Что такое сравнение отрезков. Видеоурок «Сравнение отрезков и углов

Урок № 4 (15.09.16)

Предмет: геометрия, 7 класс.

Тема: Сравнение отрезков и углов.

Цели урока:

1) Обучающая: формирование теоретических знаний по теме «Сравнение отрезков и углов»; формирование навыков решения задач на сравнение отрезков и углов.

2) Развивающая : развитие умений применять полученные теоретические знания при выполнении практических заданий.

3) Воспитывающая : воспитание интереса к изучению математики, ответственности, самостоятельности.

Оборудование: учебник «Геометрия 7 – 9 класс» Л.С. Атанасян и др., рабочая тетрадь, карандаш, линейка, раздаточный материал, фигуры из картона.

Тип урока: изучение нового материала

План урока:

    Организационный момент.

    Актуализация опорных знаний.

    Получение знаний.

    Закрепление нового материала.

    Рефлексия.

    Домашнее задание.

Ход урока:

1. Организационный момент.

Приветствие учащихся. Ставятся цели и определяются задачи урока.

Объявляется тема урока. Учащиеся записывают тему урока и дату в рабочих тетрадях.

2. Актуализация опорных знаний.

Давайте вспомним из материала предыдущего урока, что такое отрезок и угол (Учащимся предлагается ответить на вопросы):

– Что такое отрезок?

– Как можно обозначать отрезки?

– Что называют углом?

– Как обозначают углы?

– Изобразите развёрнутый и неразвёрнутый углы.

Сегодня на уроке мы снова поговорим об отрезках и углах, а точнее выясним, как сравнить два отрезка или два угла. Также познакомимся с новым для вас понятием биссектрисы угла.

3. Получение знаний.

Каждому из вас известно, что в окружающем нас мире встречаются предметы, которые имеют одинаковую форму и одинаковые размеры. Например, два одинаковых карандаша, два одинаковых автомобиля, два одинаковых будильника.

В геометрии две фигуры, имеющие одинаковую форму и одинаковые размеры, называют равными.

Давайте возьмём две фигуры F 1 и F 2 (рисунок 1), вырезанные из бумаги.

Рисунок 1.

Чтобы установить, равны они или нет, наложим одну фигуру на другую. Предположим, что наши фигуры совместились, тогда можем сказать, что они равны.

А вот некоторые фигуры P 1 и P 2 (рисунок 2).

Рисунок 2.

Если попробуем наложить их друг на друга эти две фигуры, то увидим, что их совместить невозможно, а, следовательно, они не равны.

Можем сделать следующий вывод:

Две геометрические фигуры называются равными, если их можно совместить наложением .

Поговорим, как сравнить два отрезка. Возьмём два произвольных отрезка (рисунок 3).

Рисунок 3.

Чтобы установить, равны данные отрезки или нет, наложим один отрезок на другой так, чтобы конец одного отрезка совместился с концом другого (рисунок 3). При этом совместятся и два других конца отрезков, а, следовательно, отрезки равны.

Теперь возьмём отрезок АВ и отрезок АС (рисунок 4), и наложим их друг на друга таким же образом. Видим, что отрезки не совместились полностью, а значит, они не равны.

Рисунок 4.

Из рисунка также видно, что отрезок АВ составляет часть отрезка АС, поэтому отрезок АВ меньше отрезка АС. Записывают это так: АВ < АС.

Поговорим о том, что же называют серединой отрезка . Рассмотрим отрезок АВ. Отметим на нём точку С, которая делит его на две равные части (рисунок 5). Таким образом, можно сказать, что точка С и есть середина отрезка АВ, т.е. отрезок АС равен отрезку СВ.

Рисунок 5.

Сформулируем определение:

Точка отрезка, делящая его пополам, т. е. на два равных отрезка, называется серединой отрезка .

Далее рассмотрим два неразвёрнутых угла: угол 1 и угол 2 (рисунок 6). Чтобы установить, равны они или нет, наложим один угол на другой так, чтобы сторона одного угла совместилась со стороной другого, а две другие оказались по одну сторону от совместившихся сторон.

Рисунок 6.

Если две другие стороны также совместятся, то и углы полностью совместятся, а, значит, они равны. Но в нашем случае эти стороны не совместились, следовательно, наши углы не равны, и меньшим является угол, который составляет часть другого, а это угол 1.

Записываем это так: 1 < 2.

Возьмём неразвёрнутый угол АОС и развёрнутый угол ВОС (рисунок 7), наложим их друг на друга указанным выше способом (рисунок 8), то увидим, что неразвёрнутый угол составляет часть развёрнутого, а, следовательно, развёрнутый угол больше неразвёрнутого, т.е. угол ВОС больше угла АОС.

