Определение плотности. Плотность вещества: формула, расчет

Как получается, что тела, которые занимают одинаковый объём в пространстве, могут при этом иметь различную массу? Всё дело в их плотности. С этим понятием мы знакомимся уже в 7 классе, в первый год преподавания физики в школе. Оно является основным физическим понятием, способным открыть для человека МКТ (молекулярно-кинетическую теорию) не только в курсе физики, но и в химии. С помощью него человек может характеризовать любое вещество, будь то вода, дерево, свинец или воздух.

Виды плотности

Итак, это скалярная величина, которая равна отношению массы исследуемого вещества к его объёму, то есть, ещё может быть названа удельной массой . Обозначается греческой буквой «ρ» (читается как «ро»), не путать с «p» - этой буквой принято обозначать давление.

Как найти плотность в физике? Используйте формулу плотности: ρ = m/V

Эта величина может измеряться и в г/л, г/м3 и вообще в любых единицах, связанных с массой и объёмом. Какова единица плотности в СИ? ρ = [кг/м3]. Перевод между этими единицами осуществляется через элементарные математические операции. Однако большее применение имеет именно единица измерения по СИ.

Помимо стандартной формулы, используемой лишь для твёрдых веществ, существует и формула для газа в нормальных условиях (н.у.) .

ρ (газа) = M/Vm

M - молярная масса газа [г/моль], Vm - молярный объём газа (при нормальных условиях эта величина равна 22,4 л/моль).

Чтобы более полно определить данное понятие, стоит уточнить, какая именно величина имеется в виду .

  • Плотность однородных тел - это именно отношение массы тела к его объёму.
  • Также есть понятие «плотность вещества», то есть плотность однородного или равномерно распределённого неоднородного тела, состоящего из этого вещества. Это величина постоянна. Существуют таблицы (которыми вы наверняка пользовали на уроках физики), в которых собраны значения для различных твёрдых, жидких и газообразных веществ. Так, этот показатель для воды равняется 1000 кг/м3. Зная эту величину и, например, объём ванны мы можем определить массу воды, которая в неё поместится, подставив в вышеизложенную форму известные значения.
  • Однако не все вещества являются однородными. Для таких создан термин «средняя плотность тела». Чтобы вывести это значение, необходимо узнать ρ каждого компонента данного вещества в отдельности и высчитать среднюю величину.

Пористые и сыпучие тела, помимо прочего, имеют:

  • Истинную плотность, которая определяется без учёта пустот в структуре.
  • Удельную (кажущуюся) плотность, которую можно рассчитать путём деления массы вещества на весь занимаемый им объём.

Эти две величины связаны между собой коэффициентом пористости - отношения объёма пустот (пор) к общему объёму исследуемого тела.

Плотность веществ может зависеть от ряда факторов, причём некоторые из них одновременно могут повышать эту величину для одних веществ и понижать - для других. Например, при низкой температуре обычно происходит увеличение данной величины, однако, существует ряд веществ, чья плотность в определённом температурном диапазоне ведёт себя аномально. К этим веществам относят чугун, воду и бронзу (сплав меди с оловом).

Например, ρ воды имеет самый большой показатель при температуре 4 °C, а затем относительно этого значения может изменяться как при нагреве, так и при охлаждении.

Также стоит сказать о том, что при переходе вещества из одной среды в другую (твёрдое-жидкое-газообразное), то есть при смене агрегатного состояния ρ тоже меняет своё значение и делает это скачками: нарастает при переходе из газа в жидкость и при кристаллизации жидкости. Однако и здесь существует ряд исключений. К примеру, висмут и кремний имеют маленькое значение при затвердевании. Интересный факт: вода при кристаллизации, то есть при превращении в лёд, также уменьшает свои показатели, и именно поэтому лёд не тонет в воде.

Как легко посчитать плотность различных тел

Нам понадобится следующее оборудование :

  • Весы.
  • Сантиметр (мерка), если исследуемое тело находится в твёрдом агрегатном состоянии.
  • Мерная колба, если исследуемое вещество - жидкость.

Для начала мы измеряем объём исследуемого тела с помощью сантиметра или мерной колбы. В случае с жидкостью мы просто смотрим на имеющуюся шкалу и записываем результат. Для деревянного бруса кубической формы она, соответственно, будет равняться значению стороны, возведённому в третью степень. Измерив объём, ставим исследуемое тело на весы и записываем значение массы. Важно! Если вы исследуете жидкость, не забудьте учесть массу сосуда, в который налито исследуемое тело. Подставляем экспериментально полученные значения в формулу, описанную выше, и рассчитываем нужный показатель.

