De asemenea, să nu uităm că produsul, care este al doilea factor la numărător, este luat cu semnul minus în exemplul curent:

Dacă căutați soluții la astfel de probleme în care trebuie să găsiți derivata unei funcții, unde există o grămadă continuă de rădăcini și grade, cum ar fi, de exemplu, atunci bun venit la curs „Derivata sumei fracțiilor cu puteri și rădăcini” .

Dacă trebuie să aflați mai multe despre derivatele sinusurilor, cosinusurilor, tangentelor și altor funcții trigonometrice, adică atunci când funcția arată ca , atunci ai o lecție „Derivate ale funcțiilor trigonometrice simple” .

Exemplul 5 Aflați derivata unei funcții

Decizie. În această funcție, vedem un produs, unul dintre factorii căruia este rădăcina pătrată a variabilei independente, cu derivata căreia ne-am familiarizat în tabelul derivatelor. Conform regulii de diferențiere a produsului și a valorii tabelare a derivatei rădăcinii pătrate, obținem:

Exemplul 6 Aflați derivata unei funcții

Decizie. În această funcție, vedem coeficientul, al cărui dividend este rădăcina pătrată a variabilei independente. Conform regulii de diferențiere a coeficientului, pe care am repetat-o ​​și aplicat în exemplul 4, și a valorii tabelare a derivatei rădăcinii pătrate, obținem:

Pentru a scăpa de fracția din numărător, înmulțiți numărătorul și numitorul cu .

Salutare dragi cititori. După ce ați citit articolul, probabil că veți avea o întrebare logică: „De ce, de fapt, este necesar acest lucru?”. Din această cauză, consider mai întâi necesar să informez în prealabil că metoda dorită de rezolvare a ecuațiilor pătratice este prezentată mai mult din latura morală și estetică a matematicii decât din partea aplicării practice uscate. De asemenea, îmi cer scuze în avans acelor cititori care consideră inacceptabile spusele mele de amatori. Deci, să începem să batem cuiele cu un microscop.

Avem o ecuație algebrică de gradul doi (este și pătratică) în formă generală:

Să trecem de la o ecuație pătratică la o funcție pătratică:

Unde, evident, este necesar să se găsească astfel de valori ale argumentului funcției în care ar returna zero.

Se pare că rezolvă ecuația pătratică folosind teorema lui Vieta sau prin discriminant. Dar nu pentru asta suntem aici. Să luăm derivatul!

Pe baza definiției semnificației fizice a derivatei de ordinul întâi, este clar că prin substituirea argumentului în funcția obținută mai sus, obținem (în special) viteză funcția se modifică în punctul dat de acest argument.

De data aceasta am obținut „rata de viteză” a modificării funcției (adică accelerare) într-un anumit punct. După ce analizăm puțin rezultatul, putem concluziona că „accelerarea” este o constantă care nu depinde de argumentul funcției - rețineți acest lucru.

Acum să ne amintim puțină fizică și mișcare uniform accelerată (RUD). Ce avem în arsenalul nostru? Așa este, există o formulă pentru a determina coordonatele mișcării de-a lungul axei în timpul mișcării dorite:

Unde - timp, - viteza inițială, - accelerație.
Este ușor de observat că funcția noastră originală este doar un RUD.

Nu este formula de deplasare pentru clapete o consecință a rezolvării unei ecuații pătratice?

Nu. Formula pentru accelerația de mai sus este de fapt rezultatul luării integralei formulei de viteză pentru PORD. Sau din grafic puteți găsi aria figurii. Va ieși un trapez.
Formula de deplasare pentru accelerație nu rezultă din soluția oricărei ecuații pătratice. Acest lucru este foarte important, altfel nu ar avea rost în articol.


Acum rămâne să ne dăm seama ce este ce și ce ne lipsește.

Avem deja „accelerare” - este derivata de ordinul doi, derivată mai sus. Dar pentru a obține viteza inițială , trebuie să luăm, în general, orice (să o notăm ca ) și să o înlocuim în derivata de acum primul ordin - pentru că va fi cea dorită.