Рисунок 7.

Рисунок 8.

Следует отметить, что любые два развёрнутых угла , очевидно, равны.

И напоследок, возьмём некоторый угол hk . Проведём луч l из вершины этого угла так, чтобы он разделил его на два равных угла (рисунок 9).

Рисунок 9.

Таким образом, сформулируем следующее определение:

Луч, исходящий из вершины угла и делящий его на два равных угла, называется биссектрисой угла . В нашем случае луч l – биссектриса угла hk .

4. Закрепление нового материала.

Для закрепления материала учащимся предлагается выполнить следующие практические задания.

Задание 1. На прямой A отмечены точки C и D , которые лежат между точками A и B , точка C лежит между точками А и D , отрезки A D и CB равны. Является ли середина отрезка A B серединой отрезка CD (рисунок 10)?

Решение:

Рисунок 10.

А D = AC + CD , CB = CD + DB ,так как AD = CB , то АС= DB .

Пусть точка О – середина отрезка С D , т. е. СО=OD, CD = CO + OD .

AB=AO+OB, AO= АС + С O, OB=OD+DB. А так как АС= DB и СО=OD, то и АО=ОВ, а следовательно, О является серединой и отрезка АВ.

Задание 2. Углы AOB и COD на рисунке 11 равны, луч OE – биссектриса угла ВОС . Является ли луч OE биссектрисой угла AOD ?

Рисунок 11.

Решение: Рассмотрим ∠ AOD .

∠ AOD = ∠ AOE + ∠ EOD . Так как ∠ AOE = ∠ AO В + ∠ ВOE и ∠ EOD = ∠ EO С + ∠ СOD , причём ∠ AO В = ∠ СOD (по условию задачи), ∠ ВOE = =∠ EO С (так как ОЕ – биссектриса ∠ ВОС ), то ∠ AOE = ∠ EOD . Следовательно, ОЕ является биссектрисой ∠ AOD .

5. Рефлексия.

Подводятся итоги урока, обсуждается, что учащиеся узнали. Ребята по кругу высказываются одним предложением, выбирая начало фразы записанной на доске:

    сегодня я узнал…

    было интересно…

    было трудно…

    я выполнял задания…

    я понял, что…

    я научился…

    у меня получилось … Оценивается работа учащихся на уроке.

6. Домашнее задание: п. 5,6 стр.10-12, № 18, 20, 30 (доп-но).

Раздаточный материал.

    Сравнение геометрических фигур

В геометрии две фигуры, имеющие одинаковую форму и одинаковые размеры, называют равными.

Сравнение позволяет судить о равенстве фигур, и один из способов сравнить фигуры – наложение.

(Если две геометрические фигуры удаётся совместить наложением, они равны).

    Сравнение отрезков и углов

А) Как происходит совмещение отрезков AB и CD ?

Конец A одного отрезка совмещают с концом C другого отрезка. Если совпадают и другие концы B и D , то эти отрезки равны AB = CD .

Если нет, то один отрезок меньше другого и этот факт записывают также, как при сравнении чисел: AB < CD

Если совместить один конец отрезка с другим, то одна половина отрезка будет совмещена с другой.

На отрезке точку, которая делит его на две равные части, называют серединной отрезка.

Если точка K серединная точка отрезка JL , то JK = KL .

Б) Как происходит совмещение углов ABC и MNK ?

Вершину B одного угла совмещают с вершиной N другого угла и сторону BA одного угла накладывают на сторону NM другого угла так, чтобы другие стороны BC и NK были по одну сторону от совместившихся сторон.

§ 1 Равенство геометрических фигур

В повседневной жизни мы нередко встречаемся с равными фигурами: два одинаковых листа бумаги, две облицовочные плитки, две одинаковые тарелки. Представим, что вы решили украсить свой походный костюм нашивкой. Для этого вы рисуете на бумаге изображение, вырезаете его, затем накладываете на материал, из которого будет нашивка, и вновь вырезаете по границе. Фигуры, вырезанные из бумаги и из материала, равны, потому что они совмещаются одна с другой. На равенстве совмещенных фигур основаны раскрой материала для шитья одежды на фабриках, штамповка плоских деталей на заводе и т.д.

Итак, две геометрические фигуры называются равными, если их можно совместить наложением.

§ 2 Сравнение отрезков и углов

Рассмотрим два отрезка АВ и СD и ответим на вопрос: равны они или нет?