Нужно сказать, что данный показатель для различных газов без специальных приборов вычислить гораздо труднее, поэтому, если вам понадобятся их значения, лучше воспользуйтесь готовыми значениями из таблицы плотности веществ.

Также для измерения данной величины используются специальные приборы:

  • Пикнометр показывает истинную плотность.
  • Ареометр предназначен для измерения данного показателя у жидкостей.
  • Бурик Качинского и бур Зайдельмана - устройства, с помощью которых исследуют почвы.
  • Вибрационный плотномер применяют для измерения данной величины жидкости и различных газов, находящихся под давлением.

Инструкция

Зная две вышеуказанные величины, можно записать формулу для расчета плотности вещества : плотность = масса / объем, отсюда и получается искомой величины. Пример. Известно, что льдина объемом 2 кубических метра 1800 кг. Найти плотность льда. Решение: плотность равна 1800 кг/2 метра в кубе, получается 900 кг, деленных на кубические . Иногда приходиться переводить единицы плотности друг в друга. Чтобы не запутаться, следует помнить: 1г/см в кубе равен 1000 кг/м в кубе. Пример: 5,6 г/см в кубе равен 5,6*1000 = 5600 кг/м в кубе.

Воду, как и любую жидкость, не всегда можно взвесить на весах. Но узнать массу бывает необходимо как на некоторых производствах, так и в обычных житейских ситуациях, от расчета резервуаров до решения вопроса, какой запас воды вы можете взять с собой в байдарку или резиновую лодку. Для того, чтобы вычислить массу воды или любой жидкости, помещенной в тот или иной объем, прежде всего необходимо знать ее плотность.

Вам понадобится

  • Мерная посуда
  • Линейка, рулетка или любой другой измерительный прибор
  • Сосуд для переливания воды

Инструкция

Если вам нужно вычислить массу воды в небольшом сосуде, это можно сделать с помощью обычных весов. Взвесьте сначала сосуд вместе с . Затем перелейте воду в другую посуду. После этого взвесьте пустой сосуд. Из полного сосуда вычтите массу пустого. Это и будет содержавшейся в сосуде воды . Таким образом можно массу не только жидких, но и сыпучих , если есть возможность их пересыпать в другую посуду. Такой способ иногда еще можно наблюдать в некоторых магазинах, где нет оборудования. Продавец сначала взвешивает пустую банку или бутылку, затем заполняет ее сметаной, взвешивает снова, определяет вес сметаны и только после этого рассчитывает ее стоимость.

Для того, чтобы определить массу воды в сосуде, который невозможно взвесить, необходимо знать два параметра - воды (или любой другой жидкости) и объем сосуда. Плотность воды составляет 1 г/мл. Плотность другой жидкости можно найти в специальной таблице, которая обычно в справочниках по .

Если нет мерной посуды, в которую можно перелить воду, вычислите объем сосуда, в котором она находится. Объем всегда равен произведению площади основания на высоту, и с сосудами постой формы обычно проблем не возникает. Объем воды в банке будет равен площади круглого основания на высоту, заполненную водой. Умножив плотность? на объем воды V, вы получите массу воды m: m=?*V.

Видео по теме

Обратите внимание

Определить массу можно и зная количество воды и ее молярную массу. Молярная масса воды равна 18, поскольку состоит из молярных масс 2 атомов водорода и 1 атома кислорода. MH2O = 2MH+MO=2·1+16=18 (г/моль). m=n*M, где m – масса воды, n – количество, M – молярная масса.

Все вещества имеют определенную плотность. В зависимости от занимаемого объема и заданной массы, вычисляется плотность. Она находится, исходя из экспериментальных данных и числовых преобразований. Кроме того, плотность зависит от множества различных факторов, в связи с которыми изменяется ее постоянное значение.

