Пониманию квантовой хромодинамики помогут эксперименты на коллайдере. Потрясающие открытия квантовой физики Какая экспериментальная зависимость способствовала зарождению квантовой

Только сегодня подумала, что эффект наблюдателя теоретически доказывает возможность реализовать на физическом плане не только свои планы и проекты, но также тело света и вообще возможность перехода из энергетического состояния в материальное и обратно. Получается, что в своём развитии можно дойти до уровня сознания, позволяющего по своему желанию существовать либо в виде материи, либо в виде волны. К примеру, п реображение Иисуса и его явление ученикам после распятия в материальном теле вполне укладываются в эту теорию.
Ниже лёгкое напоминание, что есть "эффект наблюдателя", и отрывок из книги, переносящий принцип приоритета сознания с квантовой физики на проявленный план.

«Твоя жизнь там, где твоё внимание».

Именно этот постулат был экспериментально доказан физиками во многих лабораториях мира, как бы странно это не звучало. Возможно, сейчас это звучит необычно, но квантовая физика начала доказывать правоту седой древности: «Твоя жизнь там, где твоё внимание». В частности, что человек своим вниманием влияет на окружающий материальный мир, предопределяет реальность, которую и воспринимает.

С самого своего зарождения квантовая физика начала кардинально менять представление о микромире и о человеке, начиная со второй половины XIX века, с утверждения Уильяма Гамильтона о волнообразной природе света, и продолжая передовыми открытиями современных ученых. Квантовая физика уже сейчас имеет множество доказательств того, что микромир «живет» по совершенно иным законам физики, что свойства нано частиц отличаются от привычного человеку мира, что элементарные частицы по-особенному взаимодействуют с ним.
В середине 20-го века Клаус Йенсон в ходе экспериментов получил интересный результат: во время физических опытов субатомные частицы и фотоны точно реагировали на внимание человека, что приводило к разному конечному результату. То есть, нано частицы реагировали на то, на что исследователи фокусировали в тот момент своё внимание. Каждый раз данный эксперимент, который уже успел стать классическим, удивляет учёных. Его повторяли много раз во многих лабораториях мира, и каждый раз результаты этого эксперимента идентичны, что подтверждает его научную ценность и достоверность.
Так, для этого опыта готовят источник света и экран (непроницаемая для фотонов пластинка), у которого есть две щели. Устройство, в качестве которого и выступает источник света, однократными импульсами «выстреливает» фотонами.

Фото 1.
Перед специальной фотобумагой разместили особый экран с двумя щелями. Как и предполагалось, на фотобумаге проявились две вертикальные полоски - следы фотонов, которые засветили бумагу, проходя сквозь эти щели. Естественно, за ходом эксперимента велось наблюдение.

Фото 2.
Когда же исследователь включил прибор, а сам на время отлучился, вернувшись в лабораторию, был несказанно удивлён: на фотобумаге фотоны оставили совершенно другое изображение - вместо двух вертикальных полосок - множество.

Фото 3.
Как такое могло произойти? Оставленные на бумаге следы были характерны волне, которая проходила сквозь щели. Иными словами, наблюдалась интерференционная картина.

Фото 4.
Простой эксперимент с фотонами показал, что при факте наблюдения (в присутствии прибора-детектора, или наблюдателя) волна переходит в состояние частицы и ведёт себя как частица, но, при отсутствии наблюдателя, ведёт себя как волна. Выяснилось, что если не вести наблюдения в данном эксперименте, фотобумага проявляет следы волн, то есть, видна интерференционная картина. Такой физический феномен стали называть «Эффект Наблюдателя».

Эксперимент с частицами, который описан выше, так же применим к вопросу «А есть ли Бог?». Потому как, если при зорком внимании Наблюдателя то, что имеет волновую природу может пребывать в состоянии материи, реагируя и меняя свои свойства, то кто внимательно наблюдает за всей Вселенной? Кто удерживает в стабильном состоянии всю материю своим вниманием?Как только у личности в её восприятии появляется допущение того, что она может жить в качественно другом мире (например, в мире Бога), только тогда она, личность, и начинает изменять свой вектор развития в эту сторону, и шансы пережить данный опыт многократно увеличиваются. То есть, достаточно просто допустить возможность такой реальности для себя. Следовательно, как только человек принимает возможность приобретения такого опыта, он действительно начинает его приобретать. Этому есть подтверждение и в книге «АллатРа» Анастасии Новых:

«Всё зависит от самого Наблюдателя: если личность воспринимает себя частичкой (материальным объектом, живущим по законам материального мира), она будет видеть и воспринимать мир материи; если же личность воспринимает себя волной (чувственные переживания, расширенное состояние сознания), то она воспринимает мир Бога и начинает его понимать, жить им.»
В вышеописанном опыте наблюдатель неминуемо влияет на ход и результаты эксперимента. То есть, вырисовывается очень важный принцип: невозможно наблюдать за системой, измерить и проанализировать её, не взаимодействуя с ней. Где есть взаимодействие, там есть изменение свойств.
Мудрецы говорят, что Бог - везде. Не подтверждают ли наблюдения за нано частицами это утверждение? Не являются ли данные эксперименты подтверждением того, что вся материальная Вселенная так же взаимодействует с Ним, как, к примеру, Наблюдатель взаимодействует с фотонами? Не показывает ли этот опыт, что всё, куда направлено внимание Наблюдателя, пронизано самим ним? Ведь, с точки зрения квантовой физики и принципа «Эффекта Наблюдателя», это неизбежно, так как во время взаимодействия квантовая система теряет свои изначальные черты, изменяясь под влиянием более крупной системы. То есть, обе системы взаимно обмениваясь в энерго-информационном плане, видоизменяют друг-друга.