Для этого наложим отрезок АВ на отрезок СD так, чтобы один конец отрезков АВ совпал с концом отрезка СD, т.е. точка А совпала с точкой С.

Если при этом два других конца совместятся, т.е. точка В совпадет с точкой D, то отрезки АВ и СDравны.

Если точка В не совпадет с точкой D, то меньшим отрезком считается тот отрезок, который составляет часть другого. На рисунке отрезок СD составляет часть отрезка АВ, поэтому отрезок СD меньше отрезка АВ. Пишут СD < АВ.

А теперь возьмем отрезок МN и отметим на нем точку О так, что отрезки МО и NО будут равны.

Такая точка О, которая делит отрезок пополам, т.е. на два равных отрезка, называется серединой отрезка.

Рассмотрим два неразвернутых угла АОВ и СОD.

Чтобы сравнить два неразвернутых угла, надо наложить один угол на другой так, чтобы сторона одного угла совместилась со стороной другого, а две другие оказались по одну сторону от совместившихся сторон. Если сторона ОА совместится со стороной ОС, а сторона ОВ совместится со стороной ОD, то углы АОВ и СОD равны. Если же сторона ОВ не совместится со стороной ОD, то меньшим считается тот угол, который составляет часть другого. На рисунке угол АОВ меньше угла СОD, так как угол АОВ составляет часть угла СОD.

Рассмотрим развернутый угол, т.е. угол, обе стороны которого лежат на одной прямой. Неразвернутый угол составляет часть развернутого угла, поэтому любой развернутый угол больше любого неразвернутого угла, а два развернутых угла всегда равны.

А теперь из вершины угла проведем луч так, что он будет делить этот угол на два равных угла, такой луч называется биссектрисой угла.

На рисунке луч ОС - биссектриса угла АОВ, так как этот луч исходит из вершины угла АОВ и делит этот угол на два равных угла АОС и СОВ.

§ 3 Измерение отрезков. Единицы измерения

Фигуры на практике не всегда можно совместить наложением, например, невозможно таким образом проверить, равны ли земельные участки. Поэтому приходится искать другие способы установления равенства фигур. Для сравнения, например, отрезков пользуются измерением, т.е. находят длины отрезков. Чтобы измерить отрезок, надо его сравнить с некоторым другим отрезком, принятым за единицу измерения. Такой отрезок называют еще масштабным отрезком. За единицу измерения можно взять отрезок длиной 1 мм, 1 см, 1 дм, 1м, 1 км или другой отрезок. Выбрав единицу измерения, можно измерить любой отрезок, т.е. выразить его длину некоторым положительным числом. Это число показывает, сколько раз единица измерения и ее части укладываются в измеряемом отрезке.

Равные отрезки имеют равные длины.

Меньший отрезок имеет меньшую длину.

Когда произвольная точка С делит отрезок АВ на два отрезка, то длина всего отрезка АВ равна сумме длин отрезков АС и СВ.

Длину отрезка называют также расстояниеммежду его концами.

Международной единицей измерения выбран метр, это отрезок, приближенно равный одной сорока миллионной части земного меридиана. Эталон метра хранится во Франции, а копии хранятся во всех странах, в том числе и в России. Для измерения очень больших расстояний, например, измерение расстояний между планетами солнечной системы, используют единицу измерения световой год, это путь, который свет проходит в течение одного года. В старину на Руси использовались другие единицы измерения аршин, локоть, сажень.

Для измерения расстояний пользуются различными инструментами, например, линейка, штангенциркуль, рулетка.

§ 4 Решение задачи по теме урока

Решим задачу.

Отрезок ОD длиной 28 см разделен точкой М на два отрезка. Найдите расстояние между серединами получившихся отрезков ОМ и МD.

Расстояние между серединами отрезков ОМ и МD- это расстояние между точками А и В, оно равно сумме отрезков АМ и МВ.

Точка А - середина отрезка ОМ, значит отрезки ОА и АМ равны, точка В - середина отрезка МD, значит отрезки МВ и ВD равны. Отрезок ОD равен сумме отрезков ОА, АМ, МВ, ВD. Так как отрезок ОА равен отрезку АМ, отрезок МВ равен ВD, то длина отрезка ОD равна удвоенной сумме отрезков АМ и МВ, т.е. двум отрезкам АВ.

Следовательно, длину отрезка АВ находим так: 28:2=14 см. Это искомое расстояние между серединами отрезков ОМ и МD.

Список использованной литературы:

  1. Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М. : Просвещение, 2013. – 383 с.: ил.
  2. Гаврилова Н.Ф. Поурочные разработки по геометрии 7 класс. - М.: «ВАКО», 2004, 288с. – (В помощь школьному учителю).
  3. Белицкая О.В. Геометрия. 7 класс. Ч.1. Тесты. – Саратов: Лицей, 2014. – 64 с.