Инструкция

Представьте себе, что дан некоторый сосуд, до краев заполненный водой. В задаче необходимо найти плотность воды, при этом не зная ни массы, ни объема. Для того, чтобы вычислить плотность, следует найти оба параметра экспериментально. Начните с определения массы.
Возьмите сосуд и поставьте его на весы. Затем выльете из него воду, после чего снова поставьте сосуд на те же весы. Сравните результаты измерений и получите формулу для нахождения массы воды:
mоб.- mс.=mв., где mоб. - масса сосуда с водой (общая масса), mс - масса сосуда без воды.
Второе, что потребуется найти - воды. Перелейте воду в мерный сосуд, затем по имеющейся на нем шкале определите, объем воды содержался в сосуде. Лишь после этого по формуле найдите плотность воды:
ρ=m/V
С помощью этого опыта можно лишь приблизительно определить плотность воды. Однако, под воздействием некоторых факторов она может . Ознакомьтесь с наиболее важными из таких факторов.

При температуре воды t=4 °C вода имеет плотность ρ=1000 кг/м^3 или 1 г/см^3. При изменении меняется и плотность. Помимо этого, к факторам, влияющим на плотность

Во многих отраслях промышленного производства, а также в строительстве и сельском хозяйстве используется понятие "плотность материала". Это вычисляемая величина, которая является отношением массы вещества к занимаемому им объему. Зная такой параметр, например, у бетона, строители могут рассчитать необходимое количество его при заливке разных железобетонных конструкций: строительных блоков, перекрытий, монолитных стен, колонн, защитных саркофагов, бассейнов, шлюзов и других объектов.

Как определить плотность

Важно отметить, что, определяя плотность строительных материалов, можно использовать специальные справочные таблицы, где даны эти величины для различных веществ. Также разработаны методы и алгоритмы расчета, которые позволяют получать такие данные на практике, если отсутствует доступ к справочным материалам.

Плотность определяется у:

  • жидких тел прибором ареометром (например, известный всем процесс измерения параметров электролита автомобильного аккумулятора);
  • твердых и жидких веществ с помощью формулы при известных исходных данных массы и объема.

Все самостоятельные вычисления, конечно, будут иметь неточности, ведь сложно достоверно определить объем, если тело имеет неправильную форму.

Погрешности в измерениях плотности

  • Погрешность систематическую. Она фигурирует постоянно или может изменяться по определенному закону в процессе нескольких измерений одного и того же параметра. Связана с погрешностью приборной шкалы, низким показателем чувствительности устройства или степенью точности формул расчета. Так, например, определяя массу тела при помощи разновесов и игнорируя воздействие выталкивающей силы, данные получают приблизительными.
  • Погрешность случайную. Вызвана приходящими причинами и оказывает разное влияние на достоверность определяемых данных. Изменение температуры окружающей среды, атмосферного давления, вибрации в помещении, невидимые излучения и колебания воздуха - все это отражается на измерениях. Избежать такого влияния полностью невозможно.

  • Погрешность в округлении величин. При получении промежуточных данных в расчете формул часто числа имеют множество значащих цифр после запятой. Необходимость ограничения количества этих знаков и предполагает появление погрешности. Частично снизить такую неточность можно, оставляя в промежуточных расчетах на несколько порядков цифр больше, чем требует конечный результат.
  • Погрешности небрежности (промахи) возникают вследствие ошибочности вычислений, неправильности включения пределов измерения либо прибора в целом, неразборчивости контрольных записей. Полученные таким образом данные могут резко отличаться от аналогично проведенных расчетов. Поэтому их следует удалять, а работу выполнить заново.

Измерение истинной плотности

Рассматривая плотность материала строительства, нужно учитывать его истинный показатель. То есть когда структура вещества единицы объема не содержит в себе раковин, пустот и посторонних включений. На практике нет абсолютной однородности, когда, например, бетон заливают в форму. Чтобы определить реальную его прочность, которая напрямую зависит от плотности материала, проводят следующие операции:

  • Структуру подвергают измельчению до состояния порошка. На этом этапе избавляются от пор.
  • Просушивают в при температуре свыше 100 градусов, из пробы удаляют остатки влаги.
  • Остужают до комнатной температуры и пропускают через мелкое сито с размером ячейки в 0,20 х 0,20 мм, придавая однородность порошку.
  • Полученный образец взвешивают на электронных весах высокой точности. Объем вычисляют в объемомере методом погружения в жидкую структуру и измерения вытесненной жидкости (пикнометрический анализ).

Расчет проводят по формуле:

где m - масса образца в г;

V - величина объема в см 3 .

Часто применимо измерение плотности в кг/м 3 .

