Натрий (Na) – главный регулятор водного баланса в организме. Натрий в природе (2,6% в Земной коре) Химическая характеристика натрия

Натрий - это металл или неметалл? Ошибочно полагать, что второй вариант. Натрий является мягким серебристо-белым металлом, который входит в таблицу Менделеева под атомным номером 11.

К тому же он (точнее его соединения) известны с давних времен! Даже в Библии упоминалось о натрии, как о компоненте чистящего средства. Впрочем, это историческая справка, пусть и интересная. Сейчас же стоит поговорить об особенностях данного элемента и прочих его характеристиках.

Физические свойства

Итак, ответ на вопрос «Натрий - это металл или неметалл?» предельно ясен. Даже взглянув на это вещество, можно все понять. Очевидно, что Который, кстати, пусть и обладает серебристо-белым цветом, но в тонких слоях имеет фиолетовый оттенок.

Это очень пластичное вещество. Мягкими называются те металлы, которые без особых усилий поддаются ковке, а также отличаются пластичностью и легкоплавкостью. Но по отношению к натрию это слово может быть применено в прямом смысле. Его можно порезать ножом без усилий. Кстати, свежий срез очень ярко блестит. Из других свойств можно отметить:

  • Плотность. При нормальных условиях - 0,971 г/см³.
  • Температура плавления и кипения - 97,81 °C и 882,95 °C соответственно.
  • Молярная теплоемкость - 28,23 Дж/(K.моль).
  • Удельная теплота плавления и испарения - 2,64 кДж/моль и 97,9 кДж/моль соответственно.
  • Молярный объем - 23,7 см³/моль.

Стоит отметить, что под давлением натрий (Na) становится красным и прозрачным. В таком состоянии этот металл очень похож на рубин.

Если поместить его в условия комнатной температуры, то он образует кристаллы в кубической симметрии. Однако, понизив ее до −268 °С, можно увидеть, как металл переходит в гексагональную фазу. Чтобы понять, о чем речь, достаточно вспомнить графит. Это яркий пример гексагонального кристалла.

Окисление и горение

Теперь можно перейти к химическим свойствам натрия (Na). Этот щелочной металл, находясь на воздухе, легко окисляется. В итоге образуется оксид натрия (Na 2 O). Выглядит он как бесцветные кубические кристаллы. Это солеобразующее бинарное неорганическое вещество, которое применяется как реактив в процессе синтеза. С его помощью изготавливают гидроксид натрия и прочие соединения.

Поэтому, чтобы защитить металл от кислородного воздействия, его хранят в керосине.

А вот при горении образуется пероксид натрия (Na 2 O 2). Они выглядят как бело-желтые кристаллы, для которых характерно энергичное взаимодействие с водой, сопровождающееся выделением тепла. Na 2 O 2 применяют для отбеливания шелка, шерсти, тканей, соломы, вискозной и древесной массы.

Реакции с водой

С H 2 O серебристо-белый мягкий металл натрий также успешно взаимодействует. Реакция с водой получается очень бурной. Небольшой кусочек натрия, помещенный в эту жидкость, всплывает, и из-за выделяющегося тепла начинает плавиться. В итоге он превращается в белый шарик, который в быстром темпе движется по поверхности воды в разных направлениях.

Эта весьма эффектная реакция сопровождается выделением водорода. Проводя подобный эксперимент, нужно проявлять осторожность, так как он может воспламениться. А происходит все по следующему уравнению: 2Na + 2Н 2 О → 2NaOH + Н 2 .

Взаимодействия с неметаллами

Натрий - это металл, его еще можно назвать сильным восстановителем, которым он и является. Как и другие щелочные вещества, впрочем. Так что он энергично взаимодействует со многими неметаллами, кроме углерода, йода и благородных газов, к которым относится радиоактивный радон, криптон, неон, ксенон, аргон и гелий. Такие реакции выглядят так: 2Na + Cl 2 → 2NaCl. Или вот еще пример: 2Na + Н 2 → 250-450 °С 2NaH.

Стоит отметить, что натрий является более активным, чем литий. В принципе, он может реагировать с азотом, но очень плохо (в тлеющем разряде). В итоге этого взаимодействия образуется неустойчивое вещество, называющееся нитридом натрия. Это кристаллы темно-серого цвета, реагирующие с водой и разлагающиеся при нагревании. Образуются они по уравнению: 6Na + N 2 → 2Na 3 N.

Реакции с кислотами

Их тоже следует перечислить, рассказывая про химические характеристики натрия. С разбавленными кислотами данное вещество взаимодействует, как обычный металл. Выглядит это так: 2Na + 2HCl → 2NaCl + Н 2 .

С концентрированными веществами, которым свойственны окислительные реакции, натрий взаимодействует иначе, такие реакции сопровождаются выделением продуктов восстановления. Вот пример формулы: 8Na + 10NHO 3 → 8NaNO 3 + 3Н 2 О.

Еще стоит отметить, что щелочной металл натрий легко растворяется в жидком аммиаке (NH 3), 10-процентный раствор которого прекрасно всем известен, как нашатырь. Уравнение выглядит так: Na + 4NH3 → - 40°С Na 4 . Вследствие этой реакции образуется синий раствор.

С газообразным аммиаком металл также взаимодействует, но при нагревании. Выглядит данная реакция так: 2Na + 2NH3 → 35 0°С 2NaNH 2 + Н 2 .

Другие соединения

Перечисляя основные свойства натрия, стоит также оговориться, что он может взаимодействовать со ртутью - уникальным элементом, который при нормальных условиях представляет собой бело-серебристую тяжелую жидкость, являясь при этом металлом.

В результате такой реакции образуется сплав. Его точное название - амальгама натрия. Используется это вещество как восстановитель, по своим свойствам являющийся мягче чистого металла. Если подвергнуть его тепловой обработке вместе с калием, то получится жидкий сплав.

А еще этот металл может растворяться в так называемых краун-эфирах - макрогетероциклических соединениях, но только в присутствии растворителей органического происхождения. В результате данной реакции образуется алкалид (соль, сильный восстановитель) или электрид (растворитель синего цвета).

Также нельзя не упомянуть, что алкилгалогениды, являющиеся галогенно-углеродными веществами, с избытком натрия дают натрийорганические соединения. На воздухе они обычно самовоспламеняются. А в воде - взрываются.

Применение

Свойства и характеристики натрия позволяют широко использовать его в промышленности, металлургии и препаративной химии как мощного восстановителя. Кроме этого, данное вещество задействовано:

  • В осушении растворителей органического происхождения.
  • В производстве серно-натриевых аккумуляторов.
  • В выпускных клапанах моторов грузовых машин. Играет роль жидкого теплоотвода.
  • При изготовлении электрических проводов, которые предназначены для высоких токов.
  • В сплавах с цезием, рубидием и калием. Вместе с этими веществами натрий образует высокоэффективный теплоноситель, который, кстати, используется на быстрых нейтронах в ядерных реакторах.
  • В газоразрядных лампах.