Использованные изображения:

Отрезок - часть прямой, ограниченная двумя точками, кратчайшее расстояние между этими точками. Существует несколько способов сравнения геометрических фигур, выбор такого способа зачастую зависит не только от условия задачи, но и от возможностей. Как же сравнивать отрезки, расскажем в этой статье.

Способы сравнения двух отрезков

В геометрии две фигуры, имеющие одинаковый размер и форму, называются равными. Сравнение фигур дает возможность сказать, одинаковы ли они. Одним из способов является наложение. Если фигуры удается совместить наложением, они считаются равными.

Сравнить фигуры - значит, определить, которая из них длиннее или короче. Ответ должен быть определенным, нельзя сказать, что один отрезок длиннее или равен второму. В математике такой ответ неправилен, его можно приравнять к отсутствию ответа.

Записывают результат сравнения с помощью знаков больше, меньше и знака равенство (>; <; =). Например, длина отрезка АБ - 2 см, а ВГ - 8 см, записываем результат сравнения так: АБ < ВГ или ВГ > АБ.

Сравнивать фигуры можно разными способами , выбор которых зависит от возможностей или условий:

  • визуальный способ;
  • измерительный;
  • сравнение наложением;
  • сравнение в координатной сетке.

Лучше всего, если они различаются по длине визуально, и, просто посмотрев на них, вы можете сказать, который длиннее. Но так бывает не всегда.

Измерение длины

Самый простой способ - измерение. Для этого можно использовать линейку, просто измерив длину отрезка, мы поймем, который из них длиннее. Если нет линейки, но они начерчены на листе в клетку, для измерения их длин можно посчитать клетки. В одном сантиметре две клетки . Это метод сравнения измерением длин, но есть еще метод сравнения наложением.

Наложение друг на друга

Как происходит совмещение АБ и ВГ:

  • Нужно конец, А одного из них совместить с концом В другого, если совпадают и другие концы этих отрезков - Б и Г, значит, они равны, что записывается с помощью знака равно.
  • Если нет, значит, один из них длиннее другого, и записывается это также с помощью математических знаков больше или меньше (> или <).

Бывает так, что при наложении одного отрезка на другой ровно половина одного из них будет совмещена с другим. Точку, которая делит его на две равные части, называют серединной точкой. И если у нас есть серединная точка В, то АВ=ВБ.

Примерно так же наложением сравнивают не только прямые, но и другие геометрические фигуры, а также углы.

Можно сделать «линейку» из полоски бумаги, при этом такую линейку не нужно линовать, достаточно отметить на ней начало и конец одного из отрезков. Затем вы прикладываете импровизированную линейку ко второму, совмещая его начало с первой отметкой и, сравниваете расположение второй отметки по отношению к его концу. Таким способом можно сравнивать и довольно большие фигуры, например, расстояние между столбиками забора, но использовать при этом лучше не бумажную полоску, а веревку.

Два отрезка называются равными , если их можно совместить методом наложения. Если есть возможность приложить их друг к другу, просто посмотрите, какой из них длиннее. Но так можно сделать не всегда.

Если под рукой имеется циркуль, поставьте одну ножку циркуля в начало, а другую в конец первого отрезка. Затем не сдвигая ножки циркуля, установите одну из них в начало второго и посмотрите, если вторая ножка циркуля в точке, обозначающей конец - они равны. Если вторая ножка на самой прямой - первый отрезок меньше, если за ним - первый больше.

Сравнение в координатной сетке

Допустим, что у нас есть два отрезка, координаты которых мы знаем - а (Х1, Y1; Х2, Y2) и b (Х3, Y3; X4, Y4).

Первое, что нужно сделать - придать координатам числовые значения:

  • Длина, а - Da = √((X1 - X2) ² + (Y1 - Y2) ²);
  • Длина b - Db = √((X3 - X4) ² + (Y3 - Y4) ²).

Пусть X1 = -7, Y1 = 4, X2 = 3, Y2 = -4, X3 = -3, Y3 = -5, X4 = 0, Y4 = -3. Получаем:

Da = √ ((-7 - 3) ² + (4 - (-4)) ²) = √ (-10 ² + 8 ²) = √ 100 + 64 = √ 164

Db = √ ((-3 - 0) ² + (-5 - (-3)) ²) = √ (-3 ² + (-8) ²) = √ (9+ 64) = √ 73

√ 164 > √ 73, значит, Da > Db.

