Матрикс информ квантовая физика. Квантовая физика для детей

Здравствуйте дорогие читатели. Если вы не хотите отставать от жизни, быть по-настоящему счастливым и здоровым человеком, вы должны знать о тайнах квантовой современной физики, хоть немного представлять до каких глубин мироздания докопались сегодня ученые. Вам некогда вдаваться в глубокие научные подробности, а хотите постигнуть лишь суть, но увидеть красоту неизведанного мира, тогда эта статья: квантовая физика для обычных чайников или можно сказать для домохозяек как раз для вас. Я постараюсь объяснить, что такое квантовая физика, но простыми словами, показать наглядно.

"Какая связь между счастьем, здоровьем и квантовой физикой?"- спросите вы.

Дело в том, что она помогает ответить на многие непонятные вопросы, связанные с сознанием человека, влияния сознания на тело. К сожалению, медицина, опираясь на классическую физику, не всегда нам помогает быть здоровым. А психология не может нормально сказать, как обрести счастье.

Только более глубокие познания мира помогут нам понять, как же по-настоящему справиться с болезнями и где обитает счастье. Это знание находятся в глубоких слоях Вселенной. На помощь нам приходит квантовая физика. Скоро вы все узнаете.

Что изучает квантовая физика простыми словами

Да, действительно квантовую физику очень сложно понять из-за того, что она изучает законы микромира. То есть мир на более глубоких его слоях, на очень малых расстояниях, там, куда очень сложно заглянуть человеку.

А мир, оказывается, ведет себя там очень странно, загадочно и непостижимо, не так как мы привыкли.

Отсюда вся сложность и непонимание квантовой физики.

Но после прочтения этой статьи вы раздвинете горизонты своего познания и посмотрите на мир совсем по-другому.

Кратко об истории квантовой физики

Все началось в начале 20 века, когда ньютоновская физика не могла объяснить многие вещи и ученые зашли в тупик. Тогда Максом Планком было введено понятие кванта. Альберт Эйнштейн подхватил эту идею и доказал, что свет распространяется не непрерывно, а порциями – квантами (фотонами). До этого же считалось, что свет имеет волновую природу.


Но как оказалось позже любая элементарная частица, это не только квант, то есть твердая частица, а также волна. Так появился корпускулярно-волновой дуализм в квантовой физике, первый парадокс и начало открытий загадочных явлений микромира.

Самые интересные парадоксы начались, когда был проведен знаменитый эксперимент с двумя щелями, после которого загадок стало намного больше. Можно сказать, что квантовая физика началась с него. Давайте его рассмотрим.

Эксперимент с двумя щелями в квантовой физике

Представьте себе пластину с двумя щелями в виде вертикальных полос. За этой пластиной поставим экран. Если направить свет на пластину, то на экране мы увидим интерференционную картину. То есть чередующиеся темные и яркие вертикальные полосы. Интерференция это результат волнового поведения чего-либо, в нашем случае света.


Если вы пропустите волну воды через два отверстия расположенных рядом, вы поймете что такое интерференция. То есть свет получается вроде как имеет волновую природу. Но как доказала физика, вернее Эйнштейн, он распространяется частицами-фотонами. Уже парадокс. Но это ладно, корпускулярно-волновым дуализмом нас уже не удивить. Квантовая физика говорит нам, что свет ведет себя как волна, но состоит из фотонов. Но чудеса только начинаются.

Давайте перед пластиной с двумя прорезями поставим пушку, которая будет испускать не свет, а электроны. Начнем стрелять электронами. Что мы увидим на экране за пластиной?

Электроны ведь это частицы, значит поток электронов, проходя через две щели, должны оставлять на экране всего две полосы, два следа напротив щелей. Представили себе камушки, пролетающие сквозь две щели и ударяющие об экран?

Но что мы видим на самом деле? Всю ту же интерференционную картину. Каков вывод: электроны распространяются волнами. Значит электроны это волны. Но ведь это элементарная частица. Опять корпускулярно-волновым дуализм в физике.

Но можно предположить, что на более глубоком уровне электрон это частица, а когда эти частицы собираются вместе, они начинают вести себя как волны. Например, морская волна это волна, но ведь она состоит из капель воды, а на более мелком уровне из молекул, а затем из атомов. Хорошо, логика твердая.

Тогда давайте будем стрелять из пушки не потоком электронов, а выпускать электроны по отдельности, через какой-то промежуток времени. Как если бы мы пропускали через щели не морскую волну, а плевались бы отдельными каплями из детского водяного пистолета.

Вполне логично, что в таком случае разные капли воды попадали бы в разные щели. На экране за пластиной можно было бы увидеть не интерференционную картину от волны, а две четкие полосы от удара напротив каждой щели. То же самое мы увидим, если кидать мелкие камни, они, пролетая сквозь две щели, оставляли бы след, словно тень от двух отверстий. Давайте же теперь стрелять отдельными электронами, чтобы увидеть эти две полосы на экране от ударов электронов. Выпустили один, подождали, второй, подождали и так далее. Ученые квантовой физики смогли сделать такой эксперимент.

Но ужас. Вместо этих двух полос получаются все те же интерференционные чередования нескольких полос. Как так? Такое может случиться, если бы электрон пролетал одновременно через две щели, а за пластиной, как волна сталкивался бы сам с собой и интерферировал. Но такое не может быть, ведь частица не может находиться в двух местах одновременно. Она или пролетает сквозь первую щель или сквозь вторую.

Вот тут начинаются поистине фантастические вещи квантовой физики.

Суперпозиция в квантовой физике

При более глубоком анализе ученые выясняют что любая элементарная квантовая частица или тот же свет(фотон) на самом деле могут находиться в нескольких местах одновременно. И это не чудеса, а реальные факты микромира. Так утверждает квантовая физика. Вот поэтому, стреляя из пушки отдельной частицей, мы видим результат интерференции. За пластиной электрон сталкивается сам с собой и создает интерференционную картину.

Обычные нам объекты макромира находятся всегда в одном месте, имеют одно состояние. Например, вы сейчас сидите на стуле, весите, допустим, 50 кг, имеете частоту пульса 60 ударов в минуту. Конечно, эти показания изменятся, но изменятся они через какое-то время. Ведь вы не можете одновременно быть дома и на работе, весить 50 и 100 кг. Все это понятно, это здравый смысл.

В физике микромира же все по-другому.

Квантовая механика утверждает, а это уже подтверждено экспериментально, что любая элементарная частица может находиться одновременно не только в нескольких точках пространства, но также иметь в одно и то же время несколько состояний, например спин.

Все это не укладывается в голову, подрывает привычное представление о мире, старые законы физики, переворачивает мышление, можно смело сказать сводит с ума.

Так мы приходим к пониманию термина "суперпозиции" в квантовой механике.

Суперпозиция означает, что объект микромира может одновременно находиться в разных точках пространства, а также иметь несколько состояний одновременно. И это нормально для элементарных частиц. Таков закон микромира, каким бы странным и фантастическим он не казался.

Вы удивлены, но это только цветочки, самые необъяснимые чудеса, загадки и парадоксы квантовой физики еще впереди.

Коллапс волновой функции в физике простыми словами

Затем ученые решили выяснить и посмотреть более точно, реально ли электрон проходит через обе щели. Вдруг он проходит через одну щель, а затем каким-то образом разделяется и создает интерференционную картину, проходя через нее. Ну, мало ли. То есть нужно поставить какой-нибудь прибор возле щели, который бы точно зафиксировал прохождение электрона через нее. Сказано, сделано. Конечно, осуществить это сложно, нужен не прибор, а что-то другое, чтобы увидеть прохождение электрона. Но ученые сделали это.

Но в итоге результат ошеломил всех.

Как только мы начинаем смотреть, через какую щель проходит электрон, так он начинает вести себя не как волна, не как странное вещество, которое одновременно находится в разных точках пространства, а как обычная частица. То есть начинает проявлять конкретные свойства кванта: находится только в одном месте, проходит через одну щель, имеет одно значение спина. На экране появляется не интерференционная картина, а простой след напротив щели.

Но как такое возможно. Как будто электрон шутит, играет с нами. Сначала он ведет себя как волна, а затем, после того, как мы решили посмотреть прохождение его через щель, проявляет свойства твердой частицы и проходит только через одну щель. Но так оно и есть в микромире. Таковы законы квантовой физики.

Ученые увидели еще одно загадочное свойство элементарных частиц. Так появились в квантовой физике понятия неопределенность и коллапс волновой функции.