И это лишь некоторые сферы его применения. Но больше всего в мире распространен хлорид натрия. Он есть практически в каждом доме, ведь это - поваренная соль.

А еще нельзя не упомянуть, что земная кора на 2,6 % состоит из натрия. Да и вообще, он находится на 7-м месте в рейтинге самых часто встречающихся в природе элементов и на 5-м - в списке наиболее распространенных металлов. Нахождение в природе натрия в чистом виде невозможно, поскольку он является химически активным, но вот в виде сульфата, карбоната, нитрата и хлорида содержится в огромных количествах.

Биологическая роль

Итак, все самое основное по теме «Натрий - это металл или неметалл?» было сказано. Напоследок - пару слов о биологической роли данного вещества.

Натрий является неотъемлемой частью любого живого организма. Человеческий - не исключение. Вот, каковы его роли:

  • Поддерживает осмотическое давление.
  • Транспортирует углекислый газ.
  • Нормализует водный баланс.
  • Способствует транспортировке глюкозы, аминокислот, анионов через клеточные мембраны.
  • Своим обменом с ионами калия влияет на формирование потенциала действия.
  • Позитивно влияет на обмен белков.
  • Принимает участие в процессе гидратации.

Натрий входит в состав практических всех продуктов. Но его основными источниками является соль и пищевая сода. Улучшает усвоение данного вещества витамин D.

Дефицита натрия не встречается, но проблемы, связанные с употреблением недостаточного его количества, могут возникнуть при голодании. Это чревато потерей веса, рвотой, нарушением усвоения моносахаридов, образованием в желудочно-кишечном тракте газов. В особо тяжелых случаях возникает невралгия и судороги. Поэтому лучше не подвергать свой организм жесткому голоданию.

Натрий и его соединения знакомы людям еще с давних времен. Наверное, самым популярным и общеизвестным соединением является хлорид натрия, больше известный как поваренная соль. Поваренная соль является обязательным компонентом практически любого блюда. Согласно мнению ученых, люди начали употреблять в пищу поваренную соль несколько тысячелетий назад.

Еще одно популярное соединение - карбонат натрия. Карбонат натрия - это обычная сода, которая продается в любом магазине. Вещество также используется людьми с давних времен в качестве моющего средства. Таким образом, с натрием и его соединениями люди ежедневно сталкиваются на протяжении уже многих десятков и сотен лет. Натрий легко вступает в реакцию как с металлическими, так и с неметаллическими элементами, образуя сплавы и соединения, широко применяемые в промышленности. Давайте рассмотрим подробнее свойства и характеристики этого металла.

Характеристика натрия

Физические свойства

Натрий - мягкий пластичный металл, который очень легко можно разрезать ножом. Имеет серебристо-белый цвет, а также характерный металлический блеск. Металл хорошо проводит тепло и электрический ток. Атомы натрия связаны металлической связью.

Химические свойства

Атомы натрия при реакции с другими химическими элементами легко отдают валентные электроны. При этом атомы натрия переходят в ионы с положительным зарядом.

  • Натрий очень быстро окисляется на открытом воздухе. Именно поэтому металл обычно хранят в керосине.
  • При горении в кислороде образует соединение пироксид натрия (Na 2 O 2)
  • При нагревании Натрий вступает в реакцию с водородом, образуя при этом гидрид (2NaH)
  • Натрий достаточно легко вступает в реакцию с неметаллами, такими как сера, форфор и другими.
  • Также натрий способен вступать в реакцию с металлами. При этом образуются различные сплавы, которые широко используются в производстве и промышленности.
  • Натрий вступает в бурную реакцию с водой.

Нахождение натрия в природе

Натрий находится на седьмом месте в списке самых распространенных на Земле элементов. Также натрий является пятым по счету среди самых распространенных металлов. Среди металлов чаще натрия встречаются только алюминий, железо, кальций и магний.

Натрий не встречается в природе в чистом виде. Причина этому - высокая химическая активность натрия. Элемент встречается в природе в виде хлорида, карбоната, нитрата, сульфата и других солей.

Где же встречается натрий в природе?

Во-первых, достаточно большое содержание натрия зафиксировано в земной коре. Доля вещества составляет примерно 2,6%.

Во-вторых, натрий и его соединения в большом количестве встречаются в местах испарения древних морей.

Еще одним местом скопления натрия и его соединений являются океанические воды. Ученые подсчитали, что вся соль, которая есть в Мировом океане составляет объем около 19 миллионов кубических километров.

Также натрий в небольших количествах содержится в живых существах. При этом содержание натрия в животных несколько выше, чем в растениях. Ионы натрия в живых организмах выполняют важнейшую функцию: способствуют передаче нервных импульсов.

Применение натрия в промышленности

Натрий широко используется во многих отраслях промышленности: химической, металлургической, атомной, пищевой, легкой и других отраслях.

В химической промышленности натрий используется для производства различных моющих и чистящих средств, удобрений и антисептиков.

В металлургии натрий используется в процессе получения других веществ, таких как торий, уран, титан, цирконий и других соединений. Натрий в таких реакциях выступает в качестве восстановителя.

Также натрий широко используется в атомной энергетике. Натрий и его сплавы используют в качестве теплоносителя.

В легкой промышленности натрий широко используют для обработки кожи.

Натрий является важнейшим элементом пищевой промышленности. Хлорид натрия, больше известный как поваренная соль, является, пожалуй, самой распространенной пищевой добавкой, без которой не обходится приготовление любого блюда.

План лекции:

1. Распространение натрия в природе.

2. Историческая справка.

3. Физические свойства натрия

4. 4.Химические свойства натрия

5. Получение натрия.

6. 6.Получение натрия.

Натрий (Natrium), Na, химический элемент I группы периодической системы Менделеева: атомный номер 11, атомная масса 22,9898; серебристо-белый мягкий металл, на воздухе быстро окисляющийся с поверхности. Природный элемент состоит из одного стабильного изотопа 23 Na.

Историческая справка . Природные соединения Натрия – поваренная соль NaCl, сода Na 2 CO 3 – известны с глубокой древности. Название "Натрий", происходящее от арабского натрун, греч. nitron, первоначально относилось к природной соде. Уже в 18 веке химики знали много других соединений Натрия. Однако сам металл был получен лишь в 1807 году Г. Дэви электролизом едкого натра NaOH. В Великобритании, США, Франции элемент называется Sodium (от испанского слова soda – сода), в Италии – sodio.

Распространение н атрия в природе .