Средняя плотность материала

Чтобы определить, как ведут себя строительные материалы в реальных условиях эксплуатации под воздействием влаги, положительных и отрицательных температур, механических нагрузок, нужно использовать средний показатель плотности. Он характеризует физическое состояние материалов.

Если истинная плотность - неизменная величина и зависит лишь от химического состава и структуры кристаллической решетки вещества, то средняя плотность определяется пористостью структуры. Она представляет собой отношение массы материала в однородном состоянии к объему занимаемого пространства в естественных условиях.

Средняя плотность дает представление инженеру о механической прочности, степени влагопоглощения, коэффициенте теплопроводности и других важных факторах, используемых в строительстве элементов.

Понятие насыпной плотности

Вводят для анализа сыпучих строительных материалов (песка, гравия, керамзита и др.). Показатель важен для расчета экономически выгодного применения тех или иных компонентов строительной смеси. Он показывает отношение массы вещества к объему, который оно занимает в состоянии рыхлой структуры.

Например, если известна материала зернистой формы и средняя плотность зерен, то легко определить параметр пустотности. При изготовлении бетона целесообразнее применять наполнитель (гравий, щебень, песок), обладающий меньшей пористостью сухого вещества, так как на его заполнение пойдет базовый цементный материал, что увеличит себестоимость.

Показатели плотности некоторых материалов

Если взять расчетные данные некоторых таблиц, то в них:

  • материалов, в составе которых присутствуют оксиды кальция, кремния и алюминия, варьируется от 2400 до 3100 кг на м 3.
  • Древесных пород с основой из целлюлозы - 1550 кг на м 3 .
  • Органики (углерод, кислород, водород) - 800-1400 кг на м 3 .
  • Металлов: сталь - 7850, алюминий - 2700, свинец - 11300 кг на м 3 .

При современных технологиях строительства зданий показатель плотности материала важен с точки зрения прочности несущих конструкций. Все теплоизоляционные и влагоизоляционные функции выполняют материалы низкой плотности со структурой закрытых пор.

Изучение плотности веществ начинается в курсе физики средней школы. Это понятие считается основополагающим в дальнейшем изложении основ молекулярно-кинетической теории в курсах физики и химии. Целью изучения строения вещества, методов исследования можно предположить формирование научных представлений о мире.

Начальные представления о единой картине мира дает физика. 7 класс плотность вещества изучает на основании простейших представлений о методах исследования, практического применения физических понятий и формул.

Методы физического исследования

Как известно, среди методов исследования явлений природы выделяют наблюдение и эксперимент. Проводить наблюдения за природными явлениями учат в начальной школе: проводят простейшие измерения, зачастую ведут «Календарь природы». Эти формы обучения способны привести ребенка к необходимости изучения мира, сопоставления наблюдаемых явлений, выявления причинно-следственных связей.

Однако только полноценно проведенный эксперимент даст в руки юному исследователю инструменты в раскрытии тайн природы. Развитие экспериментальных, исследовательских навыков осуществляется на практических занятиях и в ходе выполнения лабораторных работ.

Проведение эксперимента в курсе физики начинают с определений таких физических величин, как длина, площадь, объем. При этом устанавливается связь между математическими (для ребенка достаточно абстрактными) и физическими знаниями. Обращение к опыту ребенка, рассмотрение давно известных ему фактов с научной точки зрения способствует формированию у него необходимой компетентности. Цель обучения в этом случае - стремление к самостоятельному постижению нового.

Изучение плотности

В соответствии с проблемным методом обучения в начале урока можно задать известную загадку: «Что тяжелее: килограмм пуха или килограмм чугуна?» Разумеется, 11-12-летние ребята с легкостью дают ответ на известный им вопрос. Но обращение к сути вопроса, возможность раскрыть его особенность, приводит к понятию плотности.

Плотность вещества - масса единицы его объема. Таблица обычно приведенная в учебниках или справочных изданиях, позволяет оценить различия между веществами, также агрегатными состояниями вещества. Указание на различие в физических свойствах твердых тел, жидкостей и газов, рассмотренное ранее, пояснение этого различия не только в строении и взаимном расположении частиц, но и в математическом выражении характеристик вещества, переводит изучение физики на иной уровень.

Закрепить знания о физическом смысле изучаемого понятия позволяет таблица плотности веществ. Ребенок, давая ответ на вопрос: «Что означает величина плотности определенного вещества?», понимает, что это масса 1 см 3 (или 1 м 3) вещества.