Если развить этот вопрос дальше, то получается Наблюдатель предопределяет реальность, в которой потом и живёт. Это проявляется как следствие его выбора. В квантовой физике есть понятие множественности реальностей, когда перед Наблюдателем находятся тысячи возможных реальностей, пока он не сделает свой окончательный выбор, тем самым выбирая лишь одну из реальностей. И когда он сам для себя выбирает свою собственную реальность, он сосредотачивается на ней, и она проявляется для него (или он для неё?).
И опять же, принимая во внимание тот факт, что человек живёт в той реальности, которую сам же и поддерживает своим вниманием, то приходим к тому же вопросу: если вся материя во Вселенной держится на внимании, то Кто держит саму Вселенную своим вниманием? Не доказывает ли этот постулат существование Бога, Того, Кто может созерцать всю картину целиком?

Разве это не свидетельствует о том, что наш разум напрямую вовлечён в работу материального мира? Вольфган Паули, один из основателей квантовой механики, как-то сказал: «Законы физики и сознания должны рассматриваться как взаимодополняющие ». Можно с уверенностью сказать, что господин Паули был прав. Это уже очень близко к всемирному признанию: материальный мир - суть иллюзорное отображение нашего разума, и то, что мы видим зрением, на самом деле реальностью не является. Тогда что такое реальность? Где она находится, и как ее узнать?
Всё больше и больше учёные склоняются к мнению, что и мышление человека точно так же подчиняется процессам пресловутых квантовых эффектов. Жить в иллюзии, нарисованной разумом, или открыть для себя реальность — это каждый для себя выбирает сам. Мы лишь можем вам порекомендовать ознакомиться с книгой АллатРа, которую цитировали выше. Эта книга не только научно доказывает существование Бога, но и подробно дает пояснения всех существующих реальностей, измерений, и даже раскрывает структуру энергетической конструкции человека. Скачать эту книгу вы можете совершенно бесплатно с нашего сайта, кликнув по цитате ниже, или перейдя в соответствующий раздел сайта.


«Тот, кто не был потрясен при первом знакомстве с квантовой теорией, скорее всего, просто ничего не понял». Нильс Бор

Положения квантовой теории настолько ошеломительны, что она больше похожа на научную фантастику.

Частица микромира может находиться в двух и более местах одновременно!

(Один из совсем недавних экспериментов показал, что одна из таких частиц может находиться одновременно в 3000 мест!)

Один и тот же «объект» может быть и локализованной частицей, и энергетической волной, распространяющейся в пространстве.

Эйнштейн выдвинул постулат: ничто не может двигаться быстрее скорости света. Но квантовая физика доказала: субатомные частицы могут обмениваться информацией мгновенно - находясь друг от друга на любом удалении.

Классическая физика была детерминированной: исходя из начальных условий, вроде местоположения и скорости объекта, мы можем рассчитать, куда он будет двигаться. Квантовая физика - вероятностна: мы никогда не можем с абсолютной уверенностью сказать, как поведет себя исследуемый объект.

Классическая физика была механистичной. Она основана на предпосылке: только зная отдельные части объекта, мы в конечном счете можем понять, что он из себя представляет.

Квантовая физика целостна: она рисует картину Вселенной как единого целого, части которого взаимосвязаны и влияют друг на друга.

И, наверно, наиболее важно то, что квантовая физика уничтожила представление о принципиальном различии между субъектом или объектом, наблюдателем и наблюдаемым - а ведь оно властвовало над учёными умами в течение 400 лет!

В квартовой физике наблюдатель влияет на наблюдаемый объект. Нет никаких изолированных наблюдателей механической Вселенной - всё принимает участие в её существовании.

ПОТРЯСЕНИЕ №1 - ПУСТОЕ ПРОСТРАНСТВО

Одну из первых трещин в прочной конструкции ньютоновской физики сделало следующее открытие: атомы - эти твёрдые стандартные блоки физической Вселенной! - состоят главным образом из пустого пространства. Насколько пустого? Если увеличить ядро атома водорода до размера баскетбольного мяча, то единственный вращающийся вокруг него электрон будет находиться на расстоянии в тридцать километров, а между ядром и электроном - ничего. Так что глядя вокруг, помните: реальность - это мельчайшие точечки материи, окружённые пустотой.

Впрочем, не совсем так. Эта предполагаемая «пустота» на самом деле не пуста: она содержит колоссальное количество невероятно мощной энергии. мы знаем, что энергия становится всё плотнее по мере перехода на более низкий уровень материи (например, ядерная энергия в миллион раз мощнее химической). Сейчас учёные говорят, что в одном кубическом сантиметре пустого пространства больше энергии, чем во всей материи известной Вселенной. Хотя учёные не смогли измерить её, они видят результаты действия этого моря энергии.

ПОТРЯСЕНИЕ №2 - ЧАСТИЦА, ВОЛНА ИЛИ ВОЛНОЧАСТИЦА?

Мало того, что атом почти сплошь состоит из «пространства» - когда учёные более глубоко исследовали его, обнаружили, что субатомные (составляющие атом) частицы также не сплошные. И, похоже, они имеют двойственную природу. В зависимости от того, как мы их наблюдаем, они могут вести себя или как твёрдые микротела, или как волны.

Частицы - это отдельные твёрдые объекты, занимающие определённое положение в пространстве. А волны не имеют «тела», они не локализованы и распространяются в пространстве.