Когда электрон летит к щели, он находится в неопределенном состоянии или как мы сказали выше в суперпозиции. То есть ведет себя как волна, находится одновременно в разных точках пространства, имеет сразу два значения спина (у спина всего два значения). Если бы мы его не трогали, не пытались смотреть на него, не выясняли, где именно он находится, не измеряли бы значение его спина, он бы так и пролетел как волна одновременно через две щели, а значит, создал интерференционную картину. Его траектория и параметры квантовая физика описывает с помощью волновой функции.

После того, как мы произвели измерение (а произвести измерение частицы микромира можно только взаимодействуя с ней, например, столкнуть с ней другую частицу), то происходит коллапс волновой функции.

То есть теперь электрон находится точно в каком-то одном месте пространства, имеет одно значение спина.


Можно сказать элементарная частица как призрак, она как бы есть, но одновременно ее нет в одном месте, и может с определенной вероятностью оказаться в любом месте в пределах описания волновой функцией. Но как только мы начинаем с ней контактировать, она из призрачного объекта превращается в реальное осязаемое вещество, которое ведет себя как обычные, привычные для нас предметы классического мира.

"Вот это фантастика"- скажете вы. Конечно, но чудеса квантовой физики только начинаются. Самое невероятное еще впереди. Но давайте немного отдохнем от обилия информации и вернемся к квантовым приключениям в другой раз, в другой статье. А пока поразмышляйте о том, что вы сегодня узнали. К чему могут привести такие чудеса? Ведь они окружают нас, это свойство нашего мира, хоть и на более глубоком уровне. А мы все еще думаем, что живем в скучном мире? Но выводы сделаем позже.

Я попытался рассказать об основах квантовой физике кратко и понятно.

Но если вы что-то не поняли, тогда посмотрите вот этот мультик про квантовую физику, про эксперимент с двумя щелями, там также все рассказывается понятным, простым языком.

Мультфильм про квантовую физику:

Или можно смотреть вот этот видео, все станет на свои места, квантовая физика ведь очень интересна.

Видео о квантовой физике:

И как вы раньше об этом не знали.

Современные открытия в квантовой физике меняют наш привычный материальный мир.

Думаю, можно сказать, что никто не понимает квантовую механику

Физик Ричард Фейнман

Высказывание о том, что изобретение полупроводниковых приборов было революцией, не будет преувеличением. Это не только впечатляющее технологическое достижение, но оно также проложило путь для событий, которые навсегда изменяют современное общество. Полупроводниковые приборы применяются во всевозможных устройствах микроэлектроники, в том числе и в компьютерах, отдельных видах медицинского диагностического и лечебного оборудования, популярных телекоммуникационных устройствах.

Но за этой технологической революцией стоит даже больше, революция в общей науке: область квантовой теории . Без этого прыжка в понимании естественного мира, развитие полупроводниковых приборов (и более продвинутых разрабатываемых электронных устройств) никогда бы не удалось. Квантовая физика - это невероятно сложный раздел науки. В данной главе дается лишь краткий обзор. Когда ученые уровня Фейнмана говорят, что «никто не понимает [это]», вы можете быть уверены, что это действительно сложная тема. Без базового понимания квантовой физики или, по крайней мере, понимания научных открытий, которые привели к их разработке, невозможно понять, как и почему работают полупроводниковые электронные приборы. Большинство учебников по электронике пытаются объяснить полупроводники с точки зрения «классической физики», в результате делая их еще более запутанными для понимания.

Многие из нас видели диаграммы моделей атомов, которые похожи на рисунок ниже.

Атом Резерфорда: отрицательные электроны вращаются вокруг небольшого положительного ядра

Крошечные частицы материи, называемые протонами и нейтронами , составляют центр атома; электроны вращаются как планеты вокруг звезды. Ядро несет положительный электрический заряд, благодаря наличию протонов (нейтроны не имеют никакого электрического заряда), в то время как уравновешивающий отрицательный заряд атома находится в движущихся по орбите электронах. Отрицательные электроны притягиваются к положительным протонам, как планеты притягиваются силой притяжения к Солнцу, однако орбиты стабильны, благодаря движению электронов. Мы обязаны этой популярной моделью атома работе Эрнеста Резерфорда, который примерно в 1911 году экспериментально определил, что положительные заряды атомов сосредоточены в крошечном, плотном ядре, а не равномерно распределены по диаметру, как ранее предполагал исследователь Дж. Дж. Томсон.

Эксперимент Резерфорда по рассеянию заключается в бомбардировке тонкой золотой фольги положительно заряженными альфа-частицами, как показано на рисунке ниже. Молодые аспиранты Х. Гейгер и Э. Марсден получили неожиданные результаты. Траектория движения некоторых альфа-частиц была отклонена на большой угол. Некоторые альфа-частицы были рассеяны в обратном направлении, под углом почти на 180°. Большинство частиц прошло через золотую фольгу, не изменив траекторию пути, будто фольги и не было совсем. Факт того, что несколько альфа-частиц испытывали большие отклонения в траектории движения, указывает на присутствие ядер с небольшим положительным зарядом.

Рассеяние Резерфорда: пучок альфа-частиц рассеивается тонкой золотой фольгой

Хотя модель атома Резерфорда подтверждалась экспериментальными данными лучше, чем модель Томсона, она всё еще была неидеальна. Были предприняты дальнейшие попытки определения структуры атома, и эти усилия помогли проложить путь для странных открытий квантовой физики. Сегодня наше понимание атома немного сложнее. Тем не менее, несмотря на революцию квантовой физики и ее вклад в наше понимание строения атома, изображение солнечной системы Резерфорда в качестве структуры атом, прижилось в массовом сознании до такоей степени, что оно сохраняется в областях образования, даже если оно неуместно.

Рассмотрим это краткое описание электронов в атоме, взятое из популярного учебника по электронике:

Вращающиеся отрицательные электроны притягиваются к положительному ядру, которое приводит нас к вопросу о том, почему электроны не летят в ядро атом. Ответ в том, что вращающиеся электроны остаются на своей стабильной орбите из-за двух равных, но противоположных сил. Центробежная сила, действующая на электроны, направлена наружу, а сила притяжения зарядов пытается притянуть электроны к ядру.

В соответствии с моделью Резерфорда, автор считает электроны твердыми кусками материи, занимающими круглые орбиты, их притяжение внутрь к противоположно заряженному ядру уравновешивается их движением. Использование термина «центробежная сила» технически неверно (даже для вращающихся на орбитах планет), но это легко простить из-за популярного принятия модели: на самом деле, не существует такого понятия, как сила, отталкивающая любое вращающееся тело от центра его орбиты. Кажется, что это так потому, что инерция тела стремиться сохранить его движение по прямой линии, а так как орбита является постоянным отклонением (ускорением) от прямолинейного движения, есть постоянное инерционное противодействие к любой силе, притягивающей тело к центру орбиты (центростремительной), будь то гравитация, электростатическое притяжения, или даже натяжение механической связи.

Тем не менее, реальная проблема с этим объяснением, в первую очередь, заключается в идее электронов, движущихся по круговым орбитам. Проверенный факт, что ускоренные электрические заряды испускают электромагнитное излучение, этот факт был известен даже во времена Резерфорда. Так как вращательное движение является формой ускорения (вращающийся объект в постоянном ускорении, уводящем объект от нормального прямолинейного движения), электроны во вращающемся состоянии должны выбрасывать излучение, как грязь от буксующего колеса. Электроны, ускоренные по круговым траекториям, в ускорителях частиц, называемых синхротронами , как известно, делают это, и результат называется синхротронное излучение . Если бы электроны теряли энергию таким способом, их орбиты, в конечном счете, нарушились бы, и в результате они столкнулись бы с положительно заряженным ядром. Тем не менее, внутри атомов этого обычно не происходит. Действительно, электронные «орбиты» удивительно устойчивы в широком диапазоне условий.

Кроме того, эксперименты с «возбужденными» атомами показали, что электромагнитная энергия излучается атомом только на определенных частотах. Атомы «возбуждаются» внешними воздействиями, такими как свет, как известно, чтобы поглотить энергию и вернуть электромагнитные волны на определенных частотах, как камертон, который не звонит на определенной частоте, пока его не ударят. Когда свет, излучаемый возбужденным атомом, делится призмой на составные частоты (цвета), обнаруживаются отдельные линии цветов в спектре, картина спектральных линий является уникальной для химического элемента. Это явление обычно используется для идентификации химических элементов, и даже для измерения пропорций каждого элемента в соединении или химической смеси. Согласно солнечной системе атомной модели Резерфорда (относительно электронов, как кусков материи, свободно вращающихся на орбите с каким-то радиусом) и законам классической физики, возбужденные атомы должны вернуть энергию в практически бесконечном диапазоне частот, а не на избранных частотах. Другими словами, если модель Резерфорда была правильной, то не было бы эффекта «камертона», и цветовой спектр, излучаемый любым атомом, выглядел бы как непрерывная полоса цветов, а не как несколько отдельных линий.