Натрий – типичный элемент верхней части земной коры. Среднее содержание его в литосфере 2,5% по массе, в кислых изверженных породах (граниты и другие) 2,77, в основных (базальты и другие) 1,94, в ультраосновных (породы мантии) 0,57. Благодаря изоморфизму Na + и Ca 2+ , обусловленному близостью их ионных радиусов, в магматических породах образуются натриево-кальциевые полевые шпаты (плагиоклазы). В биосфере происходит резкая дифференциация Натрия: осадочные породы в среднем обеднены Натрием (в глинах и сланцах 0,66%), мало его в большинстве почв (среднее 0,63%). Общее число минералов Натрия 222. Na слабо задерживается на континентах и приносится реками в моря и океаны, где его среднее содержание 1,035% (Na – главный металлический элемент морской воды). При испарении в прибрежно-морских лагунах, а также в континентальных озерах степей и пустынь осаждаются соли Натрия, формирующие толщи соленосных пород. Главные минералы, являющиеся источником Натрия и его соединений, – галит (каменная соль) NaCl, чилийская селитра NaNO 3 , тенардит Na 2 SO 4 , мирабилит Na 2 SO 4 ·10H 2 O, трона NaH(CO 3) 2 ·2H 2 O. Na – важный биоэлемент, в живом веществе в среднем содержится 0,02% Na; в животных его больше, чем в растениях.

Физические свойства н атрия

При обычной температуре Натрий кристаллизуется в кубической решетке, а = 4,28Å. Атомный радиус 1,86Å, ионный радиус Na + 0,92Å. Плотность 0,968 г/см 3 (19,7 °C), t пл 97,83 °C, t кип 882,9 °C; удельная теплоемкость (20 °C) 1,23·10 3 дж/(кг·К) или 0,295 кал/(г·град); коэффициент теплопроводности 1,32·10 2 вт/(м·К) или 0,317 кал/(см·сек·град); температурный коэффициент линейного расширения (20 °C) 7,1·10 -5 ; удельное электрическое сопротивление (0 °C) 4,3·10 -8 ом·м (4,3·10 -6 ом·см). Натрий парамагнитен, удельная магнитная восприимчивость +9,2·10 -6 ; весьма пластичен и мягок (легко режется ножом).

Химические свойства н атрия

Нормальный электродный потенциал Натрия -2,74 в; электродный потенциал в расплаве -2,4 в. Пары Натрия окрашивают пламя в характерный ярко-желтый цвет. Конфигурация внешних электронов атома 3s 1 ; во всех известных соединениях Натрий одновалентен. Его химическая активность очень высока. При непосредственном взаимодействии с кислородом в зависимости от условий образуется оксид Na 2 O или пероксид Na 2 O 2 – бесцветные кристаллические вещества. С водой Натрий образует гидрооксид NaOH и H 2 ; реакция может сопровождаться взрывом. Минеральные кислоты образуют с Натрием соответствующие растворимые в воде соли, однако по отношению к 98-100%-ной серной кислоте Натрий сравнительно инертен.

Реакция Натрия с водородом начинается при 200 °C и приводит к получению гидрида NaH – бесцветного гигроскопического кристаллического вещества. С фтором и хлором Натрий взаимодействует непосредственно уже при обычной температуре, с бромом – только при нагревании; с иодом прямого взаимодействия не наблюдается. С серой реагирует бурно, образуя сульфид натрия, взаимодействие паров Натрия с азотом в поле тихого электрического разряда приводит к образованию нитрида Na 3 N, а с углеродом при 800-900 °C – к получению карбида Na 2 C 2 .

Натрий растворяется в жидком аммиаке (34,6 г на 100 г NH 3 при 0°C) с образованием аммиачных комплексов. При пропускании газообразного аммиака через расплавленный Натрий при 300-350 °C образуется натрийамин NaNH 2 – бесцветное кристаллическое вещество, легко разлагаемое водой. Известно большое число натрийорганических соединений, которые по химические свойствам весьма сходны с литийорганическими соединениями, но превосходят их по реакционной способности. Применяют натрийорганические соединения в органическом синтезе как алкилирующие агенты.

Натрий входит в состав многих практически важных сплавов. Сплавы Na – К, содержащие 40-90% K (по массе) при температуре около 25°C, – серебристо-белые жидкости, отличающиеся высокой химической активностью, воспламеняющиеся на воздухе. Электропроводность и теплопроводность жидких сплавов Na – K ниже соответствующих величин для Na и K. Амальгамы Натрия легко получаются при введении металлического Натрия в ртуть; при содержании свыше 2,5% Na (по массе) при обычной температуре являются уже твердыми веществами.

Получение н атрия .

Основной промышленный метод получения Натрия – электролиз расплава поваренной соли NaCl, содержащей добавки KCl, NaF, CaCl 2 и другие, которые снижают температуру плавления соли до 575-585 °C. Электролиз чистого NaCl привел бы к большим потерям Натрия от испарения, так как температуры плавления NaCl (801 °C) и кипения Na (882,9 °C) очень близки. Электролиз проводят в электролизерах с диафрагмой, катоды изготовляют из железа или меди, аноды – из графита. Одновременно с Натрием получают хлор. Старый способ получения Натрия – электролиз расплавленного едкого натра NaOH, который значительно дороже NaCl, однако электролитически разлагается при более низкой температуре (320-330 °C).

Применение н атрия .

Натрий и его сплавы широко применяются как теплоносители для процессов, требующих равномерного обогрева в интервале 450-650 °C – в клапанах авиационных двигателей и особенно в ядерных энергетических установках. В последнем случае жидкометаллическими теплоносителями служат сплавы Na – K (оба элемента имеют малые сечения поглощения тепловых нейтронов, для Na 0,49 барн), эти сплавы отличаются высокими температурами кипения и коэффициентами теплопередачи и не взаимодействуют с конструкционными материалами при высоких температурах, развиваемых в энергетических ядерных реакторах. Соединение NaPb (10% Na по массе) применяется в производстве тетраэтилсвинца – наиболее эффективного антидетонатора. В сплаве на основе свинца (0,73% Ca, 0,58% Na и 0,04% Li), применяемом для изготовления осевых подшипников железнодорожных вагонов, Натрий является упрочняющей добавкой. В металлургии Натрий служит активным восстановителем при получении некоторых редких металлов (Ti, Zr, Та) методами металлотермии; в органических синтезе – в реакциях восстановления, конденсации, полимеризации и других.

Вследствие большой химической активности Натрия обращение с ним требует осторожности. Особенно опасно попадание на Натрий воды, которое может привести к пожару и взрыву. Глаза должны быть защищены очками, руки – толстыми резиновыми перчатками; соприкосновение Натрия с влажной кожей или одеждой может вызвать тяжелые ожоги.