În acest caz, se pune întrebarea, care ar trebui luată? Evident, astfel încât viteza inițială să fie egală cu zero, astfel încât formula pentru „deplasare la accelerație” devine:

În acest caz, facem o ecuație pentru căutare:

[substituit în derivata de ordinul întâi]

Rădăcina unei astfel de ecuații în raport cu va fi:

Și valoarea funcției originale cu un astfel de argument va fi:

Acum devine evident că:

Adunarea tuturor pieselor puzzle-ului împreună:

Aici avem soluția finală a problemei. În general, nu am descoperit America - pur și simplu am ajuns la formula de rezolvare a unei ecuații pătratice prin discriminant într-un mod indirect. Acest lucru nu are sens practic (aproximativ în același mod, pot fi rezolvate ecuațiile de gradul I / II ale oricărei forme (nu neapărat generale).

Scopul acestui articol este, în special, de a trezi interesul pentru analiza mat. funcții și matematică în general.

Peter a fost cu tine, mulțumesc pentru atenție!

În această lecție, vom învăța cum să aplicăm formule și reguli de diferențiere.

Exemple. Găsiți derivate ale funcțiilor.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Aplicarea Regulii eu, formule 4, 2 și 1. Primim:

y'=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x6 -2x+5. Rezolvăm similar, folosind aceleași formule și formula 3.

y’=3∙6x 5 -2=18x 5 -2.

Aplicarea Regulii eu, formule 3, 5 și 6 și 1.

Aplicarea Regulii IV, formule 5 și 1 .

În al cincilea exemplu, conform regulii eu derivata sumei este egală cu suma derivatelor și tocmai am găsit derivata primului termen (exemplu 4 ), prin urmare, vom găsi derivate al 2-leași al 3-lea termeni, și pentru 1 termen, putem scrie imediat rezultatul.

Diferențierea al 2-leași al 3-lea termeni conform formulei 4 . Pentru a face acest lucru, transformăm rădăcinile gradului al treilea și al patrulea în numitori în puteri cu exponenți negativi și apoi, conform 4 formula, găsim derivatele puterilor.

Priviți acest exemplu și rezultatul. Ai prins modelul? Bun. Aceasta înseamnă că avem o formulă nouă și o putem adăuga la tabelul nostru de derivate.

Să rezolvăm al șaselea exemplu și să obținem încă o formulă.

Folosim regula IV si formula 4 . Reducem fracțiile rezultate.

Ne uităm la această funcție și derivata ei. Desigur, ați înțeles modelul și sunteți gata să numiți formula:

Învățați formule noi!

Exemple.

1. Găsiți incrementul argumentului și incrementul funcției y= x2 dacă valoarea iniţială a argumentului a fost 4 , și noul 4,01 .

Decizie.

Noua valoare a argumentului x \u003d x 0 + Δx. Înlocuiți datele: 4.01=4+Δx, de unde și incrementul argumentului Δх=4,01-4=0,01. Creșterea unei funcții, prin definiție, este egală cu diferența dintre valorile noi și anterioare ale funcției, adică. Δy \u003d f (x 0 + Δx) - f (x 0). Din moment ce avem o funcție y=x2, apoi Δy\u003d (x 0 + Δx) 2 - (x 0) 2 \u003d (x 0) 2 + 2x 0 · Δx+(Δx) 2 - (x 0) 2 \u003d 2x 0 · ∆x+(∆x) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Răspuns: increment de argument Δх=0,01; creșterea funcției Δy=0,0801.

A fost posibil să găsiți incrementul funcției într-un alt mod: Δy\u003d y (x 0 + Δx) -y (x 0) \u003d y (4,01) -y (4) \u003d 4,01 2 -4 2 \u003d 16,0801-16 \u003d 0,0801.

2. Aflați unghiul de înclinare al tangentei la graficul funcției y=f(x) la punct x 0, dacă f "(x 0) \u003d 1.

Decizie.