Боровская модель атома водорода (с орбитами, нарисованными в масштабе) предполагает нахождение электронов только на дискретных орбитах. Электроны, переходящие с n=3,4,5 или 6 на n=2, отображаются на серии спектральных линий Бальмера

Исследователь по имени Нильс Бор попытался улучшить модель Резерфорда, после ее изучения в лаборатории Резерфорда в течение нескольких месяцев в 1912 году. Пытаясь согласовать результаты других физиков (в частности, Макса Планка и Альберта Эйнштейна), Бор предположил, что каждый электрон обладал определенным, конкретным количеством энергии, и что их орбиты распределяются таким образом, что каждый из них может занимать определенные места вокруг ядра, как шарики, зафиксированные на круговых дорожках вокруг ядра, а не как свободно двигающиеся спутники, как предполагалось ранее (рисунок выше). В знак уважения к законам электромагнетизма и ускоряющих зарядов Бор ссылался на «орбиты», как на стационарные состояния , чтобы избежать трактования, что они были подвижны.

Хотя амбициозная попытка Бора переосмысления строения атома, которое ближе согласовывалось с экспериментальными данными, и была важной вехой в физике, но не была завершена. Его математический анализ лучше предсказывал результаты экспериментов по сравнению с анализами, производимых согласно предыдущим моделям, но еще оставались без ответов вопросы о том, почему электроны должны вести себя таким странным образом. Утверждение, что электроны существовали в стационарных квантовых состояниях вокруг ядра, соотносилось с экспериментальными данными лучше, чем модель Резерфорда, но не говорило, что заставляет электроны принимать эти особые состояния. Ответ на этот вопрос должен был прийти от другого физика Луи де Бройля спустя примерно десять лет.

Де Бройль предположил, что электроны, как фотоны (частицы света), обладают и свойствами частиц, и свойствами волн. Опираясь на это предположение, он предположил, что анализ вращающихся электронов с точки зрения волн подходит лучше, чем с точки зрения частиц, и может дать больше понимания об их квантовой природе. И действительно, в понимании был совершен еще один прорыв.


Струна, вибрирующая на резонансной частоте между двумя фиксированными точками, образует стоячую волну

Атом, согласно де Бройлю, состоял из стоячих волн, явление, хорошо известное физикам в различных формах. Как дернутая струна музыкального инструмента (рисунок выше), вибрирующая на резонансной частоте, с «узлами» и «антиузлами» в стабильных местах вдоль своей длины. Де Бройль представил электроны вокруг атомов в виде волн, изогнутых в круг (рисунок ниже).


«Вращающийся» электроны, как стоячая волна вокруг ядра, (a) два цикла в орбите, (b) три цикла в орбите

Электроны могут существовать только на определенных, конкретных «орбитах» вокруг ядра, потому что они являются единственными расстояниями, на которых концы волны совпадают. При любом другом радиусе волна будет разрушительно сталкиваться сама с собой и, таким образом, перестанет существовать.

Гипотеза де Бройля дала как математическое обеспечение, так и удобную физическую аналогию для объяснения квантовых состояний электронов внутри атома, но его модель атома была всё еще неполной. В течение нескольких лет физики Вернер Гейзенберг и Эрвин Шредингер, работая независимо друг от друга, трудились над концепцией корпускулярно-волнового дуализма де Бройля, чтобы создать более строгие математические модели субатомных частиц.

Этому теоретическому продвижению от примитивной модели стоячей волны де Бройля к моделям матрицы Гейзенберга и дифференциального уравнения Шредингера было дано название квантовая механика, она ввела довольно шокирующую характеристику в мир субатомных частиц: признак вероятности, или неопределенности. По новой квантовой теории, было невозможно определить точное положение и точный импульс частицы в один момент. Популярное объяснение этого «принципа неопределенности» заключалось в том, что существовала погрешность измерения (то есть, пытаясь точно измерить положение электрона, вы мешаете его импульсу, и, следовательно, не можете знать, что было до начала измерения положения, и наоборот). Сенсационный вывод квантовой механики заключается в том, что частицы не имеют точных положений и импульсов, и из-за связи этих двух величин их совокупная неопределенность никогда не уменьшится ниже определенного минимального значения.

Эта форма связи «неопределенности» существует и в других областях, кроме квантовой механики. Как обсуждалось в главе «Сигналы переменного тока смешанной частоты» тома 2 этой серии книг, есть взаимоисключающие связи между уверенностью в данных временной области формы сигнала и его данными в частотной области. Проще говоря, чем больше мы знаем его составляющие частоты, тем менее точно мы знаем его амплитуду во времени, и наоборот. Цитирую себя:

Сигнал бесконечной длительности (бесконечное количество циклов) может быть проанализирован с абсолютной точностью, но чем меньше циклов доступно компьютеру для анализа, тем меньше точность анализа... Чем меньше периодов сигнала, тем меньше точность его частоты. Принимая эту концепцию до ее логической крайности, короткий импульс (даже не полный период сигнала) на самом деле не имеет определенной частоты, представляет собой бесконечный диапазон частот. Данный принцип является общим для всех волновых явлений, а не только для переменных напряжений и токов.

Чтобы точно определить амплитуду изменяющегося сигнала, мы должны измерить его в очень короткий промежуток времени. Однако выполнение этого ограничивает наши знания о частоте волны (волна в квантовой механике не должна быть подобно синусоидальной волне; такое подобие является частным случаем). С другой стороны, чтобы определить частоту волны с большой точностью, мы должны измерять его в течение большого количества периодов, а значит, мы потеряем из виду его амплитуду в любой заданный момент. Таким образом, мы не можем одновременно знать мгновенную амплитуду и все частоты любой волны с неограниченной точностью. Еще одна странность, эта неопределенность гораздо больше неточности наблюдателя; она находится в самой природе волны. Это не так, хотя можно бы, учитывая соответствующие технологии, обеспечить точные измерения и мгновенной амплитуды, и частоты одновременно. В буквальном смысле, волна не может точную мгновенную амплитуду и точную частоту одновременно.

Минимальная неопределенность положения частицы и импульса, выраженная Гейзенбергом и Шредингером, не имеет ничего общего с ограничением в измерении; скорее это внутреннее свойство природы корпускулярно-волнового дуализма частицы. Следовательно, электроны на самом деле не существуют в своих «орбитах» как точно определенные частицы материи или даже как точно определенные формы волн, а скорее как «облака» - технический термин волновой функции распределения вероятности, как если бы каждый электрон был «рассеян» или «размазан» в диапазоне положений и импульсов.

Этот радикальный взгляд на электроны, как на неопределенные облака поначалу противоречит изначальному принципу квантовых состояний электронов: электроны существуют в дискретных, определенных «орбитах» вокруг ядра атома. Этот новый взгляд, в конце концов, был открытием, которое привело к образованию и объяснению квантовой теории. Как странно кажется, что теория, созданная для объяснения дискретного поведения электронов, заканчивается, объявив, что электроны существуют как «облака», а не как отдельные кусочки материи. Тем не менее, квантовое поведение электронов зависит не от электронов, имеющих определенные значения координат и импульса, а от других свойств, называемых квантовыми числами . В сущности, квантовая механика обходится без распространенных понятий абсолютного положения и абсолютного момента, а заменяет их абсолютными понятиями таких типов, у которых нет аналогов в общей практике.

Даже если электроны, как известно, существуют в бесплотных, «облачных» формах распределенной вероятности, а не в виде отдельных частей материи, эти «облака» имеют несколько другие характеристики. Любой электрон в атоме может быть описан четырьмя числовыми мерами (упомянутыми ранее квантовыми числами), которые называются главное (радиальное) , орбитальное (азимутальное) , магнитное и спиновое числа. Ниже представлен краткий обзор значения каждого из этих чисел:

Главное (радиальное) квантовое число : обозначается буквой n , это число описывает оболочку, на которой пребывает электрон. Электронная «оболочка» представляет собой область пространства вокруг ядра атома, на которой электроны могут существовать, соответствуя моделям стабильной «стоячей волны» де Бройля и Бора. Электроны могут «прыгать» с оболочки на оболочку, но не могут существовать между ними.