Натрий
Атомный номер 11
Внешний вид простого вещества серебристо-белый мягкий металл
Свойства атома
Атомная масса
(молярная масса)
22,989768 а. е. м. ( /моль)
Радиус атома 190 пм
Энергия ионизации
(первый электрон)
495,6(5,14) кДж /моль (эВ)
Электронная конфигурация 3s 1
Химические свойства
Ковалентный радиус 154 пм
Радиус иона 97 (+1e) пм
Электроотрицательность
(по Полингу)
0,93
Электродный потенциал -2,71 в
Степени окисления 1
Термодинамические свойства простого вещества
Плотность 0,971 /см ³
Молярная теплоёмкость 28,23 Дж /( ·моль)
Теплопроводность 142,0 Вт /( ·)
Температура плавления 370,96
Теплота плавления 2,64 кДж /моль
Температура кипения 1156,1
Теплота испарения 97,9 кДж /моль
Молярный объём 23,7 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая объемноцентрированая
Параметры решётки 4,230
Отношение c/a
Температура Дебая 150 K
Na 11
22,98977
3s 1
Натрий

Натрий элемент главной подгруппы первой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 11. Обозначается символом Na (лат. Natrium). Простое вещество натрий (CAS-номер: 7440-23-5) — мягкий щелочной металл серебристо-белого цвета.

В воде натрий ведет себя почти так же, как литий: реакция идёт с бурным выделением водорода, в растворе образуется гидроксид натрия.

История и происхождение названия

Натрий (а точнее, его соединения) использовался с давних времён. Например, сода (натрон), встречающаяся в природе в водах натронных озёр в Египте. Природную соду древние египтяне использовали для бальзамирования, отбеливания холста, при варке пищи, изготовлении красок и глазурей. Плиний Старший пишет, что в дельте Нила соду (в ней была достаточная доля примесей) выделяли из речной воды. Она поступала в продажу в виде крупных кусков, из-за примеси угля окрашенных в серый или даже чёрный цвет.

Натрий впервые был получен английским химиком Хемфри Дэви в 1807 году электролизом твердого NaOH.

Название «натрий» (natrium) происходит от арабского натрун по-гречески — nitron и первоначально оно относилось к природной соде. Сам элемент ранее именовался содием Sodium.

Получение

Первым способом получения натрия стала реакция восстановления карбоната натрия углем при нагревании тесной смеси этих веществ в железной ёмкости до 1000°C:

Na 2 CO 3 +2C=2Na+3CO

Затем появился другой способ получения натрия — электролиз расплава едкого натра или хлорида натрия.

Физические свойства

Металлический натрий, сохраняемый в керосине

Качественное определение натрия с помощью пламени — ярко-жёлтый цвет эмиссионного спектра «D-линии натрия», дублет 588,9950 и 589,5924 нм.

Натрий — серебристо-белый металл, в тонких слоях с фиолетовым оттенком, пластичен, даже мягок (легко режется ножом), свежий срез натрия блестит. Величины электропроводности и теплопроводности натрия достаточно высоки, плотность равна 0,96842 г/см³ (при 19,7° С), температура плавления 97,86° С, температура кипения 883,15° С.

Химические свойства

Щелочной металл, на воздухе легко окисляется. Для защиты от кислорода воздуха металлический натрий хранят под слоем керосина . Натрий менее активный чем литий , поэтому с азотом реагирует только при нагревании:

2Na + 3N 2 =2NaN 3

При большом избытке кислорода образуется пероксид натрия

2Na + O 2 = Na 2 O 2

Применение

Металлический натрий широко используется в препаративной химии и промышленности как сильный восстановитель, в том числе в металлургии. Натрий используется в производстве весьма энергоёмких натриево-серных аккумуляторов. Его также применяют в выпускных клапанах грузовиков как теплоотвод. Изредка металлический натрий применяется в качестве материала для электрических проводов, предназначенных для очень больших токов.

В сплаве с калием, а также с рубидием и цезием используется в качестве высокоэффективного теплоносителя. В частности, сплав состава натрий 12 %, калий 47 %, цезий 41 % имеет рекордно низкую температуру плавления −78 °C и был предложен в качестве рабочего тела ионных ракетных двигателей и теплоносителя для атомных энергоустановок.

Натрий также используется в газоразрядных лампах высокого и низкого давления (НЛВД и НЛНД). Лампы НЛВД типа ДНаТ (Дуговая Натриевая Трубчатая) очень широко применяются в уличном освещении. Они дают ярко-жёлтый свет. Срок службы ламп ДНаТ составляет 12-24 тысяч часов. Поэтому газоразрядные лампы типа ДНаТ незаменимы для городского, архитектурного и промышленного освещения. Также существуют лампы ДНаС, ДНаМТ (Дуговая Натриевая Матовая), ДНаЗ (Дуговая Натриевая Зеркальная) и ДНаТБР (Дуговая Натриевая Трубчатая Без Ртути).

Металлический натрий применяется в качественном анализе органического вещества. Сплав натрия и исследуемого вещества нейтрализуют этанолом, добавляют несколько миллилитров дистиллированной воды и делят на 3 части, проба Ж. Лассеня (1843), направлена на определение азота, серы и галогенов (проба Бейльштейна)

— Хлорид натрия (поваренная соль) — древнейшее применяемое вкусовое и консервирующее средство.
— Азид натрия (Na 3 N) применяется в качестве азотирующего средства в металлургии и при получении азида свинца.
— Цианид натрия (NaCN) применяется при гидрометаллургическом способе выщелачивания золота из горных пород, а также при нитроцементации стали и в гальванотехнике (серебрение, золочение).
— Хлорат натрия (NaClO 3) применяется для уничтожения нежелательной растительности на железнодорожном полотне.

Биологическая роль

В организме натрий находится большей частью снаружи клеток (примерно в 15 раз больше чем в цитоплазме). Это разницу поддерживает натрий-калиевый насос, который откачивает попавший внутрь клетки натрий.

Совместно с калием натрий выполняет следующие функции:
Создание условий для возникновения мембранного потенциала и мышечных сокращений.
Поддержание осмотической концентрации крови.
Поддержание кислотно-щелочного баланса.
Нормализация водного баланса.
Обеспечение мембранного транспорта.
Активация многих энзимов.

Натрий содержится практически во всех продуктах, хотя большую его часть организм получает из поваренной соли. Усвоение в основном происходит в желудке и тонкой кишке. Витамин Д улучшает усвоение натрия, однако, чрезмерно соленая пища и пища богатая белками препятствуют нормальному всасыванию. Количество поступившего с едой натрия показывает содержание натрия в моче. Для богатой натрием пищи характерна ускоренная экскреция.