Также можно сравнить отрезки, находящиеся в трехмерной системе координат, надо учитывать не две, а три координаты каждого из них.

Примеры

Рассмотрим сравнение методом наложения. У нас имеется два отрезка - АБ и ВГ.

Чтобы узнать, равны они или нет, просто приложим их друг к другу так, чтобы их «начала» были в одной точке, то есть совместим точки, А и В.

Если мы видим, что АБ получается частью ВГ, значит, он меньше, то есть АБ< ВГ, а если при наложении оба конца отрезков совмещаются - значит, они равны.

Теперь рассмотрим сравнение отрезков путем измерения. При помощи линейки вычисляем длину каждого отрезка. Например, длина AB = 2 см, а CD = 8 см. 8>2, значит, CD>AB, то есть отрезок CD длиннее AB.

Инструкция

Видео по теме

Полезный совет

Нулевая отметка измерительного прибора должна находиться строго в начале отрезка. При любых измерениях чрезвычайно важно пользоваться одними и теми же мерами. Нельзя сравнивать отрезки, если один из них измерили в сантиметрах, а другой - в дюймах. Одну из мер необходимо перевести.

Для того чтобы измерить длину выемки или отверстия, пользуйтесь более точными измерительными приборами - например, штангенциркулем.

Для сравнения чисел тоже можно пользоваться методом отрезков. Его используют для занятий с дошкольниками и младшими школьниками, а также при изучении отрицательных чисел. Например, нужно сравнить числа 5 и -6. Начертите отрезок, обозначив его начальную точку как 0. Через равные промежутки отложите отрезки, обозначив их как 1, 2 и т.д. От нуля отложите отрезок и влево. Отложите в этом направлении нужное количество равных отрезков. Затем сравните полученные отрезки с помощью любого доступного вам измерительного прибора.

Источники:

  • сравнение отрезков в 2018

Цели урока:

  • Обучающие: ввести понятие равенства геометрических фигур; научить сравнивать отрезки и углы; ввести понятие середины отрезка и биссектрисы угла
  • Развивающие: создание условий для развития умения анализировать, сравнивать, делать выводы; развитие памяти, логического мышления, культуры речи
  • Воспитательные: содействовать воспитанию интереса к предмету, активности и самостоятельности обучающихся; воспитывать внимательность, уверенность в своих силах.

Оборудование: компьютер, мультимедийный проектор (работа со слайдами по программе «Презентация»), экран, тетрадь.

I. Организационный момент (Приложение 1 , слайды 1, 2)

II. Проверка домашнего задания (Приложение 1 , слайд 3)

III. Изучение нового материала

Изучение нового материала проводится в форме беседы учителя с обучающимися. Важно чтобы учитель и класс выслушали разные варианты ответов на поставленные вопросы, при этом обучающиеся сами должны выбрать какое из предложенных решений является верным.

– Как можно сравнить два прямоугольника? (Чтобы сравнить два прямоугольника, надо один прямоугольник наложить на другой, если из-за верхнего прямоугольника будет виден нижний, значит верхний прямоугольник меньше нижнего и наоборот. А если они совместятся, то данные прямоугольники равны.)

– Как сравнить два треугольника, изображенных на доске (внешне два треугольника должны быть почти равными)? (Скопировать один треугольник на прозрачный материал, например на кальку, и наложить на второй.)

– Какие две геометрические фигуры можно назвать равными? (Две геометрические фигуры называются равными, если при наложении они совмещаются) (Приложение 1 , слайд 4)
– Сравните отрезки АВ и CD (Приложение 1 , слайд 5)

– На рисунке точка С – середина отрезка АВ. Что можно сказать об отрезках АС и СВ? (АС = СВ, АВ = 2АС = 2СВ) (Приложение 1 , слайд 6)

– Как сравнить два угла? (Наложить один на другой угол таким образом, чтобы у них совпали вершины и по одной стороне. Если вторая сторона угла будет проходить между сторонами второго угла, то первый угол меньше второго. Если второй угол не будет проходить между сторонами второго угла, а во внешней области второго угла, то первый угол больше второго. Если вторая сторона угла совместиться со второй стороной другого угла, то данные углы равны) (Приложение 1 , слайд 7)

Луч исходящий из вершины угла и делящий его на два равных угла, называется биссектрисой угла (Приложение 1 , слайд 8)

– С помощью какого инструмента и как можно построить биссектрису данного угла? (Биссектрису угла можно построить с помощью транспортира. Для этого нужно измерить градусную меру данного угла и провести луч, исходящий из вершины этого угла так, чтобы градусные меры образовавшихся углов были равны.)