В качестве волны электрон или фотон (частица света) не имеет точного местоположения, но существует как «поле вероятностей». В состоянии частицы поле вероятностей «схлопывается» (коллапсирует) в твёрдый объект. Его координаты в четырёхмерном пространстве-времени уже можно определить.

Это удивительно, но состояние частицы (волна или твёрдый объект) задаётся актами наблюдения и измерения. Не измеряемые и не наблюдаемые электроны ведут себя подобно волнам. Как только мы подвергаем их наблюдению в процессе эксперимента, они «схлопываются» в твёрдые частицы и могут быть зафиксированы в пространстве.

Но как может быть что-то одновременно и твёрдо частицей и текучей волной? Возможно, парадокс будет разрешён, если мы вспомним то, о чём недавно говорили: частицы ведут себя как волны или как твёрдые объекты. Но понятия «волна» и «частица» - это всего лишь аналогии, взятые из нашего повседневного мира. Понятие волны было введено в квантовую теорию Эрвином Шредингером. Он автор знаменитого «волнового уравнения», которое математически обосновывает существование у твёрдой частицы волновых свойств до акта наблюдения. Некоторые физики - в попытке объяснить то, с чем они никогда не сталкивались и не могут до конца разобраться, - называют субатомные частицы «волночастицами».

ПОТРЯСЕНИЕ №3 - КВАНТОВЫЕ СКАЧКИ И ВЕРОЯТНОСТЬ

Изучая атом, учёные обнаружили: когда электроны, вращаясь вокруг ядра, перемещаются с орбиты на орбиту, они не движутся в пространстве как обычные объекты. Нет, они покрывают расстояние мгновенно. То есть исчезают в одном месте и появляются в другом. Этот феномен назвали квантовым скачком.

Мало того, учёные поняли, что не могут точно определить, где именно на новой орбите появится исчезнувший электрон или в какой момент он будет совершать скачок. Самое большее, что они смогли сделать - рассчитать вероятность (на основании волнового уравнения Шредингера) нового местоположения электрона.

«Реальность, как мы её ощущаем, создаётся в каждый момент времени в совокупности бесчисленных возможностей, - говорит доктор Сатиновер. - Но настоящая тайна - в том, что нет ничего в физической Вселенной, что бы определяло, какая именно возможность из этой совокупности осуществится. Нет процесса, который это устанавливает».

Таким образом, квантовые скачки - единственные по-настоящему случайные события во Вселенной.

ПОТРЯСЕНИЕ №4 - ПРИНЦИП НЕОПРЕДЕЛЁННОСТИ

В классической физике все параметры объекта, включая его пространственные координаты и скорость, могут быть измерены с точностью, ограниченной только возможностями экспериментальных технологий. Но на квантовом уровне всякий раз, когда вы определяете одну количественную характеристику объекта, например скорость, вы не можете получить точных значений других его параметров, например координат. Другими словами: если вы знаете, как быстро объект движется, вы не можете знать, где он находится. И наоборот: если вы знаете, где он находится, не можете знать, с какой скоростью он движется.

Как бы ни изощрялись экспериментаторы, какие бы продвинутые технологии измерений ни использовали - заглянуть за эту завесу им не удаётся.

Вернер Гейзенберг, один из пионеров квантовой физики, сформулировал принцип неопределённости. Суть его в следующем: как ни бейся, одновременно невозможно получить точные значения координат и скорости квантового объекта. Чем большей точности мы добиваемся в измерении одного параметра, тем более неопределённым становится другой.

ПОТРЯСЕНИЕ №5 - НЕЛОКАЛЬНОСТЬ, ЭПР-ПАРАДОКС И ТЕОРЕМА БЕЛЛА

Альберт Эйнштейн недолюбливал квантовую физику. Оценивая изложенную в квантовой физике вероятностную природу субатомных процессов, он говорил: «Бог не играет в кости с Вселенной». А вот Нильс Бор ему отвечал: «Перестаньте учить Бога, что ему делать!»

В 1935 году Энштейн и его коллеги Подольский и Розен (ЭПР) попытались нанести поражение квантовой теории. Учёные на основании положений квантовой механики провели мысленный эксперимент и пришли к парадоксальному выводу. (Он должен был показать ущербность квантовой теории). Суть их размышлений такова. Если мы имеем две одновременно возникшие частицы, то это означает, что они взаимосвязаны или находятся в состоянии суперпозиции. Отправим их в разные концы Вселенной. Затем изменим состояние одной из частиц. Тогда, согласно квантовой теории, другая частица мгновенно приходит в то же состояние. Мгновенно! На другом краю мироздания!

Подобная идея была настолько смехотворна, что Эйнштейн саркастически отозвался о ней как о «сверхъестественном дальнодействии». Согласно его теории относительности, ничто не может двигаться быстрее света. А в ЭПР-эксперименте выходило, что скорость обмена информацией между частицами бесконечна! Кроме того, сама мысль, что электрон может «отслеживать» состояние другого электрона на противоположном краю Вселенной, полностью противоречила общепринятым представлениям о реальности, да и вообще здравому смыслу.

Но вот в 1964 году ирландский физик-теоретик Джон Белл сформулировал и доказал теорему, из которой следовало: «смехотворные» выводы из мысленного эксперимента ЭПР - истинны!

Частицы тесно связаны на определённом уровне, выходящем за рамки времени и пространства. Поэтому способны мгновенно обмениваться информацией.

Представление о том, что любой объект Вселенной локален - т.е. существует в каком-то одном месте (точке) пространства - не верно. Все в этом мире нелокально.