Дефицит натрия у питающегося сбалансированой пищей человека не встречается, однако, некоторые проблемы могут возникнуть при вегетарианских диетах. Временный дефицит может быть вызвано использованием мочегонных, поносом, обильным потением или избыточным употреблением воды. Симптомами нехватки натрия являются потеря веса, рвота, образование газов в желудочно-кишечном тракте, и нарушение усвоения аминокислот и моносахаридов . Продолжительный дефицит вызывает мышечные судороги и невралгию.

Переизбыток натрия вызывает отек ног и лица, а так же повышеное выделение калия с мочой. Максимальное количество соли, которое может быть переработано почками составляет примерно 20-30 грамм, большее количество уже опасно для жизни.

Соединения натрия

Натрий, Natrium, Na (11)
Название натрий — sodium, natrium происходит от древнего слова, распространенного в Египте, у древних греков (vixpov) и римлян. Оно встречается у Плиния (Nitron), у других древних авторов и соответствует древнееврейскому нетер (neter). В древнем Египте натроном, или нитроном, называли вообще щелочь, получаемую не только из природных содовых озер, но и из золы растений. Ее употребляли для мытья, изготовления глазурей, при мумификации трупов. В средние века название нитрон (nitron, natron, nataron), а также борах (baurach), относилось и к селитре (Nitrum). Арабские алхимики называли щелочи alkali. С открытием пороха в Европе селитру (Sal Petrae) стали строго отличать от щелочей, и в XVII в. уже различали нелетучие, или фиксированные щелочи, и летучую щелочь (Alkali volatile). Вместе с тем было установлено различие между растительной (Alkali fixum vegetabile — поташ) и минеральной щелочью (Alkali fixum minerale — сода).

В конце XVIII в. Клапрот ввел для минеральной щелочи название натрон (Natron), или натр и для растительной — кали (Kali), Лавуазье не поместил щелочи в «Таблицу простых тел», указав в примечании к ней, что это, вероятно, сложные вещества, которые когда-нибудь будут разложены. Действительно, в 1807 г. Дэви путем электролиза слегка увлажненных твердых щелочей получил свободные металлы — калий и натрий, назвав их потассий (Potassium) и содий (Sodium). В следующем году Гильберт, издатель известных «Анналов физики», предложил именовать новые металлы калием и натронием (Natronium); Берцелиус сократил последнее название до «натрий» (Natrium). В начале XIX в. в России натрий называли содием (Двигубский, 182i; Соловьев, 1824); Страхов предлагал название содь (1825). Соли натрия назывались, например, сернокислая сода, гидрохлоровая сода и одновременно уксусный натр (Двигубский, 1828). Гесс, по примеру Берцелиуса, ввел название натрий.

Содержание статьи

НАТРИЙ – (Natrium) Na, химический элемент 1-й (Ia) группы Периодической системы, относится к щелочным элементам. Атомный номер 11, относительная атомная масса 22,98977. В природе имеется один стабильный изотоп 23 Na. Известны шесть радиоактивных изотопов этого элемента, причем два из них представляют интерес для науки и медицины. Натрий-22 с периодом полураспада 2,58 года используют в качестве источника позитронов. Натрий-24 (его период полураспада около 15 часов) применяют в медицине для диагностики и для лечения некоторых форм лейкемии.

Степень окисления +1.

Соединения натрия известны с древних времен. Хлорид натрия – необходимейший компонент человеческой пищи. Cчитается, что человек начал употреблять его в неолите, т.е. около 5–7 тыс. лет назад.

В Ветхом завете упоминается некое вещество «нетер». Это вещество использовалось как моющее средство. Скорее всего, нетер – это сода, карбонат натрия, который образовывался в соленых египетских озерах с известковыми берегами. Об этом же веществе, но под названием «нитрон» писали позже греческие авторы Аристотель и Диоскорид, а древнеримский историк Плиний Старший, упоминая это же вещество, называл его уже «нитрум».

В 18 в. химикам было известно уже очень много различных соединений натрия. Соли натрия широко применялись в медицине, при выделке кож, при крашении тканей.

Металлический натрий получил впервые английский химик и физик Гемфри Дэви электролизом расплавленного гидроксида натрия (с использованием вольтова столба из 250 пар медных и цинковых пластин). Название «sodium», выбранное Дэви для этого элемента, отражает его происхождение из соды Na 2 CO 3 . Латинское и русское названия элемента произведены от арабского «натрун» (природная сода).

Распространение натрия в природе и его промышленное извлечение.

Натрий – седьмой из наиболее распространенных элементов и пятый из наиболее распространенных металлов (после алюминия, железа, кальция и магния). Его содержание в земной коре составляет 2,27%. Большая часть натрия находится в составе различных алюмосиликатов.

Огромные отложения солей натрия в сравнительно чистом виде существуют на всех континентах. Они являются результатом испарения древних морей. Этот процесс по-прежнему продолжается в озере Солт-Лейк (штат Юта), Мертвом море и других местах. Натрий встречается в виде хлорида NaCl (галит, каменная соль), а также карбоната Na 2 CO 3 ·NaHCO 3 ·2H 2 O (трона), нитрата NaNO 3 (селитра), сульфата Na 2 SO 4 ·10H 2 O (мирабилит), тетрабората Na 2 B 4 O 7 ·10 H 2 O (бура) и Na 2 B 4 O 7 ·4H 2 O (кернит) и других солей.

Неиссякаемые запасы хлорида натрия есть в природных рассолах и океанических водах (около 30 кг м –3). Подсчитано, что каменная соль в количестве, эквивалентном содержанию хлорида натрия в Мировом океане, занимала бы объем 19 млн. куб. км (на 50% больше, чем общий объем Североамериканского континента выше уровня моря). Призма такого объема с площадью основания 1 кв. км может достичь Луны 47 раз.

Сейчас суммарное производство хлорида натрия из морской воды достигло 6–7 млн. т в год, что составляет около трети общей мировой добычи.

В живом веществе в среднем содержится 0,02% натрия; в животных его больше, чем в растениях.

Характеристика простого вещества и промышленное получение металлического натрия.

Натрий – серебристо-белый металл, в тонких слоях с фиолетовым оттенком, пластичен, даже мягок (легко режется ножом), свежий срез натрия блестит. Величины электропроводности и теплопроводности натрия достаточно высоки, плотность равна 0,96842 г/см 3 (при 19,7° С), температура плавления 97,86° С, температура кипения 883,15° С.

У тройного сплава, содержащего 12% натрия, 47% калия и 41% цезия, – самая низкая температура плавления для металлических систем, равная –78° С.

Натрий и его соединения окрашивают пламя в ярко-желтый цвет. Двойная линия в спектре натрия отвечает переходу 3s 1–3p 1 в атомах элемента.