Valoarea derivatei la punctul de contact x 0și este valoarea tangentei pantei tangentei (sensul geometric al derivatei). Noi avem: f "(x 0) \u003d tgα \u003d 1 → α \u003d 45 °, la fel de tg45°=1.

Răspuns: tangenta la graficul acestei functii formeaza un unghi cu directia pozitiva a axei Ox, egal cu 45°.

3. Deduceți formula derivatei unei funcții y=xn.

Diferenţiere este actul de a găsi derivata unei funcții.

La găsirea derivatelor, se folosesc formule care au fost derivate pe baza definiției derivatei, în același mod în care am derivat formula pentru gradul derivat: (x n)" = nx n-1.

Iată formulele.

Tabel de derivate va fi mai ușor de memorat pronunțând formulări verbale:

1. Derivata unei valori constante este zero.

2. Cursa X este egală cu unu.

3. Factorul constant poate fi scos din semnul derivatei.

4. Derivata unui grad este egală cu produsul exponentului acestui grad cu gradul cu aceeași bază, dar exponentul este cu unul mai puțin.

5. Derivata rădăcinii este egală cu una împărțită la două din aceleași rădăcini.

6. Derivata unității împărțită la x este minus unu împărțit la x pătrat.

7. Derivata sinusului este egală cu cosinusul.

8. Derivata cosinusului este egală cu minus sinus.

9. Derivata tangentei este egală cu unu împărțit la pătratul cosinusului.

10. Derivata cotangentei este minus unu împărțit la pătratul sinusului.

Noi predam reguli de diferențiere.

1. Derivata sumei algebrice este egală cu suma algebrică a termenilor derivați.

2. Derivata produsului este egală cu produsul derivatei primului factor cu al doilea plus produsul primului factor cu derivata celui de-al doilea.

3. Derivata lui „y” împărțită la „ve” este egală cu o fracție, în numărătorul căreia „y este o lovitură înmulțită cu „ve” minus „y, înmulțit cu o lovitură”, iar la numitor - „ve pătrat ”.

4. Un caz special al formulei 3.

Să învățăm împreună!

Pagina 1 din 1 1

Definiție. Fie definită funcția \(y = f(x) \) într-un interval care conține punctul \(x_0 \) în interior. Să incrementăm \(\Delta x \) la argument pentru a nu părăsi acest interval. Găsiți incrementul corespunzător al funcției \(\Delta y \) (când treceți de la punctul \(x_0 \) la punctul \(x_0 + \Delta x \)) și compuneți relația \(\frac(\Delta y )(\Delta x) \). Dacă există o limită a acestei relații la \(\Delta x \rightarrow 0 \), atunci limita indicată se numește funcţie derivată\(y=f(x) \) în punctul \(x_0 \) și notăm \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Simbolul y este adesea folosit pentru a desemna derivata. Rețineți că y" = f(x) este o funcție nouă, dar asociată în mod natural cu funcția y = f(x), definită în toate punctele x în care există limita de mai sus. Această funcție se numește astfel: derivată a funcției y \u003d f (x).

Sensul geometric al derivatului constă din următoarele. Dacă o tangentă care nu este paralelă cu axa y poate fi desenată pe graficul funcției y \u003d f (x) într-un punct cu abscisa x \u003d a, atunci f (a) exprimă panta tangentei:
\(k = f"(a)\)

Deoarece \(k = tg(a) \), egalitatea \(f"(a) = tg(a) \) este adevărată.