Вопрос о единицах измерения плотности можно поднять уже на этом этапе. Необходимо рассмотреть способы перевода единиц измерения в различных системах отсчета. Это дает возможность избавиться от статичности мышления, принять иные системы исчислений и в других вопросах.

Определение плотности

Естественно, изучение физики не может быть полным без решения задач. На этом этапе вводятся формулы расчета. в физике 7 класса, наверное, первое физическое соотношение величин для ребят. Ей уделяется особое внимание не только вследствие изучения понятий плотности, но и по факту обучения методам решения задач.

Именно на этом этапе закладывается алгоритм решения физической вычислительной задачи, идеология применения основных формул, определений, закономерностей. Научить анализу задачи, способу поиска неизвестного, особенностям использования единиц измерения учитель пытается на применении такого соотношения, как формула плотности в физике.

Пример решения задач

Пример 1

Определите, из какого вещества изготовлен кубик массой 540 г и объемом 0,2 дм 3 .

ρ -? m = 540 г, V = 0,2 дм 3 = 200 см 3

Анализ

Исходя из вопроса задачи, понимаем, что определить материал, из которого изготовлен кубик, нам поможет таблица плотностей твердых веществ.

Следовательно, определим плотность вещества. В таблицах эта величина дана в г/см 3 , поэтому объем из дм 3 переведен в см 3 .

Решение

По определению: ρ = m: V.

Нам даны: объем, масса. Плотность вещества можно вычислить:

ρ = 540 г: 200 см 3 = 2,7 г/см 3 , что соответствует алюминию.

Ответ : кубик изготовлен из алюминия.

Определение иных величин

Использование формулы расчета плотности позволяет определять и иные физические величины. Масса, объем, линейные размеры тел, связанные с объемом, с легкостью вычисляются в задачах. Знание математических формул определения площади и объема геометрических фигур применяется в задачах, что позволяет пояснить необходимость изучения математики.

Пример 2

Определите толщину слоя меди, которой покрыта деталь площадью поверхности 500 см 2 , если известно, что на покрытие израсходовано 5 г меди.

h - ? S = 500 см 2 , m = 5 г, ρ = 8,92 г/см 3 .

Анализ

Таблица плотности веществ позволяет определить величину плотности меди.

Воспользуемся формулой расчета плотности. В этой формуле есть объем вещества, исходя из которого можно определить линейные размеры.

Решение

По определению: ρ = m: V, но в этой формуле нет искомой величины, поэтому используем:

Подставляя в основную формулу, получим: ρ = m: Sh, откуда:

Вычислим: h = 5 г: (500 см 2 х 8,92 г/см 3) = 0,0011 см = 11 мкм.

Ответ : толщина слоя меди равна 11 мкм.

Экспериментальное определение плотности

Экспериментальный характер физической науки демонстрируется в ходе проведения лабораторных опытов. На этом этапе приобретаются навыки проведения опыта, пояснения его результатов.

Практическое задание по определению плотности вещества включает:

  • Определение плотности жидкости. На этом этапе ребята, уже использовавшие ранее мерный цилиндр, с легкостью определяют плотность жидкости с использованием формулы.
  • Определение плотности вещества твердого тела правильной формы. Это задание также не вызывает сомнений, поскольку уже рассмотрены аналогичные расчетные задачи и приобретен опыт измерения объемов по линейным размерам тел.
  • Определение плотности твердого тела неправильной формы. При выполнении этого задания пользуемся методом определения объема тела неправильной формы при помощи мензурки. Нелишне еще раз напомнить особенности этого метода: способность твердого тела вытеснять жидкость, объем которой равен объему тела. Далее задача разрешается стандартно.

Задания повышенной сложности

Усложнить задание можно, предложив ребятам определить вещество, из которого изготовлено тело. Используемая при этом таблица плотности веществ позволяет обратить внимание на необходимость умения работать со справочной информацией.

При решении экспериментальных задач учащиеся обязаны иметь необходимый объем знаний в области использования и перевода единиц измерения. Зачастую именно это вызывает наибольшее число ошибок и недочетов. Возможно, этому этапу изучения физики стоит выделить больше времени, он позволяет сопоставить знания и опыт исследования.

Объемная плотность

Исследование чистого вещества, разумеется, интересно, но часто ли встречаются чистые вещества? В обыденной жизни мы встречаемся со смесями и сплавами. Как быть в этом случае? Понятие объемной плотности не позволит учащимся сделать типичной ошибки и использовать средние значения плотности веществ.