Химическая активность натрия высока. На воздухе он быстро покрывается пленкой из смеси пероксида, гидроксида и карбоната. В кислороде, фторе и хлоре натрий горит. При сжигании металла на воздухе образуется пероксид Na 2 O 2 (с примесью оксида Na 2 O).

С серой натрий реагирует уже при растирании в ступке, серную кислоту восстанавливает до серы или даже до сульфида. Твердый диоксид углерода («сухой лед») при контакте с натрием взрывается (углекислотные огнетушители для тушения горящего натрия применять нельзя!). С азотом реакция идет только в электрическом разряде. Не взаимодействует натрий лишь с инертными газами.

Натрий активно реагирует с водой:

2Na + 2H 2 O = 2NaOH + H 2

Тепла, которое выделяется при реакции, достаточно, чтобы расплавить металл. Поэтому, если маленький кусочек натрия бросить в воду, он за счет теплового эффекта реакции плавится и капелька металла, который легче воды, «бегает» по поверхности воды, подгоняемая реактивной силой выделяющегося водорода. Со спиртами натрий взаимодействует намного спокойнее, чем с водой:

2Na + 2C 2 H 5 OH = 2C 2 H 5 ONa + H 2

Натрий легко растворяется в жидком аммиаке с образованием ярко-голубых метастабильных растворов с необычными свойствами. При –33,8° С в 1000 г аммиака растворяется до 246 г металлического натрия. Разбавленные растворы имеют синий цвет, концентрированные – цвет бронзы. Они могут храниться около недели. Установлено, что в среде жидкого аммиака натрий ионизуется:

Na Na + + e –

Константа равновесия этой реакции равна 9,9·10 –3 . Уходящий электрон сольватируется молекулами аммиака и образует комплекс – . Полученные растворы обладают металлической электропроводностью. При испарении аммиака остается исходный металл. При длительном хранении раствора он постепенно обесцвечивается за счет реакции металла с аммиаком с образованием амида NaNH 2 или имида Na 2 NH и выделением водорода.

Хранят натрий под слоем обезвоженной жидкости (керосин, минеральное масло), перевозят только в запаянных металлических сосудах.

Электролитический способ промышленного получения натрия был разработан в 1890. Электролизу подвергали расплав едкого натра, как в опытах Дэви, но с использованием более совершенных источников энергии, чем вольтов столб. В этом процессе наряду с натрием выделяется кислород:

анод (никелевый): 4OH – – 4e – = O 2 + 2H 2 O.

При электролизе чистого хлорида натрия возникают серьезные проблемы, связанные, во-первых, с близкими температурой плавления хлорида натрия и температурой кипения натрия и, во-вторых, с высокой растворимостью натрия в жидком хлориде натрия. Добавление к хлориду натрия хлорида калия, фторида натрия, хлорида кальция позволяет снизить температуру расплава до 600° С. Производство натрия электролизом расплавленной эвтектической смеси (сплав двух веществ с самой низкой температурой плавления) 40% NaCl и 60% CaCl 2 при ~580° С в ячейке, разработанной американским инженером Г.Даунсом, было начато в 1921 Дюпоном вблизи электростанции у Ниагарского водопада.

На электродах протекают следующие процессы:

катод (железный): Na + + e – = Na

Ca 2+ + 2e – = Ca

анод (графитовый): 2Cl – – 2e – = Cl 2 .

Металлические натрий и кальций образуются на цилиндрическом стальном катоде и поднимаются с помощью охлаждаемой трубки, в которой кальций затвердевает и падает обратно в расплав. Хлор, образующийся на центральном графитовом аноде, собирается под никелевым сводом и затем очищается.

Сейчас объем производства металлического натрия составляет несколько тысяч тонн в год.

Промышленное использование металлического натрия связано с его сильными восстановительными свойствами. Долгое время большая часть производимого металла использовалась для получения тетраэтилсвинца PbEt 4 и тетраметилсвинца PbMe 4 (антидетонаторов для бензина) реакцией алкилхлоридов со сплавом натрия и свинца при высоком давлении. Сейчас это производство быстро сокращается из-за загрязнения окружающей среды.

Еще одна область применения – производство титана, циркония и других металлов восстановлением их хлоридов. Меньшие количества натрия используются для получения соединений, таких как гидрид, пероксид и алкоголяты.

Диспергированный натрий является ценным катализатором при производстве резины и эластомеров.

Растет применение расплавленного натрия в качестве теплообменной жидкости в ядерных реакторах на быстрых нейтронах. Низкая температура плавления натрия, низкая вязкость, малое сечение поглощения нейтронов в сочетании с чрезвычайно высокой теплоемкостью и теплопроводностью делает его (и его сплавы с калием) незаменимым материалом для этих целей.

Натрием надежно очищают трансформаторные масла, эфиры и другие органические вещества от следов воды, а с помощью амальгамы натрия можно быстро определить содержание влаги во многих соединениях.

Соединения натрия.

Натрий образует полный набор соединений со всеми обычными анионами. Считается, что в таких соединениях происходит практически полное разделение заряда между катионной и анионной частями кристаллической решетки.

Оксид натрия Na 2 O синтезируют реакцией Na 2 O 2 , NaOH, а предпочтительнее всего NaNO 2 , с металлическим натрием:

Na 2 O 2 + 2Na = 2Na 2 O

2NaOH + 2Na = 2Na 2 O + H 2

2NaNO 2 + 6Na = 4Na 2 O + N 2

В последней реакции натрий можно заменить азидом натрия NaN 3:

5NaN 3 + NaNO 2 = 3Na 2 O + 8N 2

Хранить оксид натрия лучше всего в безводном бензине. Он служит реактивом для различных синтезов.

Пероксид натрия Na 2 O 2 в виде бледно-желтого порошка образуется при окислении натрия. При этом в условиях ограниченной подачи сухого кислорода (воздуха) сначала образуется оксид Na 2 O, который затем превращается в пероксид Na 2 O 2 . В отсутствие кислорода пероксид натрия термически устойчив до ~675° C.

Пероксид натрия широко используется в промышленности как отбеливатель для волокон, бумажной пульпы, шерсти и т.д. Он является сильным окислителем: взрывается в смеси с порошком алюминия или древесным углем, реагирует с серой (при этом раскаляется), воспламеняет многие органические жидкости. Пероксид натрия при взаимодействии с монооксидом углерода образует карбонат. В реакции пероксида натрия с диоксидом углерода выделяется кислород:

2Na 2 O 2 + 2CO 2 = 2Na 2 CO 3 + O 2

Эта реакция имеет важное практическое применение в дыхательных аппаратах для подводников и пожарных.