Главное квантовое число должно быть положительным целым числом (большим или равным 1). Другими словами, главное квантовое число электрона не может быть 1/2 или -3. Эти целые числа были выбраны не произвольно, а через экспериментальные доказательства светового спектра: разные частоты (цвета) света, излучаемые возбужденными атомами водорода, следуют математической зависимости, зависящей от конкретных целых значений, как показано на рисунке ниже.

Каждая оболочка обладает способностью удерживать несколько электронов. В качестве аналогии для электронных оболочек можно привести концентрические ряды сидений в амфитеатре. Так же, как человек, сидящий в амфитеатре, должен выбрать ряд, чтобы сесть (он не может сесть между рядов), электроны должны «выбрать» конкретную оболочку, чтобы «сесть». Как и ряды в амфитеатре, крайние оболочки удерживают больше электронов по сравнению с оболочками ближе к центру. Также электроны стремятся найти наименьшую доступную оболочку, как люди в амфитеатре ищут место, ближайшее к центральной сцене. Чем выше номер оболочки, тем больше энергии у электронов на ней.

Максимальное количество электронов, которое какая-либо оболочка может удерживать, описывается уравнение 2n 2 , где n - главное квантовое число. Таким образом, первая оболочка (n = 1) может содержать 2 электрона; вторая оболочка (n = 2) - 8 электронов; и третья оболочка (n = 3) - 18 электронов (рисунок ниже).


Главное квантовое число n и максимальное количество электронов связаны формулой 2(n 2). Орбиты не в масштабе.

Электронные оболочки в атоме были обозначаются буквами, а не цифрами. Первая оболочка (n = 1) была обозначена K, вторая оболочка (n = 2) L, третья оболочка (n = 3) M, четвертая оболочка (n = 4) N, пятая оболочка (n = 5) O, шестая оболочка (n = 6) P, и седьмая оболочка (n = 7) B.

Орбитальное (азимутальное) квантовое число : оболочка, состоящая из подоболочек. Кому-то может быть удобнее думать о подоболочках как о простых секциях оболочек, как полосы делящие дорогу. Подоболочки гораздо более странны. Подоболочки - это области пространства, где могут существовать электронные «облака», и на самом деле различные подоболочки имеют различные формы. Первая подоболочка в форме шара (рисунок ниже (s)), который имеет смысл, когда визуализируется в виде электронного облака, окружающего ядро атома в трех измерениях.

Вторая подоболочка напоминает гантель, состоящую из двух «лепестков», соединенных в одной точке недалеко от центра атома (рисунок ниже (p)).

Третья подоболочка обычно напоминает набор из четырех «лепестков», сгруппированных вокруг ядра атома. Эти формы подоболочек напоминают графические изображения диаграмм направленности антенн с лепестками, похожими на луковицы, простирающимися от антенны в различных направлениях (рисунок ниже (d)).


Орбитали:
(s) трехкратная симметричность;
(p) Показана: p x , одна из трех возможных ориентаций (p x , p y , p z), вдоль соответствующих осей;
(d) Показана: d x 2 -y 2 похожа на d xy , d yz , d xz . Показана: d z 2 . Количество возможных d-орбиталей: пять.

Допустимыми значениями орбитального квантового числа являются положительные целые числа, как и для главного квантового числа, но также включают в себя ноль. Эти квантовые числа для электронов обозначаются буквой l. Количество подоболочек равно главному квантовому числу оболочки. Таким образом, первая оболочка (n = 1) имеет одну подоболочку с номером 0; вторая оболочка (n = 2) имеет две подоболочки с номерами 0 и 1; третья оболочка (n = 3) имеет три подоболочки с номерами 0, 1 и 2.

Старое соглашение описания подоболочек использовало буквы, а не цифры. А этом формате, первая подоболочка (l = 0) обозначалась s, вторая подоболочка (l = 1) обозначалась p, третья подоболочка (l = 2) обозначалась d, и четвертая подоболочка (l = 3) обозначалась f. Буквы пришли от слов: sharp , principal , diffuse и fundamental . Вы по-прежнему можете увидеть эти обозначения во многих периодических таблицах, используемые для обозначения электронной конфигурации внешних (валентных ) оболочек атомов.


(a) представление атома серебра по Бору,
(b) орбитальное представление Ag с разделением оболочек на подоболочки (орбитальное квантовое число l).
Данная диаграмма не подразумевает ничего о фактическом положении электронов, а представляет только энергетические уровни.

Магнитное квантовое число : Магнитное квантовое число для электрона классифицирует, ориентацию фигуры подоболочки электрона. «Лепестки» подоболочек могут быть направлены в нескольких направлениях. Эти различные ориентации называются орбиталями. Для первой подоболочки (s; l = 0), которая напоминает сферу, «направление» не указывается. Для второй (p; l = 1) подоболочки в каждой оболочке, которая напоминает гантель, указывающую в трех возможных направлениях. Представьте три гантели, пересекающиеся в начале координат, каждая направлена вдоль своей оси в трехосной системе координат.

Допустимые значения для данного квантового числа состоят из целых чисел, начиная от -l до l, а обозначается данное число как m l в атомной физике и l z в ядерной физике. Чтобы рассчитать количество орбиталей в любой подоболочке, необходимо удвоить номер подоболочки и добавить 1, (2∙l + 1). Например, первая подоболочка (l = 0) в любой оболочке содержит одну орбиталь с номером 0; вторая подоболочка (l = 1) в любой оболочке содержит три орбитали с номерами -1, 0 и 1; третья подоболочка (l = 2) содержит пять орбиталей с номерами -2, -1, 0, 1 и 2; и так далее.

Как и главное квантовое число, магнитное квантовое число возникло прямо из экспериментальных данных: эффект Зеемана, разделение спектральных линий, подвергая ионизированный газ воздействию магнитного поля, отсюда и название «магнитное» квантовое число.

Спиновое квантовое число : как и магнитное квантовое число, данное свойство электронов атома было обнаружено с помощью экспериментов. Тщательное наблюдение спектральных линий показало, что каждая линия была на самом деле парой очень близко расположенных линий, было предположение, что эта так называемая тонкая структура была результатом каждого электрона, «вращающегося» вокруг своей оси, как планета. Электроны с разным «вращением» отдавали бы немного отличающиеся частоты света при возбуждении. Концепция вращающегося электрона в настоящее время устарела, будучи более подходящей для (неправильного) взгляда на электроны, как на отдельные частицы материи, а не как на «облака», но название осталось.

Спиновые квантовые числа обозначаются как m s в атомной физике и s z в ядерной физике. На каждой орбитали на каждой подоболочке в каждой оболочке может быть два электрона, один со спином +1/2, а другой со спином -1/2.

Физик Вольфганг Паули разработал принцип, объясняющий упорядоченность электронов в атоме в соответствии с этими квантовыми числами. Его принцип, называемый принципом запрета Паули , утверждает, что два электрона в одном атоме не могут занимать одинаковые квантовые состояния. То есть, каждый электрон в атоме имеет уникальный набор квантовых чисел. Это ограничивает число электронов, которые могут занимать какую-либо орбиталь, подоболочку и оболочку.

Здесь показано расположение электронов в атоме водорода:


С одним протоном в ядре, атом принимает один электрон для своего электростатического баланса (положительный заряд протона в точности уравновешивается отрицательным зарядом электрона). Этот электрон находится на нижней оболочке (n = 1), первой подоболочке (l = 0), на единственной орбитали (пространственная ориентация) этой подоболочки (m l = 0), с значением спина 1/2. Общий метод описания этой структуры выполняется с помощью перечисления электронов в соответствии с их оболочками и подоболочками согласно соглашению, называемому спектроскопическим обозначением . В этом обозначении, номер оболочки показывается как целое число, подоболочка как буква (s,p,d,f), и общее количество электронов в подоболочке (все орбитали, все спины) как верхний индекс. Таким образом, водород с его единственным электроном, размещенным на базовом уровне, описывается как 1s 1 .

Переходя к следующему атому (по порядку атомного номера), мы получаем элемент гелий:

Атом гелия состоит из двух протонов в ядре, а это требует два электрона, чтобы сбалансировать двойной положительный электрический заряд. Так как два электрона - один со спином 1/2 и другой со спином -1/2 - находятся на одной орбитали, электронная структура гелия не требует дополнительных подоболочек или оболочек, чтобы удерживать второй электрон.