Пояснить этот вопрос крайне необходимо, дать возможность увидеть, почувствовать разницу между плотностью вещества и объемной плотностью стоит на ранних этапах. Понимание этого различия необходимо в дальнейшем изучении физики.

Крайне интересно это отличие в случае Позволить ребенку исследование объемной плотности в зависимости от уплотнения материала, размера отдельных частиц (гравий, песок и т. д.) можно в ходе начальной исследовательской деятельности.

Относительная плотность веществ

Сравнение свойств различных веществ достаточно интересно на основании Относительная плотность вещества - одна из таких величин.

Обычно относительную плотность вещества определяют по отношению к дистиллированной воде. Как отношение плотности данного вещества к плотности эталона, эта величина определяется с помощью пикнометра. Но в школьном курсе естествознания эта информация не используется, интересна она при глубоком изучении (чаще всего факультативно).

Олимпиадный уровень изучения физики и химии может затронуть и понятие «относительная плотность вещества по водороду». Обыкновенно его применяют к газам. Для определения относительной плотности газа находят отношение молярной массы исследуемого газа к Использование не исключается.

Зависит не только от его размеров, но и от вещества, из которого тело состоит. Так, тела одного объёма, сделанные из разных веществ, имеют разные массы, и обратно: тела, имеющие одинаковые массы, сделанные из разных веществ, имеют разные объёмы.

Плотность тела - зависимость массы и объема

Например, железный куб с ребром 10 см имеет массу 7,8 кг, алюминиевый куб тех же размеров имеет массу 2,7 кг, а масса такого же куба изо льда 0,9 кг. Величина, характеризующая массу, приходящуюся на единичный объём данного вещества, называется плотностью. Плотность равна частному от массы тела и его объёма, т.е.

ρ = m/V, где ρ (читается «ро») плотность тела, m - его масса, V объём.

В Международной системе единиц СИ плотность измеряется в килограммах на кубический метр (кг/м3); также часто используются внесистемные единицы, например, грамм на кубический сантиметр (г/см3). Очевидно, 1 кг/м3 = 0,001 г/см3. Заметим, что при нагревании веществ их плотность уменьшается или (реже) увеличивается, но это изменение так незначительно, что при расчётах им пренебрегают.

Сделаем оговорку, что плотность газов непостоянна; когда говорится о плотности какого-нибудь газа, обычно имеется ввиду его плотность при 0 градусов по Цельсию и нормальном атмосферном давлении (760 миллиметров ртутного столба).

Расчет массы и объема тела

В повседневной жизни мы часто сталкиваемся с необходимостью рассчитывать массы и объёмы разных тел. Это удобно делать, применяя плотность.

Плотности разных веществ определяются по таблицам, например, плотность воды 1000 кг/м3, плотность этилового спирта 800 кг/м3.

Из определения плотности следует, что масса тела равна произведению его плотности и объёма. Объём же тела равен частному от массы и плотности. Этим пользуются при расчётах:

m = ρ * V; или V = m / p;

гдн m масса данного тела, ρ его плотность, V объём тела.

Рассмотрим пример такого расчета

Пустой стакан имеет массу m1=200 г. Если налить в него воды, его масса будет m2= 400 г. Какую массу будет иметь этот стакан, если налить столько же (по объёму) ртути?

Решение. Найдём массу налитой воды. Она будет равна разности массы стакана с водой и массы пустого стакана:

mводы = m2- m1 = 400 г 200 г = 200 г.

Найдём объём этой воды:

V = m / ρв = 200 г / 1 г/см3 = 200 см3 (рв плотность воды).

Найдём массу ртути в этом объёме:

mрт = ρртV = 13,6 г/см3 * * 200 см3 = 2720 г.

Найдём искомую массу:

m = mрт + m1 = 2720 г + 200 г = 2920 г.

Ответ: масса стакана с ртутью равна 2920 граммам.

Рассмотрим более сложный пример расчета

Слиток из двух металлов с плотностями ρ1 и ρ2 , имеет массу m и объём V. Определить объём этих металлов в слитке.

Решение. Пусть V1 объём первого металла, V2 объём второго металла. Тогда V1 + V2 = V; V1 = V V2; ρ1V1 + p2V2 = ρ1V1 + ρ2 (V V1) = m