Надпероксид натрия NaO 2 получают при медленном нагревании пероксида натрия при 200–450° С под давлением кислорода 10–15 МПа. Доказательства образования NaO 2 были впервые получены в реакции кислорода с натрием, растворенным в жидком аммиаке.

Действие воды на надпероксид натрия приводит к выделению кислорода даже на холоду:

2NaO 2 + H 2 O = NaOH + NaHO 2 + O 2

При повышении температуры количество выделяющегося кислорода увеличивается, так как происходит разложение образующегося гидропероксида натрия:

4NaO 2 + 2H 2 O = 4NaOH + 3O 2

Надпероксид натрия является компонентом систем для регенерации воздуха в замкнутых помещениях.

Озонид натрия NaО 3 образуется при действии озона на безводный порошок гидроксида натрия при низкой температуре с последующей экстракцией красного NaО 3 жидким аммиаком.

Гидроксид натрия NaOH нередко называют каустической содой или едким натром. Это сильное основание, его относят к типичным щелочам. Из водных растворов гидроксида натрия получены многочисленные гидраты NaOH·n H 2 O, где n = 1, 2, 2,5, 3,5, 4, 5,25 и 7.

Гидроксид натрия очень агрессивен. Он разрушает стекло и фарфор за счет взаимодействия с содержащимся в них диоксидом кремния:

2NaOH + SiO 2 = Na 2 SiO 3 + H 2 O

Название «едкий натр» отражает разъедающее действие гидроксида натрия на живые ткани. Особенно опасно попадание этого вещества в глаза.

Врач герцога Орлеанского Никола Леблан (Leblanc Nicolas) (1742–1806) в 1787 разработал удобный процесс получения гидроксида натрия из NaCl (патент 1791). Этот первый крупномасштабный промышленный химический процесс стал крупным технологическим достижением в Европе в 19 в. Позднее процесс Леблана был вытеснен электролитическим процессом. В 1874 мировое производство гидроксида натрия составило 525 тыс. т, из которых 495 тыс. т были получены по способу Леблана; к 1902 производство гидроксида натрия достигло 1800 тыс. т., ооднако по способу Леблана были получены только 150 тыс. т.

Сегодня гидроксид натрия – наиболее важная щелочь в промышленности. Ежегодное производство только в США превышает 10 млн. т. Ее получают в огромных количествах электролизом рассолов. При электролизе раствора хлорида натрия образуется гидроксид натрия и выделяется хлор:

катод (железный) 2H 2 O + 2e – = H 2 + 2OH –

анод (графитовый) 2Cl – – 2e – = Cl 2

Электролиз сопровождается концентрированием щелочи в огромных выпаривателях. Самый большой в мире (на заводе PPG Inductries" Lake Charles) имеет высоту 41 м и диаметр 12 м. Около половины производимого гидроксида натрия используется непосредственно в химической промышленности для получения различных органических и неорганических веществ: фенола, резорцина, b -нафтола, солей натрия (гипохлорита, фосфата, сульфида, алюминатов). Кроме того, гидроксид натрия применяется в производстве бумаги и пульпы, мыла и моющих средств, масел, текстиля. Он необходим и при переработке бокситов. Важной областью применения гидроксида натрия является нейтрализация кислот.

Хлорид натрия NaCl известен под названиями поваренной соли, каменной соли. Он образует бесцветные мало гигроскопичные кристаллы кубической формы. Хлорид натрия плавится при 801° С, кипит при 1413° С. Его растворимость в воде мало зависит от температуры: в 100 г воды при 20° С растворяется 35,87 г NaCl, а при 80° С – 38,12 г.

Хлорид натрия – необходимая и незаменимая приправа к пище. В далеком прошлом соль приравнивалась по цене к золоту. В древнем Риме легионерам часто платили жалование не деньгами, а солью, отсюда и произошло слово солдат.

В Киевской Руси пользовались солью из Прикарпатья, из соляных озер и лиманов на Черном и Азовском морях. Она обходилась настолько дорого, что на торжественных пирах ее подавали на столы знатных гостей, прочие же расходились «несолоно хлебавши».

После присоединения Астраханского края к Московскому государству важными источниками соли стали озера Прикаспия, и все равно ее не хватало, она была дорога, поэтому возникало недовольство самых бедных слоев населения, которое переросло в восстание, известное под названием Соляного Бунта (1648)

В 1711 Петр I издал указ о введении соляной монополии. Торговля солью стала исключительным правом государства. Соляная монополия просуществовала более полутораста лет и была отменена в 1862.

Ныне хлорид натрия – дешевый продукт. Вместе с каменным углем, известняком и серой он входит в так называемую «большую четверку» минерального сырья, наиболее существенного для химической промышленности.

Большая часть хлорида натрия производится в Европе (39%), Северной Америке (34%) и Азии (20%), в то время как на Южную Америку и Океанию приходится лишь по 3%, а на Африку – 1%. Каменная соль образует обширные подземные месторождения (нередко в сотни метров толщиной), которые содержат более 90% NaCl. Типичное Чеширское соляное месторождение (главный источник хлорида натрия в Великобритании) занимает площадь 60 ґ 24 км и имеет толщину соляного пласта около 400 м. Одно это месторождение оценивается более чем в 10 11 т.

Мировой объем добычи соли к началу 21 в. достиг 200 млн. т, 60% которой потребляет химическая промышленность (для производства хлора и гидроксида натрия, а также бумажной пульпы, текстиля, металлов, резин и масел), 30% – пищевая, 10% приходится на прочие сферы деятельности. Хлорид натрия используется, например, в качестве дешевого антигололедного реагента.

Карбонат натрия Na 2 CO 3 часто называют кальцинированной содой или просто содой. Он встречается в природе в виде грунтовых рассолов, рапы в озерах и минералов натрона Na 2 CO 3 ·10H 2 O, термонатрита Na 2 CO 3 ·H 2 O, троны Na 2 CO 3 ·NaHCO 3 ·2H 2 O. Натрий образует и другие разнообразные гидратированные карбонаты, гидрокарбонаты, смешанные и двойные карбонаты, например Na 2 CO 3 ·7H 2 O, Na 2 CO 3 ·3NaHCO 3 , aKCO 3 ·n H 2 O, K 2 CO 3 ·NaHCO 3 ·2H 2 O.

Среди солей щелочных элементов, получаемых в промышленности, карбонат натрия имеет наибольшее значение. Чаще всего для его производства используют метод, разработанный бельгийским химиком-технологом Эрнстом Сольве в 1863.