Тем не менее этот феномен является действующим законом Вселенной. Шредингер говорил, что взаимосвязь между объектами - не единственный интересный аспект квантовой теории, но важнейший. В 1975 году физик-теоретик Генри Стэпп назвал теорему Белла «самым значительным открытием науки». Обратите внимание, что он говорил о науке, а не только о физике.

(Статья подготовлена по материалам книги У. Арнтц, Б. Чейс, М. Висенте «Кроличья нора, или что мы знаем о себе и Вселенной?», глава «Квантовая физика».)

Никто в мире не понимает квантовую механику - это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Кот Шредингера

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция - математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому - тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов - медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики - объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах - крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр - около 1 нм), а на чуть более ощутимом объекте - крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно - после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись - теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье , опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать - просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» - комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин - декогеренция.

Дело вот в чем - во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» - необратимый с точки зрения процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните - сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность - выбирать приходится каждому из нас.

В 1935 году, когда квантовая механика и общая теория относительности Эйнштейна были очень молоды, не шибко известный советский физик Матвей Бронштейн, будучи в возрасте 28 лет, сделал первое подробное исследование на тему согласования этих двух теорий в квантовой теории гравитации. Эта, «возможно, теория всего мира в целом», как писал Бронштейн, могла бы вытеснить классическое эйнштейново описание гравитации, в котором она видится кривыми в пространственно-временном континууме, и переписать его квантовым языком, как и всю остальную физику.

Бронштейн выяснил, как описать гравитацию в терминах квантованных частиц, теперь называемых гравитонами, но только когда сила гравитации слаба — то есть (в общей теории относительности) когда пространство-время настолько слабо изогнуто, что будет практически плоским. Когда гравитация сильная, «ситуация совершенно другая», писал ученый. «Без глубокого пересмотра классических понятий, кажется практически невозможным представить квантовую теорию гравитации и в этой области».

Его слова были пророческими. Восемьдесят три года спустя, физики все еще пытаются понять, как пространственно-временная кривизна проявляется в макроскопических масштабах, вытекая из более фундаментальной и предположительно квантовой картины гравитации; возможно, это самый глубокий вопрос в физике. Возможно, если бы был шанс, светлая голова Бронштейна ускорила бы процесс этого поиска. Помимо квантовой гравитации, он также сделал вклад в астрофизику и космологию, теорию полупроводников, квантовую электродинамику и написал несколько книжек для детей. В 1938 году он попал под сталинские репрессии и был казнен в возрасте 31 года.

Поиск полной теории квантовой гравитации осложняется тем, что квантовые свойства гравитации никогда не проявляются в реальном опыте. Физики не видят, как нарушается эйнштейново описание гладкого пространственно-временного континуума, либо бронштейново квантовое приближение его в слабо искривленном состоянии.

Проблема заключается в крайней слабости гравитационной силы. В то время как квантованные частицы, передающие сильные, слабые и электромагнитные силы, настолько сильны, что плотно связывают материю в атомы и могут быть исследованы буквально под лупой, гравитоны по отдельности настолько слабые, что у лабораторий нет никаких шансов их обнаружить. Чтобы поймать гравитон с высокой долей вероятности, детектор частиц должен быть настолько большим и массивным, что коллапсирует в черную дыру. Эта слабость объясняет, почему нужны астрономические накопления масс, чтобы оказывать влияние на другие массивные тела посредством гравитации, и почему мы видим гравитационные эффекты на огромных масштабах.

Это не все. Вселенная, по-видимому, подвергается какой-то космической цензуре: области с сильной гравитацией — где пространственно-временные кривые настолько острые, что уравнения Эйнштейна дают сбой, и должна раскрываться квантовая природа гравитации и пространства-времени — всегда прячутся за горизонтами черных дыр.

«Даже несколько лет назад был общий консенсус, что, вероятнее всего, измерить квантование гравитационного поля каким-либо образом невозможно», говорит Игорь Пиковский, физик-теоретик Гарвардского университета.

И вот несколько недавно опубликованных в Physical Review Letters статей изменили положение дел. В этих работах делается заявление, что добраться до квантовой гравитации может быть возможно — даже ничего не зная о ней. Работы, написанные Сугато Бозе из Университетского колледжа Лондона и Кьярой Марлетто и Влатко Ведралом из Оксфордского университета, предлагают технически сложный, но осуществимый эксперимент, который мог бы подтвердить, что гравитация это квантовая сила, как и все остальные, не требуя обнаружения гравитона. Майлз Бленкоу, квантовый физик из Дартмутского колледжа, не принимавший участия в этой работе, говорит, что такой эксперимент мог бы обнаружить четкий след невидимой квантовой гравитации — «улыбку Чеширского Кота».

Предложенный эксперимент определит, могут ли два объекта — группа Бозе планирует использовать пару микроалмазов — стать квантово-механически запутанными между собой в процессе взаимного гравитационного притяжения. Запутанность — это квантовое явление, в котором частицы становятся неразделимо переплетенными, разделяя единое физическое описание, которое определяет их возможные совмещенные состояния. (Сосуществование различных возможных состояний называется «суперпозицией» и определяет квантовую систему). Например, пара запутанных частиц может существовать в суперпозиции, при которой частица А будет с 50-процентной вероятностью вращаться (spin) снизу вверх, а Б — сверху вниз, и с 50-процентной вероятностью наоборот. Никто не знает заранее, какой результат вы получите при измерении направления спина частиц, но вы можете быть уверены в том, что он у них будет одинаков.