Тем не менее, атом, требующий три и более электрона, будет нуждаться в дополнительных подоболочках, чтобы удерживать все электроны, так как только два электрона могут находиться на нижней оболочке (n = 1). Рассмотрим следующий атом в последовательности увеличивающихся атомных номеров, литий:


Атом лития использует часть емкости L оболочки (n = 2). Эта оболочка на самом деле имеет общую емкость величиной восемь электронов (максимальная емкость оболочки = 2n 2 электронов). Если мы рассмотрим структуру атома с полностью заполненной L оболочкой, мы увидим, как все комбинации подоболочек, орбиталей и спинов заняты электронами:

Часто, при назначении атому спектроскопического обозначения, любые полностью заполненные оболочки пропускаются, а не заполненные оболочки и заполненные оболочки высшего уровня обозначаются. Например, элемент неон (показан на рисунке выше), который имеет две полностью заполненных оболочки, может быть спектрально описан просто как 2p 6 , а не как 1s 22 s 22 p 6 . Литий с его полностью заполненной K-оболочкой и единственным электроном на L-оболочке, может быть описан просто как 2s 1 , а не 1s 22 s 1 .

Пропуск полностью заполненных оболочек нижнего уровня выполняется не только для удобства записи. Он также иллюстрирует основной принцип химии: химическое поведение элемента в первую очередь определяется его незаполненными оболочками. И водород, и литий обладают на своих внешних оболочках одним электроном (as 1 и 2s 1 соответственно), то есть, оба элемента обладают схожими свойствами. Оба обладают высокой реакционной способностью, и вступают в реакции почти одинаковыми способами (связывание с аналогичными элементами в аналогичных условиях). Не имеет большого значения, что литий имеет полностью заполненную K-оболочку под почти свободной L-оболочкой: незаполненная L-оболочка - это та оболочка, которая и определяет его химическое поведение.

Элементы, имеющие полностью заполненные внешние оболочки, классифицируются как благородные и отличаются почти полным отсутствием реакции с другими элементами. Эти элементы классифицировались как инертные, когда считалось, что они совсем не вступают в реакции, но, как известно, они образуют соединения с другими элементами при определенных условиях.

Так как элементы с одинаковыми конфигурациями электронов в своих внешних оболочках имеют сходные химические свойства, Дмитрий Менделеев соответственных образом организовал химические элементы в таблице. Данная таблица известна как , и современные таблицы следуют этому общему виду, показанному на рисунке ниже.


Периодическая таблица химических элементов

Дмитрий Менделеев, русский химик, был первым, кто разработал периодическую таблицу элементов. Несмотря на то, что Менделеев организовал свою таблицу в соответствии с атомной массой, а не атомным номером, и создал таблицу, которая была, не столь полезна, как современные периодические таблицы, его разработка выступает в качестве отличного примера научного доказательства. Увидев закономерности периодичности (аналогичные химические свойства в соответствии с атомной массой), Менделеев выдвинул гипотезу, что все элементы должны вписываться в эту упорядоченную схему. Когда он обнаружил «пустые» места в таблице, он следовал логике существующего порядка и предположил существование еще неизвестных элементов. Последующее открытие этех элементов подтвердило научную правильность гипотезы Менделеева, дальнейшие открытия привели к тому виду периодической таблицы, которую мы используем сейчас.

Вот так должна работать наука: гипотезы ведут к логическими заключениями и принимаются, изменяются или отклоняются в зависимости от согласованности экспериментальных данных с их выводами. Любой дурак может сформулировать гипотезу постфактум, чтобы объяснить имеющиеся экспериментальные данные, и многие так и делают. Что отличается научную гипотезу от спекуляции постфактум, так это предсказание будущих экспериментальных данных, которые пока не собраны, и, возможно, опровержение в результате этих данных. Смело ведите гипотезу к ее логическому заключению(-ям) и попытка предсказать результаты будущих экспериментов это не догматический прыжок веры, а скорее публичная проверка этой гипотезы, открытый вызов противникам гипотезы. Другими словами, научные гипотезы всегда «рискованны» из-за попытки предсказать результаты еще не проведенных экспериментов, и поэтому могут быть опровергнуты, если эксперименты пройдут не так, как ожидалось. Таким образом, если гипотеза правильно предсказывает результаты повторных экспериментов, ее ложность опровергнута.

Квантовая механика, сначала как гипотезы, а затем в качестве теории, оказалась чрезвычайно успешной в прогнозировании результатов экспериментов, следовательно, получила высокую степень научного доверия. У многих ученых есть основания полагать, что это неполная теория, так как ее прогнозы больше правдивы на микрофизических масштабах, а не в макроскопических размерах, но, тем не менее, это чрезвычайно полезная теория для объяснения и прогнозирования взаимодействия частиц и атомов.

Как вы уже увидели в этой главе, квантовая физика имеет важное значение при описании и прогнозировании множества различных явлений. В следующем разделе мы увидим, ее значение в электрической проводимости твердых веществ, в том числе и полупроводников. Проще говоря, ничего в химии или в физике твердого тела не имеет смысла в популярной теоретической структуре электронов, существующих как отдельные частицы материи, кружащиеся вокруг ядра атом, как миниатюрные спутники. Когда электроны рассматриваются как «волновые функции», существующие в определенных, дискретных состояниях, которые регулярны и периодичны, тогда поведение вещества может быть объяснено.

Подведем итоги

Электроны в атомах существуют в «облаках» распределенной вероятности, а не как дискретные частицы материи, вращающиеся вокруг ядра, как миниатюрные спутники, как показывают распространенные примеры.

Отдельные электроны вокруг ядра атом стремятся к уникальным «состояниям», описываемым четырьмя квантовыми числами: главное (радиальное) квантовое число , известное как оболочка ; орбитальное (азимутальное) квантовое число , известное как подоболочка ; магнитное квантовое число , описывающее орбиталь (ориентацию подоболочки); и спиновое квантовое число , или просто спин . Эти состояния квантовые, то есть «между ними» нет условий для существования электрона, кроме состояний, которые вписываются в схему квантовой нумерации.

Гланое (радиальное) квантовое число (n) описывает базовый уровень или оболочку, на которой находится электрон. Чем больше это число, тем больше радиус электронного облака от ядра атома, и тем больше энергия электрона. Главные квантовые числа являются целыми числами (положительными целыми)

Орбитальное (азимутальное) квантовое число (l) описывает форму электронного облака в конкретной оболочке или уровне и часто известно, как «подоболочка». В любой оболочке столько подоболочек (форм электронного облака), каково главное квантовое число оболочки. Азимутальные квантовые числа - целые положительные числа, начинающиеся с нуля и заканчивающиеся числом, меньшим главного квантового числа на единицу (n - 1).

Магнитное квантовое число (m l) описывает, какую ориентацию имеет подоболочка (фигура электронного облака). Подоболочки могут допускать столько различных ориентаций, чему равен удвоенный номер подоболочки (l) плюс 1, (2l+1) (то есть, для l=1, m l = -1, 0, 1), и каждая уникальная ориентация называется орбиталью. Эти числа - целые числа, начинающиеся от отрицательного значения номера подоболочки (l) через 0 и заканчивающиеся положительным значением номера подоболочки.

Спиновое квантовое число (m s) описывает другое свойство электрона и может принимать значения +1/2 и -1/2.

Принцип запрета Паули говорит, что два электрона в атоме не могут разделять один и тот же набор квантовых чисел. Следовательно, может быть не более двух электронов на каждой орбитали (спин=1/2 и спин=-1/2), 2l+1 орбиталей в каждой подоболочке, и n подоболочек в каждой оболочке, и не более.

Спектроскопическое обозначение - это соглашение для обозначения электронной структуры атома. Оболочки показываются как целые числа, за ними следуют буквы подоболочек (s, p, d, f) с числами в верхнем индексе, обозначающими общее количество электронов, находящихся в каждой соответствующей подоболочке.

Химическое поведение атома определяется исключительно электронами в незаполненных оболочках. Оболочки низкого уровня, которые полностью заполнены мало или совсем не влияют на химические характеристики связывания элементов.

Элементы с полностью заполненными электронными оболочками почти полностью инертны, и называются благородными элементами (ранее были известны как инертные).