Концентрированный водный раствор хлорида натрия и аммиака насыщают диоксидом углерода под небольшим давлением. При этом образуется осадок сравнительно малорастворимого гидрокарбоната натрия (растворимость NaHCO 3 составляет 9,6 г на 100 г воды при 20° С):

NaCl + NH 3 + H 2 O + CO 2 = NaHCO 3 Ї + NH 4 Cl

Для получения соды гидрокарбонат натрия прокаливают:

Выделяющийся диоксид углерода возвращают в первый процесс. Дополнительное количество диоксида углерода получают за счет прокаливания карбоната кальция (известняка):

Второй продукт этой реакции – оксид кальция (известь) – используют для регенерации аммиака из хлорида аммония:

Таким образом, единственным побочным продуктом производства соды по методу Сольве является хлорид кальция.

Суммарное уравнение процесса:

2NaCl + CaCO 3 = Na 2 CO 3 + CaCl 2

Очевидно, в обычных условиях в водном растворе идет обратная реакция, поскольку равновесие в этой системе нацело смещено справа налево из-за нерастворимости карбоната кальция.

Кальцинированная сода, полученная из природного сырья (натуральная кальцинированная сода), имеет лучшее качество по сравнению с содой, полученной аммиачным способом (содержание хлоридов менее 0,2%). Кроме того, удельные капитальные вложения и себестоимость соды из природного сырья на 40–45% ниже, чем полученной синтетическим путем. Около трети мировой продукции соды приходится сейчас на природные месторождения.

Мировое производство Na 2 CO 3 в 1999 распределилось следующим образом:

Всего
Сев. Америка
Азия/Океания
Зап. Европа
Вост. Европа
Африка
Лат. Америка

Крупнейший в мире производитель натуральной кальцинированной соды – США, где сосредоточены и самые большие разведанные запасы троны и рапы содовых озер. Месторождение в Вайоминге образует слой толщиной 3 м и площадью 2300 км 2 . Его запасы превышают 10 10 т. В США содовая промышленность ориентирована на природное сырье; последнее предприятие по синтезу соды было закрыто в 1985. Выработка кальцинированной соды в США в последние годы стабилизировалась на уровне 10,3–10,7 млн. т.

В отличие от США, большинство стран мира практически полностью зависят от производства синтетической кальцинированной соды. Второе место в мире по производству кальцинированной соды после США занимает Китай. Выработка этого химиката в КНР в 1999 достигла примерно 7,2 млн. т. Производство кальцинированной соды в России в том же году составило порядка 1,9 млн. т.

Во многих случаях карбонат натрия взаимозаменяем с гидроксидом натрия (например, при получении бумажной пульпы, мыла, чистящих средств). Около половины карбоната натрия используется в стекольной промышленности. Одна из развивающихся областей применения – удаление сернистых загрязнений в газовых выбросах предприятий энергетики и мощных печей. В топливо добавляют порошок карбоната натрия, который реагирует с диоксидом серы с образованием твердых продуктов, в частности сульфита натрия, которые могут быть отфильтрованы или осаждены.

Ранее карбонат натрия широко применялся в качестве «стиральной соды», но эта область применения теперь исчезла из-за использования в быту других моющих средств.

Гидрокарбонат натрия NaHCO 3 (пищевая сода), применяется, главным образом, как источник диоксида углерода при выпечке хлеба, изготовлении кондитерских изделий, производстве газированных напитков и искусственных минеральных вод, как компонент огнетушащих составов и лекарственное средство. Это связано с легкостью его разложения при 50–100° С.

Сульфат натрия Na 2 SO 4 встречается в природе в безводном виде (тенардит) и в виде декагидрата (мирабилит, глауберова соль). Он входит в состав астрахонита Na 2 Mg(SO 4) 2 ·4H 2 O, вантгоффита Na 2 Mg(SO 4) 2 , глауберита Na 2 Ca(SO 4) 2 . Наиболее крупные запасы сульфата натрия – в странах СНГ, а также в США, Чили, Испании. Мирабилит, выделенный из природных залежей или рапы соляных озер, обезвоживают при 100° С. Сульфат натрия является также побочным продукт производства хлороводорода с использованием серной кислоты, а также конечным продуктом сотен промышленных производств, в которых применяется нейтрализация серной кислоты с помощью гидроксида натрия.

Данные о добыче сульфата натрия не публикуются, но, по оценке, мировое производство природного сырья составляет около 4 млн. т в год. Извлечение сульфата натрия в качестве побочного продукта оценивается в мире в целом в 1,5–2,0 млн. т.

Долгое время сульфат натрия мало использовался. Теперь это вещество – основа бумажной промышленности, так как Na 2 SO 4 является главным реагентом в сульфатной варке целлюлозы для приготовления коричневой оберточной бумаги и гофрированного картона. Древесные стружки или опилки переорабатывается в горячем щелочном растворе сульфата натрия. Он растворяет лигнин (компонент древесины, соединяющий волокна) и освобождает волокна целлюлозы, которые затем отправляют на машины для изготовления бумаги. Оставшийся раствор выпаривают, пока он не приобретет способность гореть, давая пар для завода и тепло для выпаривания. Расплавленные сульфат и гидроксид натрия устойчивы к действию пламени и могут быть использованы повторно.

Меньшая часть сульфата натрия применяется при производстве стекла и моющих средств. Гидратированная форма Na 2 SO 4 ·10H 2 O (глауберова соль) является слабительным средством. Сейчас она используется меньше, чем раньше.

Нитрат натрия NaNO 3 называют натриевой или чилийской селитрой. Большие залежи нитрата натрия, найденные в Чили, по-видимому, образовались за счет биохимического разложения органических остатков. Выделившийся вначале аммиак, вероятно, окислился до азотистой и азотной кислот, которые затем прореагировали с растворенным хлоридом натрия.

Получают нитрат натрия поглощением нитрозных газов (смесь оксидов азота) раствором карбоната или гидроксида натрия либо обменным взаимодействием нитрата кальция с сульфатом натрия.

Нитрат натрия применяют как удобрение. Он является компонентом жидких солевых хладагентов, закалочных ванн в металлообрабатывающей промышленности, теплоаккумулирующих составов. Тройная смесь из 40% NaNO 2 , 7% NaNO 3 и 53% KNO 3 может использоваться от температуры плавления (142° С) до ~600° С. Нитрат натрия используется как окислитель во взрывчатых веществах, ракетных топливах, пиротехнических составах. Он применяется в производстве стекла и солей натрия, в том числе нитрита, служащего консервантом пищевых продуктов.

Нитрит натрия NaNO 2 может быть получен термическим разложением нитрата натрия или его восстановлением:

NaNO 3 + Pb = NaNO 2 + PbO

Для промышленного производства нитрита натрия абсорбируют оксиды азота водным раствором карбоната натрия.

Нитрит натрия NaNO 2 , кроме использования с нитратами в качестве теплопроводных расплавов, широко применяется в производстве азокрасителей, для ингибирования коррозии и консервации мяса.

Елена Савинкина