Авторы утверждают, что два объекта в предлагаемом эксперименте могут запутаться таким образом лишь в том случае, если сила, действующая между ними, — в данном случае гравитация — будет квантовым взаимодействием, опосредованным гравитонами, которые могут поддерживать квантовые суперпозиции. «Если будет проведен эксперимент и будет получена запутанность, согласно работе, можно сделать вывод, что гравитация квантуется», пояснил Бленкоу.

Запутать алмаз

Квантовая гравитация настолько незаметна, что некоторые ученые усомнились в ее существовании. Известный математик и физик Фримен Дайсон, которому 94 года, с 2001 года утверждает, что вселенная может поддерживать своего рода “дуалистическое” описание, в котором «гравитационное поле, описанное общей теорией относительности Эйнштейна, будет сугубо классическим полем без какого-либо квантового поведения», при этом все вещество в этом гладком пространственно-временном континууме будет квантоваться частицами, которые подчиняются правилам вероятности.

Дайсон, который помогал разрабатывать квантовую электродинамику (теорию взаимодействий между материей и светом) и является почетным профессором Института передовых исследований в Принстоне, Нью-Джерси, не считает, что квантовая гравитация необходима для описания недостижимых недр черных дыр. И он также считает, что обнаружение гипотетического гравитона может быть невозможным в принципе. В таком случае, говорит он, квантовая гравитация будет метафизической, а не физической.

Он не единственный скептик. Известный английский физик сэр Роджер Пенроуз и венгерский ученый Ладжос Диоси независимо предполагали, что пространство-время не может поддерживать суперпозиции. Они считают, что его гладкая, твердая, фундаментально классическая природа препятствует искривлению на два возможных пути одновременно — и именно эта жесткость приводит к коллапсу суперпозиций квантовых систем вроде электронов и фотонов. “Гравитационная декогеренция”, по их мнению, позволяет случиться единой, твердой, классической реальности, которую можно ощущать в макроскопических масштабах.

Возможность найти “улыбку” квантовой гравитации, казалось бы, опровергает аргумент Дайсона. Также она убивает теорию гравитационной декогеренции, показывая, что гравитация и пространство-время действительно поддерживают квантовые суперпозиции.

Предложения Бозе и Марлетто появились одновременно и абсолютно случайно, хотя эксперты отмечают, что они отражают дух времени. Экспериментальные лаборатории квантовой физики по всему миру ставят все более крупные микроскопические объекты в квантовые суперпозиции и оптимизируют протоколы испытаний запутанности двух квантовых систем. Предложенный эксперимент должен будет объединить эти процедуры, требуя при этом дальнейшего улучшения масштаба и чувствительности; возможно, на это уйдет лет десять. «Но физического тупика нет», говорит Пиковский, который также исследует, как лабораторные эксперименты могли бы зондировать гравитационные явления. «Думаю, это сложно, но не невозможно».

Этот план более подробно изложен в работе Бозе и соавторов — одиннадцать экспертов Оушена для разных этапов предложения. Например, в своей лаборатории в Университете Уорика один из соавторов Гэвин Морли работает над первым этапом, пытаясь поместить микроалмаз в квантовую суперпозицию в двух местах. Для этого он заключит атом азота в микроалмазе, рядом с вакансией в структуре алмаза (так называемый NV-центр, или азото-замещенная вакансия в алмазе), и зарядит его микроволновым импульсом. Электрон, вращающийся вокруг NV-центра, одновременно и поглощает свет, и нет, а система переходит в квантовую суперпозицию двух направлений спина — вверх и вниз — подобно волчку, который с определенной вероятностью вращается по часовой стрелке и с определенной — против. Микроалмаз, загруженный этим спином суперпозиции, подвергается воздействию магнитного поля, которое заставляет верхний спин двигаться влево, а нижний — вправо. Сам алмаз расщепляется на суперпозицию двух траекторий.

В полном эксперименте ученые должны сделать все это с двумя алмазами — красным и синим, допустим — расположенными рядом в сверххолодном вакууме. Когда ловушка, удерживающая их, отключится, два микроалмаза, каждый в суперпозиции двух положений, будут падать вертикально в вакууме. По мере падения алмазы будут ощущать гравитацию каждого из них. Насколько сильным будет их гравитационное притяжение?

Если гравитация является квантовым взаимодействием, ответ таков: в зависимости от чего. Каждый компонент суперпозиции синего алмаза будет испытывать более сильное или более слабое притяжение к красному алмазу, в зависимости от того, находится ли последний в ветви суперпозиции, которая ближе или дальше. И гравитация, которую будет ощущать каждый компонент суперпозиции красного алмаза, точно так же зависит от состояния синего алмаза.

В каждом из случаев различные степени гравитационного притяжения воздействуют на эволюционирующие компоненты суперпозиций алмазов. Два алмаза становятся взаимозависимыми, потому что их состояния можно будет определить только в сочетании — если это, значит то — поэтому, в конечном итоге, направления спинов двух систем NV-центров будут коррелировать.

После того как микроалмазы будут падать бок о бок в течение трех секунд, — этого достаточно, чтобы запутаться в гравитациях, — они пройдут через другое магнитное поле, которое снова совместит ветви каждой суперпозиции. Последний шаг эксперимента — протокол «запутанного знания» (entanglement witness), разработанный датским физиком Барбарой Терал и другими: синий и красный алмазы входят в разные устройства, которые измеряют направления спина систем NV-центров. (Измерение приводит к коллапсу суперпозиций в определенные состояния). Затем два результата сопоставляются. Проводя эксперимент снова и снова и сравнивая множество пар измерений спина, ученые могут определить, действительно ли спины двух квантовых систем коррелировали между собой чаще, чем определяет верхний предел для объектов, которые не являются квантово-механически запутанными. Если так, гравитация действительно запутывает алмазы и может поддерживать суперпозиции.