Și acum interpretăm definiția derivatei în termeni de egalități aproximative. Fie funcția \(y = f(x) \) să aibă o derivată într-un anumit punct \(x \):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Aceasta înseamnă că lângă punctul x, egalitatea aproximativă \(\frac(\Delta y)(\Delta x) \approx f"(x) \), adică \(\Delta y \approx f"(x) \cdot \Deltax\). Semnificația semnificativă a egalității aproximative obținute este următoarea: creșterea funcției este „aproape proporțională” cu creșterea argumentului, iar coeficientul de proporționalitate este valoarea derivatei la un punct dat x. De exemplu, pentru funcția \(y = x^2 \) egalitatea aproximativă \(\Delta y \approx 2x \cdot \Delta x \) este validă. Dacă analizăm cu atenție definiția derivatei, vom constata că aceasta conține un algoritm pentru găsirea acesteia.

Să o formulăm.

Cum să găsiți derivata funcției y \u003d f (x)?

1. Fixați valoarea \(x \), găsiți \(f(x) \)
2. Incrementați argumentul \(x \) \(\Delta x \), mergeți la punct nou\(x+ \Delta x \), găsiți \(f(x+ \Delta x) \)
3. Găsiți incrementul funcției: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Compuneți relația \(\frac(\Delta y)(\Delta x) \)
5. Calculați $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Această limită este derivata funcției la x.

Dacă funcția y = f(x) are o derivată în punctul x, atunci se numește derivabilă în punctul x. Se numește procedura de găsire a derivatei funcției y \u003d f (x). diferenţiere funcțiile y = f(x).

Să discutăm următoarea întrebare: cum sunt legate continuitatea și diferențiabilitatea unei funcții într-un punct?

Fie funcția y = f(x) diferențiabilă în punctul x. Atunci o tangentă poate fi trasă la graficul funcției în punctul M (x; f (x)) și, reamintim, panta tangentei este egală cu f "(x). Un astfel de grafic nu se poate "rupe" la punctul M, adică funcția trebuie să fie continuă la x.

Era raționament „pe degete”. Să prezentăm un argument mai riguros. Dacă funcția y = f(x) este diferențiabilă în punctul x, atunci egalitatea aproximativă \(\Delta y \approx f"(x) \cdot \Delta x \) este valabilă. zero, atunci \(\Delta y \ ) va tinde, de asemenea, spre zero, iar aceasta este condiția pentru continuitatea funcției într-un punct.

Asa de, dacă o funcție este diferențiabilă într-un punct x, atunci este și continuă în acel punct.

Reversul nu este adevărat. De exemplu: funcția y = |x| este continuă peste tot, în special în punctul x = 0, dar tangenta la graficul funcției la „punctul de îmbinare” (0; 0) nu există. Dacă la un moment dat este imposibil să desenezi o tangentă la graficul funcției, atunci nu există nicio derivată în acest punct.

Încă un exemplu. Funcția \(y=\sqrt(x) \) este continuă pe întreaga dreaptă numerică, inclusiv în punctul x = 0. Și tangenta la graficul funcției există în orice punct, inclusiv în punctul x = 0. . Dar în acest moment tangenta coincide cu axa y, adică este perpendiculară pe axa absciselor, ecuația sa are forma x \u003d 0. Nu există nicio pantă pentru o astfel de dreaptă, ceea ce înseamnă că \ ( f „(0) \) nici nu există

Deci, ne-am familiarizat cu o nouă proprietate a unei funcții - diferențiabilitatea. Cum poți spune dacă o funcție este diferențiabilă de graficul unei funcții?

Răspunsul este de fapt dat mai sus. Dacă la un moment dat o tangentă poate fi desenată la graficul unei funcții care nu este perpendiculară pe axa x, atunci în acest moment funcția este diferențiabilă. Dacă la un moment dat tangenta la graficul funcției nu există sau este perpendiculară pe axa x, atunci în acest moment funcția nu este diferențiabilă.