Kvantinė fizika statusas T sritis fizika atitikmenys: angl. quantum physics vok. Quantenphysik, f rus. квантовая физика, f pranc. physique quantique, f … Fizikos terminų žodynas

У этого термина существуют и другие значения, см. Стационарное состояние. Стационарным состоянием (от лат. stationarius стоящий на месте, неподвижный) называется состояние квантовой системы, при котором её энергия и другие динамические … Википедия

- … Википедия

Имеет следующие подразделы (список неполный): Квантовая механика Алгебраическая квантовая теория Квантовая теория поля Квантовая электродинамика Квантовая хромодинамика Квантовая термодинамика Квантовая гравитация Теория суперструн См. также… … Википедия

Квантовая механика Принцип неопределённости Введение... Математическая формулировка... Основа … Википедия

ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств … Физическая энциклопедия

Физика гиперядер раздел физики на стыке ядерной физики и физики элементарных частиц, в котором предметом исследования выступают ядроподобные системы, содержащие кроме протонов и нейтронов другие элементарные частицы гипероны. Также… … Википедия

Раздел физики, изучающий динамику частиц в ускорителях, а также многочисленные технические задачи, связанные с сооружением и эксплуатацией ускорителей частиц. Физика ускорителей включает в себя вопросы, связанные с получением и накоплением частиц … Википедия

Физика кристаллов Кристалл кристаллография Кристаллическая решётка Типы кристаллических решёток Дифракция в кристаллах Обратная решётка Ячейка Вигнера Зейтца Зона Бриллюэна Структурный фактор базиса Атомный фактор рассеяния Типы связей в… … Википедия

Квантовая логика раздел логики, необходимый для рассуждения о предложениях, которые учитывают принципы квантовой теории. Эта область исследований была основана в 1936 году работой Гарита Бирхофа и Джона фон Неймана, которые пытались… … Википедия

Книги

  • Квантовая физика , Мартинсон Леонид Карлович. Подробно изложен теоретический и экспериментальный материал, лежащий в основе квантовой физики. Большое внимание уделено физическому содержанию основных квантовых понятий и математическому…
  • Квантовая физика , Шеддад Каид-Сала Феррон. Весь наш мир и всё, что в нём находится - дома, деревья и даже люди! - состоит из крошечных частиц. Книга "Квантовая физика" из серии" Первые книжки о науке" расскажет о невидимом для нашего…

Услышав слова «квантовая физика» люди обычно отмахиваются: «Это что-то страшно сложное». Между тем, это совершенно не так, и в слове «квантовый» нет ровным счётом ничего страшного. Непонятного – хватает, интересного – очень много, а страшного – нет.

Про книжные полки, лесенки и Ивана Ивановича

Все процессы, явления и величины в окружающем нас мире можно разделить на две группы: непрерывные (по-научному континуальные ) и прерывные (по-научному дискретные или квантованные ).

Представьте себе стол, на который можно положить книгу. Вы можете положить книгу в любое место на столе. Справа, слева, посередине... Куда хотите – туда и положите. В этом случае физики говорят, что положение книги на столе изменяется непрерывно .

А теперь представьте книжные полки. Вы можете поставить книгу на первую полку, на вторую, на третью или на четвёртую – однако не можете поставить книгу «где-то между третьей и четвёртой». В этом случае положение книги изменяется прерывно , дискретно , квантованно (все эти слова обозначают одно и то же).

Окружающий мир полон непрерывных и квантованных величин. Вот две девочки – Катя и Маша. Их рост 135 и 136 сантиметров. Какая это величина? Рост изменяется непрерывно, он может быть и 135 с половиной сантиметров, и 135 сантиметров с четвертью. А вот номер школы, в которой девочки учатся – это величина квантованная! Допустим, Катя учится в школе № 135, а Маша – в школе № 136. Однако никто из них не может учиться в школе № 135 с половиной, правда?

Другой пример квантованной системы – шахматная доска. На шахматной доске 64 клетки, и каждая фигура может занимать только одну клетку. Можем ли мы поставить пешку где-то между клетками или поставить на одну клетку сразу две пешки? Фактически – можем, но по правилам – нет.


Континуальный спуск

А вот горка на детской площадке. Дети скатываются с неё вниз – потому что высота горки изменяется плавно, непрерывно. Теперь представьте себе, что эта горка вдруг (взмах волшебной палочки!) превратилась в лестницу. Скатиться с неё на попе уже не выйдет. Придётся идти ногами – сперва один шаг, потом второй, потом третий. Величина (высота) у нас изменялась непрерывно – а стала изменяться шагами, то есть дискретно, квантованно .

Квантованный спуск

Давайте проверим!

1. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «отдохну где-нибудь по дороге».

2. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «поеду каким-нибудь автобусом».

Какая из этих двух ситуаций («систем») может считаться непрерывной, а какая – квантованной?

Ответ:

В первом случае Иван Иванович идёт пешком и может остановиться отдохнуть в абсолютно любой точке. Значит, данная система – непрерывная.

Во втором – Иван Иванович может сесть в подошедший на остановку автобус. Может пропустить и подождать следующего автобуса. Но вот сесть «где-то между» автобусами у него не получится. Значит, данная система – квантованная!

Во всём виновата астрономия

О существовании непрерывных (континуальных) и прерывных (квантованных, разрывных, дискретных) величин прекрасно знали ещё древние греки. В своей книге «Псаммит» («Исчисление песчинок») Архимед даже сделал первую попытку установить математическую связь между непрерывными и квантованными величинами. Тем не менее, никакой квантовой физики в те времена не существовало.

Её не существовало вплоть до самого начала 20 века! Такие великие физики, как Галилей, Декарт, Ньютон, Фарадей, Юнг или Максвелл слыхом не слыхивали ни про какую квантовую физику и прекрасно без неё обходились. Вы можете спросить: зачем же тогда учёные придумали квантовую физику? Что такое особенное в физике приключилось? Представьте себе, приключилось. Только совсем не в физике, а в астрономии!

Загадочный спутник

В 1844 году немецкий астроном Фридрих Бессель наблюдал самую яркую звезду нашего ночного неба – Сириус. К тому времени астрономы уже знали, что звёзды в нашем небе не являются неподвижными – они движутся, только очень-очень медленно. При этом каждая звезда – это важно! – движется по прямой линии. Так вот, при наблюдениях Сириуса оказалось, что он движется совсем не по прямой. Звезду как бы «шатало» то в одну сторону, то в другую. Путь Сириуса в небе был похож на извилистую линию, которую математики называют «синусоида».


Звезда Сириус и её спутник - Сириус Б

Было понятно, что сама по себе звезда так двигаться не может. Чтобы превратить движение по прямой линии в движение по синусоиде, нужна некая «возмущающая сила». Поэтому Бессель предположил, что вокруг Сириуса вращается тяжёлый спутник – это было самое естественное и разумное объяснение.

Однако расчёты показывали, что масса этого спутника должна быть приблизительно как у нашего с вами Солнца. Тогда почему же мы не видим этот спутник с Земли? Сириус расположен от солнечной системы недалеко – каких-то два с половиной парсека, и объект размером с Солнце должен быть виден очень хорошо...

Трудная получалась задачка. Одни учёные говорили, что этот спутник представляет собой холодную, остывшую звезду – поэтому она абсолютно чёрная и невидима с нашей планеты. Другие говорили, что этот спутник не чёрный, а прозрачный, – потому мы его и не видим. Астрономы всего мира смотрели на Сириус в телескопы и пытались «поймать» загадочный невидимый спутник, а он как будто издевался над ними. Было от чего удивиться, сами понимаете...

Нам нужен чудо-телескоп!

В такой телескоп люди впервые увидели спутник Сириуса

В середине 19-го века в США жил и работал выдающийся конструктор телескопов Элвин Кларк. По первой профессии он был художником, но волей случая превратился в первоклассного инженера, стеклодела и астронома. До сих пор никто не сумел превзойти его потрясающие линзовые телескопы! Один из объективов работы Элвина Кларка (диаметром 76 сантиметров) можно увидеть в Санкт-Петербурге, в музее Пулковской обсерватории...

Однако мы отвлеклись. Итак, в 1867 году Элвин Кларк построил новый телескоп – с объективом диаметром 47 сантиметров; это был самый большой телескоп в США на тот момент. В качестве первого небесного объекта для наблюдений на испытаниях был выбран именно загадочный Сириус. И надежды астрономов блестяще оправдались – в первую же ночь неуловимый спутник Сириуса, предсказанный Бесселем, был обнаружен.

Из огня да в полымя...