«Что интересно в этом эксперименте, так это то, что вам не нужно знать, что такое квантовая теория», говорит Бленкоу. «Все, что нужно, это утверждать, что есть некий квантовый аспект в этой области, который опосредован силой между двумя частицами».

Технических трудностей — масса. Самый большой объект, который помещали в суперпозицию в двух местах до этого, представлял собой 800-атомную молекулу. Каждый микроалмаз содержит более 100 миллиардов атомов углерода — этого достаточно, чтобы накопить ощутимую гравитационную силу. Распаковка его квантово-механического характера потребует низких температур, глубокого вакуума и точного контроля. «Очень много работы состоит в настройке изначальной суперпозиции и запуске», говорит Питер Баркер, член экспериментальной команды, которая усовершенствует методы лазерного охлаждения и поимки микроалмазов. Если бы это можно было сделать с одним алмазом, добавляет Бозе, «второй не составит проблемы».

В чем уникальность гравитации?

Исследователи квантовой гравитации не сомневаются в том, что гравитация — это квантовое взаимодействие, способное вызывать запутанность. Конечно, гравитация в чем-то уникальна, и еще многое предстоит узнать о происхождении пространства и времени, но квантовая механика точно должна быть вовлечена, говорят ученые. «Ну правда, какой смысл в теории, в которой большая часть физики квантовая, а гравитация классическая», говорит Дэниел Харлоу, исследователь квантовой гравитации в MIT. Теоретические аргументы против смешанных квантово-классических моделей очень сильные (хотя и не неоспоримые).

С другой стороны, теоретики ошибались и прежде. «Если можно проверить, почему нет? Если это заткнет этих людей, которые ставят под вопрос квантовость гравитации, будет здорово», считает Харлоу.

Прочитав работы, Дайсон написал: «Предлагаемый эксперимент безусловно представляет большой интерес и требует проведения в условиях настоящей квантовой системы». Однако он отмечает, что направление мысли авторов о квантовых полях отличаются от его. «Мне непонятно, сможет ли этот эксперимент разрешить вопрос существования квантовой гравитации. Вопрос, который я задавал — наблюдаем ли отдельный гравитон — это другой вопрос, и он может иметь другой ответ».

Направление мысли Бозе, Марлетто и их коллег о квантованной гравитации проистекает из работ Бронштейна еще в 1935 году. (Дайсон назвал работу Бронштейна «прекрасной работой», которую он не видел прежде). В частности, Бронштейн показал, что слабая гравитация, рождаемая малой массой, может быть аппроксимирована законом тяготения Ньютона. (Это сила, которая действует между суперпозициями микроалмазов). По мнению Бленкоу, расчеты слабой квантованной гравитации особо не проводились, хотя безусловно являются более релевантными, чем физика черных дыр или Большого Взрыва. Он надеется, что новое экспериментальное предложение побудит теоретиков на поиск тонких уточнений к ньютоновскому приближению, которое будущие настольные эксперименты могли бы попробовать проверить.

Леонард Сасскинд, известный теоретик квантовой гравитации и струн в Стэнфордском университете, увидел ценность предлагаемого эксперимента, потому что «он обеспечивает наблюдения гравитации в новом диапазоне масс и расстояний». Но он и другие исследователи подчеркнули, что микроалмазы не могут выявить ничего о полной теории квантовой гравитации или пространства-времени. Он и его коллеги хотели бы понять, что происходит в центре черной дыры и в момент Большого Взрыва.

Возможно, одна из подсказок к тому, почему квантовать гравитацию настолько тяжелее, чем все остальное, лежит в том, что другие силы природы обладают так называемой “локальностью”: квантовые частицы в одной области поля (фотоны в электромагнитном поле, например) «независимы от других физических сущностей в другой области пространства», говорит Марк ван Раамсдонк, теоретик квантовой гравитации из Университета Британской Колумбии. «Но есть много теоретических доказательств того, что гравитация работает не так».

В лучших песочных моделях квантовой гравитации (с упрощенными пространственно-временными геометриями) невозможно предположить, что ленточная пространственно-временная ткань делится на независимые трехмерные кусочки, говорит ван Раамсдонк. Вместо этого современная теория предполагает, что нижележащие, фундаментальные составляющие пространства «организованы скорее двумерно». Ткань пространства-времени может быть как голограмма или видеоигра. «Хотя картинка трехмерна, информация хранится на двумерном компьютерном чипе». В таком случае трехмерный мир будет иллюзей в том смысле, что различные его части не являются настолько независимыми. В аналогии с видеоигрой, несколько битов на двумерном чипе могут кодировать глобальные функции всей игровой вселенной.

И эта разница имеет значение, когда вы пытаетесь создать квантовую теорию гравитацию. Обычный подход к квантованию чего-либо заключается в определении его независимых частей — частиц, например, — и затем применении к ним квантовой механики. Но если вы не определяете правильные составляющие, вы получаете неправильные уравнения. Прямое квантование трехмерного пространства, которое хотел сделать Бронштейн, работает в некоторой мере со слабой гравитацией, но оказывается бесполезным, когда пространство-время сильно искривлено.