Reguli de diferențiere

Operația de găsire a derivatei se numește diferenţiere. Atunci când efectuați această operație, de multe ori trebuie să lucrați cu câte, sume, produse ale funcțiilor, precum și cu „funcții ale funcțiilor”, adică funcții complexe. Pe baza definiției derivatei, putem deriva reguli de diferențiere care facilitează această muncă. Dacă C este un număr constant și f=f(x), g=g(x) sunt unele funcții diferențiabile, atunci următoarele sunt adevărate reguli de diferențiere:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Derivată funcție compusă:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Tabel de derivate ale unor funcții

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arctg) x)" = \frac(-1)(1+x^2) $ $

Este absolut imposibil să rezolvi probleme fizice sau exemple de matematică fără cunoștințe despre derivată și metode de calcul. Derivata este unul dintre cele mai importante concepte ale analizei matematice. Am decis să dedicăm articolul de astăzi acestui subiect fundamental. Ce este o derivată, care este semnificația sa fizică și geometrică, cum se calculează derivata unei funcții? Toate aceste întrebări pot fi combinate într-una singură: cum să înțelegeți derivatul?

Sensul geometric și fizic al derivatului

Să existe o funcție f(x) , dat într-un anumit interval (a,b) . Punctele x și x0 aparțin acestui interval. Când x se schimbă, funcția în sine se schimbă. Schimbarea argumentului - diferența valorilor sale x-x0 . Această diferență este scrisă ca delta x și se numește increment de argument. O modificare sau o creștere a unei funcții este diferența dintre valorile unei funcții în două puncte. Definiție derivată:

Derivata unei funcții într-un punct este limita raportului dintre incrementul funcției la un punct dat și incrementul argumentului atunci când acesta din urmă tinde spre zero.

Altfel se poate scrie asa:

Ce rost are să găsești o astfel de limită? Dar care:

derivata unei funcții într-un punct este egală cu tangentei unghiului dintre axa OX și tangentei la graficul funcției într-un punct dat.


Semnificația fizică a derivatului: derivata în timp a traseului este egală cu viteza mișcării rectilinie.

Într-adevăr, încă din timpul școlii, toată lumea știe că viteza este o cale privată. x=f(t) si timpul t . Viteza medie pe o anumită perioadă de timp:

Pentru a afla viteza de mișcare la un moment dat t0 trebuie să calculați limita:

Prima regulă: scoateți constanta

Constanta poate fi scoasă din semnul derivatei. Mai mult, trebuie făcut. Când rezolvați exemple la matematică, luați ca regulă - dacă puteți simplifica expresia, asigurați-vă că simplificați .

Exemplu. Să calculăm derivata:

Regula a doua: derivata sumei functiilor

Derivata sumei a doua functii este egala cu suma derivatelor acestor functii. Același lucru este valabil și pentru derivata diferenței de funcții.

Nu vom da o demonstrație a acestei teoreme, ci mai degrabă vom lua în considerare un exemplu practic.

Aflați derivata unei funcții:

Regula trei: derivata produsului de funcții

Derivata produsului a doua functii diferentiabile se calculeaza prin formula:

Exemplu: găsiți derivata unei funcții:

Decizie:

Aici este important de spus despre calculul derivatelor funcțiilor complexe. Derivata unei functii complexe este egala cu produsul derivatei acestei functii fata de argumentul intermediar cu derivata argumentului intermediar fata de variabila independenta.

În exemplul de mai sus, întâlnim expresia:

În acest caz, argumentul intermediar este de 8x față de a cincea putere. Pentru a calcula derivata unei astfel de expresii, luăm în considerare mai întâi derivata funcției externe față de argumentul intermediar și apoi înmulțim cu derivata argumentului intermediar însuși față de variabila independentă.

Regula a patra: derivata coeficientului a două funcții

Formula pentru determinarea derivatei unui cât de două funcții:

Am încercat să vorbim despre derivate pentru manechine de la zero. Acest subiect nu este atât de simplu pe cât pare, așa că fiți atenți: există adesea capcane în exemple, așa că aveți grijă când calculați derivatele.

Cu orice întrebare pe acest subiect și alte subiecte, puteți contacta serviciul studenți. În scurt timp, vă vom ajuta să rezolvați cel mai dificil control și să vă ocupați de sarcini, chiar dacă nu v-ați mai ocupat niciodată de calculul derivatelor.