Однако, получив данные наблюдений Кларка, астрономы радовались совсем недолго. Ведь, согласно расчётам, масса спутника должна быть приблизительно такая же, как у нашего Солнца (в 333 000 раз больше массы Земли). Но вместо огромного чёрного (или прозрачного) небесного светила астрономы увидели... крохотную белую звёздочку! Эта звёздочка была очень горячей (25 000 градусов, сравните с 5 500 градусами нашего Солнышка) и одновременно крохотной (по космическим меркам), размерами не больше Земли (впоследствии такие звёзды назвали «белыми карликами»). Получалось, что у этой звёздочки совершенно невообразимая плотность. Из какого же она тогда состоит вещества?!

На Земле мы знаем материалы с высокой плотностью – скажем, это свинец (кубик со стороной в сантиметр, сделанный из этого металла, весит 11.3 грамма) или золото (19.3 грамма на кубический сантиметр). Плотность вещества спутника Сириуса (его назвали «Сириус Б») составляет миллион (!!!) граммов на кубический сантиметр – оно в 52 тысячи раз тяжелее золота!

Возьмём, например, обычный спичечный коробок. Его объём – 28 кубических сантиметров. Значит, спичечный коробок, наполненный веществом спутника Сириуса, будет весить... 28 тонн! Попробуйте представить – на одной чашке весов спичечный коробок, а на второй – танк!

Была ещё одна проблема. В физике есть закон, который называется законом Шарля. Он утверждает, что в одном и том же объёме давление вещества тем выше, чем выше температура этого вещества. Вспомните, как срывает давлением горячего пара крышку с закипевшего чайника – и сразу поймёте, о чём речь. Так вот, температура вещества спутника Сириуса этот самый закон Шарля нарушала самым бессовестным образом! Давление было невообразимым, а температура – относительно низкой. В итоге получались «неправильные» физические законы и вообще «неправильная» физика. Как у Винни-Пуха – «неправильные пчёлы и неправильный мёд».

Совсем голова кругом...

Чтобы «спасти» физику, в начале 20 века учёным пришлось признать, что в мире существует сразу ДВЕ физики – одна «классическая», известная уже две тысячи лет. А вторая – необычная, квантовая . Учёные предположили, что на обычном, «макроскопическом» уровне нашего мира работают законы классической физики. А вот на самом маленьком, «микроскопическом» уровне вещество и энергия подчиняются совершенно другим законам – квантовым.

Представьте себе нашу планету Земля. Вокруг неё сейчас вращается больше 15 000 самых разных искусственных объектов, каждый по своей орбите. Причём эту орбиту при желании можно поменять (скорректировать) – скажем, периодически корректируется орбита у Международной космической станции (МКС). Это макроскопический уровень, здесь работают законы классической физики (например, законы Ньютона).


А теперь перенесёмся на микроскопический уровень. Представьте себе ядро атома. Вокруг него, подобно спутникам, вращаются электроны – однако их не может быть сколь угодно много (скажем, у атома гелия – не больше двух). И орбиты у электронов будут уже не произвольные, а квантованные, «ступенчатые». Такие орбиты физики ещё называют «разрешёнными энергетическими уровнями». Электрон не может «плавно» перейти с одного разрешённого уровня на другой, он может только мгновенно «перепрыгнуть» с уровня на уровень. Только что был «там», и мгновенно оказался «тут». Он не может оказаться где-то между «там» и «тут». Он меняет местоположение мгновенно.


Удивительно? Удивительно! Но это ещё не всё. Дело в том, что, по законам квантовой физики, два одинаковых электрона не могут занимать один и тот же энергетический уровень. Никогда. Учёные называют это явление «запрет Паули» (почему этот «запрет» действует, они пока объяснить не могут). Больше всего этот «запрет» напоминает шахматную доску, которую мы приводили в качестве примера квантовой системы, – если на клетке доски стоит пешка, другую пешку на эту клетку уже не поставить. В точности то же самое происходит с электронами!

Решение задачи

Каким же образом – спросите вы – квантовая физика позволяет объяснять такие необычные явления, как нарушение закона Шарля внутри Сириуса Б? А вот каким.

Представьте себе городской парк, в котором есть танцевальная площадка. На улице гуляет много людей, они заходят на танцплощадку потанцевать. Пусть количество людей на улице обозначает давление, а количество людей на дискотеке – температуру. На танцплощадку может зайти огромное количество народу, – чем больше людей гуляет в парке, тем больше людей танцует на танцплощадке, то есть чем выше давление, тем выше температура. Так работают законы классической физики – в том числе закон Шарля. Такое вещество учёные называют «идеальным газом».


Люди на танцплощадке – «идеальный газ»

Однако на микроскопическом уровне законы классической физики не работают. Там начинают действовать квантовые законы, и это коренным образом меняет ситуацию.

Представим себе, что на месте танцплощадки в парке открыли кафе. В чём разница? Да в том, что в кафе, в отличие от дискотеки, «сколько угодно» людей не войдёт. Как только будут заняты все места за столиками, охрана прекратит пропускать людей внутрь. И пока кто-то из гостей не освободит столик, охрана никого не впустит! В парке гуляет всё больше и больше народу – а в кафе сколько людей было, столько и осталось. Получается, давление увеличивается, а температура «стоит на месте».


Люди в кафе – «квантовый газ»

Внутри Сириуса Б, само собой, никаких людей, танцплощадок и кафе нет. Но принцип остаётся всё тот же: электроны заполняют все разрешенные энергетические уровни (как посетители – столики в кафе), и дальше никого «пустить» уже не могут – в точности согласно запрету Паули. В итоге внутри звезды получается невообразимо огромное давление, а вот температура при этом – высокая, но для звёзд вполне себе обыкновенная. Такое вещество в физике называется «вырожденным квантовым газом».

Продолжим?..

Аномально высокая плотность белых карликов – далеко не единственное явление в физике, требующее использования квантовых законов. Если эта тема вас заинтересовала, в следующих номерах «Лучика» мы можем поговорить и о других, не менее интересных, квантовых явлениях. Пишите! А пока давайте запомним главное:

1. В нашем с вами мире (Вселенной) на макроскопическом (т. е. «большом») уровне действуют законы классической физики. Они описывают свойства обычных жидкостей и газов, движения звёзд и планет и многое другое. Именно эту физику вы изучаете (или будете изучать) в школе.

2. Однако на микроскопическом (то есть невероятно маленьком, в миллионы раз меньше самых мелких бактерий) уровне действуют совершенно другие законы – законы квантовой физики. Законы эти описываются очень сложными математическими формулами, и в школе их не изучают. Однако только квантовая физика позволяет относительно внятно объяснить строение таких удивительных космических объектов, как белые карлики (вроде Сириуса Б), нейтронные звёзды, чёрные дыры и так далее.


Никто в этом мире не понимает, что такое квантовая механика. Это, пожалуй, самое главное, что нужно знать о ней. Конечно, многие физики научились использовать законы и даже предсказывать явления, основанные на квантовых вычислениях. Но до сих пор неясно, почему наблюдатель эксперимента определяет поведение системы и заставляет ее принять одно из двух состояний.

Перед вами несколько примеров экспериментов с результатами, которые неизбежно будут меняться под влиянием наблюдателя. Они показывают, что квантовая механика практически имеет дело с вмешательством сознательной мысли в материальную реальность.

Сегодня существует множество интерпретаций квантовой механики , но Копенгагенская интерпретация, пожалуй, является самой известной. В 1920-х ее общие постулаты были сформулированы Нильсом Бором и Вернером Гейзенбергом.

В основу Копенгагенской интерпретации легла волновая функция. Это математическая функция, содержащая информацию о всех возможных состояниях квантовой системы, в которых она существует одновременно. Как утверждает Копенгагенская интерпретация, состояние системы и ее положение относительно других состояний может быть определено только путем наблюдения (волновая функция используется только для того, чтобы математически рассчитать вероятность нахождения системы в одном или другом состоянии).

Можно сказать, что после наблюдения квантовая система становится классической и немедленно прекращает свое существование в других состояниях, кроме того, в котором была замечена. Такой вывод нашел своих противников (вспомните знаменитое эйнштейновское «Бог не играет в кости»), но точность расчетов и предсказаний все же возымели свое.

Тем не менее число сторонников Копенгагенской интерпретации снижается, и главной причиной этого является таинственный мгновенный коллапс волновой функции в ходе эксперимента. Знаменитый мысленный эксперимент Эрвина Шредингера с бедным котиком должен продемонстрировать абсурдность этого явления. Давайте вспомним детали.

Внутри черного ящика сидит черный кот и вместе с ним флакон с ядом и механизм, который может высвободить яд случайным образом. Например, радиоактивный атом во время распада может разбить пузырек. Точное время распада атома неизвестно. Известен только период полураспада, в течение которого распад происходит с вероятностью 50%.