Некоторые эксперты говорят, что засвидетельствование “улыбки” квантовой гравитации может привести к мотивации подобного рода абстрактных рассуждений. В конце концов, даже самые громкие теоретические аргументы о существовании квантовой гравитации не подкрепляются экспериментальными фактами. Когда ван Раамсдонк объясняет свои исследования на коллоквиуме ученых, говорит он, обычно все начинается с рассказа о том, что гравитацию нужно переосмыслить с квантовой механикой, потому что классическое описание пространства-времени ломается на черных дырах и Большом Взрыве.

«Но если провести этот простой эксперимент и показать, что гравитационное поле было в суперпозиции, провал классического описания станет очевидным. Потому что будет эксперимент, который подразумевает, что гравитация — квантовая».

По материалам Quanta Magazine

Возникновение и развитие квантовой теории привело к изменению классических представлений о структуре материи, движении, причинности, пространстве, времени, характере познания и т.д., что способствовало коренному преобразованию картины мира. Для классического понимания материальной частицы было характерно резкое ее выделение из окружающей среды, обладание собственным движением и местом нахождения в пространстве. В квантовой теории частица стала представляться как функциональная часть системы, в которую она включена, не имеющая одновременно координат и импульса. В классической теории движение рассматривалось как перенос частицы, остающейся тождественно самой себе, по определенной траектории. Двойственный характер движения частицы обусловил необходимость отказа от такого представления движения. Классический (динамический) детермизм уступил место вероятностному (статистическому). Если ранее целое понималось как сумма составляющий частей, то квантовая теория выявила зависимость свойств частицы от системы, в которую она включена. Классическое понимание познавательного процесса было связано с познанием материального объекта как существующего самого по себе. Квантовая теория продемонстрировала зависимость знания об объекте от исследовательских процедур. Если классическая теория претендовала на завершенность, то квантовая теория с самого начала развертывалась как незавершенная, основывающаяся на ряде гипотез, смысл которых вначале был далеко не ясен, а поэтому ее основные положения получали разное истолкование, разные интерпретации.
Разногласия выявились прежде всего по поводу физического смысла двойственности микрочастиц. Де Бройль вначале выдвинул концепцию волны-пилота, в соответствии с которой волна и частица сосуществуют, волна ведет за собой частицу. Реальным материальным образованием, сохраняющим свою устойчивость, является частица, поскольку именно она обладает энергией и импульсом. Волна, несущая частицу, управляет характером движения частицы. Амплитуда волны в каждой точке пространства определяет вероятность локализации частицы рядом с этой точкой. Шредингер проблему двойственности частицы решает по сути путем ее снятия. Для него частица выступает как чисто волновое образование. Иначе говоря, частица есть место волны, в котором сосредоточена наибольшая энергия волны. Интерпретации де Бройля и Шредингера представляли собой по сути попытки создать наглядные модели в духе классической физики. Однако это оказалось невозможным.
Гейзенбергом была предложена интерпретация квантовой теории, исходя (как было показано ранее) из того, что физика должна пользоваться только понятиями и величинами, основанными на измерениях. Гейзенберг поэтому и отказался от наглядного представления движения электрона в атоме. Макроприборы не могут дать описание движения частицы с одновременной фиксацией импульса и координат (т.е. в классическом смысле) по причине принципиально неполной контролируемости взаимодействия прибора с частицей - в силу соотношения неопределенностей измерение импульса не дает возможности определить координаты и наоборот. Иначе говоря, по причине принципиальной неточности измерения предсказания теории могут иметь лишь вероятностный характер, причем вероятность является следствием принципиальной неполноты информации о движении частицы. Это обстоятельство привело к выводу о крушении принципа причинности в классическом смысле, предполагавшим предсказание точных значений импульса и координаты. В рамках квантовой теории, таким образом, речь идет не об ошибках наблюдения или эксперимента, а о принципиальном недостатке знаний, которые и выражаются с помощью функции вероятности.
Интерпретация квантовой теории, осуществленная Гейзенбергом, была развита Бором и получила название копенгагенской. В рамках данной интерпретации основным положением квантовой теории выступает принцип дополнительности, означающий требование применять для получения в процессе познания целостной картины изучаемого объекта взаимоисключающие классы понятий, приборов и исследовательских процедур, которые используются в своих специфических условиях и взаимозаполняют друг друга. Данный принцип напоминает соотношение неопределенностей Гейзенберга. Если речь идет об определении импульса и координаты как взаимоисключающих и взаимодополняющих исследовательских процедур, то для отождествления этих принципов есть основания. Однако смысл принципа дополнительности шире, чем соотношения неопределенностей. Для того, чтобы объяснить устойчивость атома, Бор соединил в одной модели классические и квантовые представления о движении электрона. Принцип дополнительности, таким образом, позволил классические представления дополнить квантовыми. Выявив противоположность волновых и корпускулярных свойств света и не найдя их единства, Бор склонился к мысли о двух, эквивалентных друг другу, способах описания - волновом и корпускулярном - с последующем их совмещением. Так что точнее говорить о том, что принцип дополнительности выступает развитием соотношения неопределенности, выражающих связи координаты и импульса.
Ряд ученых истолковали нарушение принципа классического детерминизма в рамках квантовой теории в пользу индетернизма. В действительности же здесь принцип детерминизма изменял свою форму. В рамках классической физики, если в начальный момент времени известны положения и состояние движения элементов системы, можно полностью предсказать ее положение в любой будущий момент времени. Все макроскопические системы были подчинены этому принципу. Даже в тех случаях, когда приходилось вводить вероятности, всегда предполагалось, что все элементарные процессы строго детернизированы и что только их большое число и беспорядочность поведения заставляет обращаться к статистическим методам. В квантовой теории ситуация принципиально иная. Для реализации принципов детернизации здесь необходимо знать координаты и импульсы, и это соотношением неопределенности запрещается. Использование вероятности здесь имеет иной смысл по сравнению со статистической механикой: если в статистической механике вероятности использовались для описания крупномасштабных явлений, то в квантовой теории вероятности, наоборот, вводятся для описания самих элементарных процессов. Все это означает, что в мире крупномасштабных тел действует динамический принцип причинности, а в микромире - вероятностный принцип причинности.
Копенгагенская интерпретация предполагает, с одной стороны, описание экспериментов в понятиях классической физики, а с другой - признание этих понятий неточно соответствующими действительному положению вещей. Именно эта противоречивость и обусловливает вероятность квантовой теории. Понятия классической физики составляют важную составную часть естественного языка. Если мы не будем использовать этих понятий для описания проводимых экспериментов, то мы не сможем понять друг друга.
Идеалом классической физики является полная объективность знания. Но в познании мы используем приборы, а тем самым, как говорит Гейнзерберг, в описание атомных процессов вводится субъективный элемент, поскольку прибор создан наблюдателем. "Мы должны помнить, что то, что мы наблюдаем, - это не сама природа, а природа, которая выступает в том виде, в каком она выявляется благодаря нашему способу постановки вопросов научная работа в физике состоит в том, чтобы ставить вопросы о природе на языке, которым мы пользуемся, и пытаться получить ответ в эксперименте, выполненном с помощью имеющихся у нас в распоряжении средств. При этом вспоминаются слова Бора о квантовой теории: если ищут гармонии в жизни, то никогда нельзя забывать, что в игре жизни мы одновременно и зрители, и участники. Понятно, что в нашем научном отношении к природе наша собственная деятельность становится важной там, где нам приходится иметь дело с областями природы, проникнуть в которые можно только благодаря важнейшим техническим средствам"
Классические представления пространства и времени также оказалось невозможным использовать для описания атомных явлений. Вот что писал по этому поводу другой создатель квантовой теории: "существование кванта действия обнаружило совершенно непредвиденную связь между геометрией и динамикой: оказывается, что возможность локализации физических процессов в геометрическом пространстве зависит от их динамического состояния. Общая теория относительности уже научила нас рассматривать локальные свойства пространства-времени в зависимости от распределения вещества во Вселенной. Однако существование квантов требует гораздо более глубокого преобразования и больше не позволяет нам представлять движение физического объекта вдоль определенной линии в пространстве-времени (мировой линии). Теперь нельзя определить состояние движения, исходя из кривой, изображающей последовательные положения объекта в пространстве с течением времени. Теперь нужно рассматривать динамическое состояние не как следствие пространственно-временной локализации, а как независимый и дополнительный аспект физической реальности"
Дискуссии по проблеме интерпретации квантовой теории обнажили вопрос о самом статусе квантовой теории - является ли она полной теорией движения микрочастицы. Впервые вопрос таким образом был сформулирован Энштейном. Его позиция получила выражение в концепции скрытых параметров. Эйнштейн исходил из понимания квантовой теории как статистической теории, которая описывает закономерности, относящиеся к поведению не отдельной частицы, а их ансамбля. Каждая частица всегда строго локализована, одновременно обладает определенными значениями импульса и координаты. Соотношение неопределенностей отражает не реальное устройство действительности на уровне микропроцессов, а неполноту квантовой теории - просто на ее уровне мы не имеем возможности одновременно измерять импульс и координату, хотя они в действительности существуют, но как скрытые параметры (скрытые в рамках квантовой теории). Описание состояния частицы с помощью волновой функции Эйнштейн считал неполным, а потому и квантовую теорию представлял в виде неполной теории движения микрочастицы.
Бор в данной дискуссии занял противоположную позицию, исходящую из признания объективной неопределенности динамических параметров микрочастицы как причины статистического характера квантовой теории. По его мнению, отрицание Энштейном существования объективно неопределенных величин оставляет необъясненным присущие микрочастице волновые черты. Возврат к классическим представлениям движения микрочастицы Бор считал невозможным.
В 50-х гг. ХХ века Д.Бом вернулся к концепции волны-пилота де Бройля, представив пси-волну в виде реального поля, связанного с частицей. Сторонники копенгагенской интерпретации квантовой теории и даже часть ее противников позицию Бома не поддержали, однако она способствовала более углубленной проработке концепции де Бройля: частица стала рассматриваться в виде особого образования, возникающего и движущегося в пси-поле, но сохраняющего свою индивидуальность. Работы П.Вижье, Л.Яноши, разрабатывавших данную концепцию, были оценены многими физиками как слишком "классичными".
В отечественной философской литературе советского периода копенгагенская интерпретация квантовой теории была подвергнута критике за "приверженность к позитивистским установкам" в трактовке процесса познания. Однако рядом авторов отстаивалась справедливость копенгагенской интерпретации квантовой теории. Смена классического идеала научного познания неклассическим сопровождалась пониманием того, что наблюдатель, пытаясь построить картину объекта, не может отвлечься от процедуры измерения, т.е. исследователь оказывается не в состоянии измерять параметры изучаемого объекта такими, какими они были до процедуры измерения. В.Гейзенберг, Э.Шредингер и П.Дирак положили принцип неопределенности в основу квантовой теории, в рамках которой частицы уже не имели определенных и не зависящих друг от друга импульса и координат. Квантовая теория, таким образом, внесла в науку элемент непредсказуемости, случайности. И хотя Эйнштейн не смог согласиться с этим, квантовая механика согласовывалась с экспериментом, а потому стала основой многих областей знания.