Очевидно, что для внешнего наблюдателя кот внутри коробки находится в двух состояниях: он либо жив, если все пошло хорошо, либо мертв, если распад произошел и флакон разбился. Оба этих состояния описываются волновой функцией кота, которая меняется с течением времени.

Чем больше времени прошло, тем больше вероятность того, что радиоактивный распад случился. Но как только мы открываем коробку, волновая функция коллапсирует, и мы сразу же видим результаты этого бесчеловечного эксперимента.

На самом деле, пока наблюдатель не откроет коробку, кот будет бесконечно балансировать между жизнью и смертью, или будет одновременно жив и мертв. Его судьба может быть определена только в результате действий наблюдателя. На этот абсурд и указал Шредингер.

Согласно опросу знаменитых физиков, проведенному The New York Times, эксперимент с дифракцией электронов является одним из самых удивительных исследований в истории науки. Какова его природа? Существует источник, который излучает пучок электронов на светочувствительный экран. И есть препятствие на пути этих электронов, медная пластина с двумя щелями.

Какую картинку можно ожидать на экране, если электроны обычно представляются нам небольшими заряженными шариками? Две полосы напротив прорезей в медной пластине. Но на самом деле на экране появляется куда более сложный узор из чередующихся белых и черных полос. Это связано с тем, что при прохождении через щель электроны начинают вести себя не только как частицы, но и как волны (так же ведут себя фотоны или другие легкие частицы, которые могут быть волной в то же время).

Эти волны взаимодействуют в пространстве, сталкиваясь и усиливая друг друга, и в результате сложный рисунок из чередующихся светлых и темных полос отображается на экране. В то же время результат этого эксперимента не изменяется, даже если электроны проходят один за одним — даже одна частица может быть волной и проходить одновременно через две щели. Этот постулат был одним из основных в Копенгагенской интерпретации квантовой механики, когда частицы могут одновременно демонстрировать свои «обычные» физические свойства и экзотические свойства как волна.

Но как насчет наблюдателя? Именно он делает эту запутанную историю еще более запутанной. Когда физики во время подобных экспериментов попытались определить с помощью инструментов, через какую щель фактически проходит электрон, картинка на экране резко изменилась и стала «классической»: с двумя освещенными секциями строго напротив щелей, безо всяких чередующихся полос.

Электроны, казалось, не хотят открывать свою волновую природу бдительному оку наблюдателей. Похоже на тайну, покрытую мраком. Но есть и более просто объяснение: наблюдение за системой не может осуществляться без физического влияния на нее. Это мы обсудим позже.

2. Подогретые фуллерены

Эксперименты по дифракции частиц проводились не только с электронами, но и другими, гораздо более крупными объектами. Например, использовались фуллерены, большие и закрытые молекулы, состоящие из нескольких десятков атомов углерода. Недавно группа ученых из Венского университета под руководством профессора Цайлингера пыталась включить элемент наблюдения в эти эксперименты. Чтобы сделать это, они облучали движущиеся молекулы фуллеренов лазерными лучами. Затем, нагретые внешним источником, молекулы начинали светиться и неизбежно отображать свое присутствие для наблюдателя.

Вместе с этим нововведением изменилось и поведение молекул. До начала такого всеобъемлющего наблюдения фуллерены довольно успешно избегали препятствия (проявляя волновые свойства), аналогично предыдущему примеру с электронами, попадающими на экран. Но с присутствием наблюдателя фуллерены стали вести себя как совершенно законопослушные физические частицы.

3. Охлаждающее измерение

Одним из самых известных законов в мире квантовой физики является принцип неопределенности Гейзенберга , согласно которому невозможно определить скорость и положение квантового объекта одновременно. Чем точнее мы измеряем импульс частицы, тем менее точно мы можем измерить ее позицию. Однако в нашем макроскопическом реальном мире обоснованность квантовых законов, действующих на крошечные частицы, обычно остается незамеченной.

Недавние эксперименты профессора Шваба из США вносят весьма ценный вклад в эту область. Квантовые эффекты в этих экспериментах были продемонстрированы не на уровне электронов или молекул фуллеренов (примерный диаметр которых составляет 1 нм), а на более крупных объектах, крошечной алюминиевой ленте. Эта лента была зафиксирована с обеих сторон так, чтобы ее середина находилась в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом было помещено устройство, способное точно записывать положение ленты. В результате эксперимента обнаружилось несколько интересных вещей. Во-первых, любое измерение, связанное с положением объекта, и наблюдение за лентой влияло на нее, после каждого измерения положение ленты изменялось.

Экспериментаторы определили координаты ленты с высокой точностью, и таким образом, в соответствии с принципом Гейзенберга, изменили ее скорость, а значит и последующее положение. Во-вторых, что было довольно неожиданным, некоторые измерения привели к охлаждению ленты. Таким образом, наблюдатель может изменить физические характеристики объектов одним своим присутствием.

4. Замерзающие частицы

Как известно, нестабильные радиоактивные частицы распадаются не только в экспериментах с котами, но и сами по себе. Каждая частица имеет средний срок жизни, который, как выясняется, может увеличиться под бдительным оком наблюдателя. Этот квантовый эффект был предсказан еще в 60-х годах, а его блестящее экспериментальное доказательство появилось в статье, опубликованной группой под руководством нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучался распад нестабильных возбужденных атомов рубидия. Сразу после подготовки системы атомы возбуждались с помощью лазерного луча. Наблюдение проходило в двух режимах: непрерывном (система постоянно подвергалась небольшим световым импульсам) и импульсном (система время от времени облучалась более мощными импульсами).

Полученные результаты полностью соответствовали теоретическим предсказаниям. Внешние световые эффекты замедляют распад частиц, возвращая их в исходное состояние, которое далеко от состояния распада. Величина этого эффекта также совпадала с прогнозами. Максимальный срок существования нестабильных возбужденных атомов рубидия увеличивался в 30 раз.

5. Квантовая механика и сознание

Электроны и фуллерены перестают показывать свои волновые свойства, алюминиевые пластинки остывают, а нестабильные частицы замедляют свой распад. Бдительное око наблюдателя буквально меняет мир. Почему это не может быть доказательством причастности наших умов к работе мира? Возможно, Карл Юнг и Вольфганг Паули (австрийский физик, лауреат Нобелевской премии, пионер квантовой механики) были правы, в конце концов, когда заявили, что законы физики и сознания следует рассматривать как дополняющие одно другое?

Мы находимся в одном шаге от признания того, что мир вокруг нас — просто иллюзорный продукт нашего разума . Идея страшная и заманчивая. Давайте попробуем снова обратиться к физикам. Особенно в последние годы, когда все меньше и меньше людей верят Копенгагенской интерпретации квантовой механики с ее загадочными коллапсами волновой функции, обращаясь к более приземленной и надежной декогеренции.

Дело в том, что во всех этих экспериментах с наблюдениями экспериментаторы неизбежно влияли на систему. Они зажигали ее с помощью лазера и устанавливали измерительные приборы. Их объединял важный принцип: вы не можете наблюдать за системой или измерять ее свойства, не взаимодействуя с ней. Любое взаимодействие есть процесс модификации свойств. Особенно когда крошечная квантовая система подвергается воздействию колоссальных квантовых объектов. Некий вечно нейтральный буддист-наблюдатель невозможен в принципе. И здесь в игру вступает термин «декогеренция», который является необратимым с точки зрения термодинамики: квантовые свойства системы меняются при взаимодействии с другой крупной системой.

Во время этого взаимодействия квантовая система теряет свои первоначальные свойства и становится классической, словно «подчиняясь» крупной системе. Это объясняет и парадокс кота Шредингера: кот — это слишком большая система, поэтому ее нельзя изолировать от остального мира. Сама конструкция этого мысленного эксперимента не совсем корректна.

В любом случае, если допустить реальность акта творения сознанием, декогеренция представляется гораздо более удобным подходом. Возможно, даже слишком удобным. При таком подходе весь классический мир становится одним большим следствием декогеренции. И как заявил автор одной из самых известных книг в этой области, такой подход логически приводит к заявлениям типа «в мире нет частиц» или «нет времени на фундаментальном уровне».

В чем правда: в создателе-наблюдателе или мощной декогеренции? Нам нужно выбрать между двух зол. Тем не менее ученые все больше убеждаются в том, что квантовые эффекты — проявление наших психических процессов. И то, где заканчивается наблюдение и начинается реальность, зависит от каждого из нас.