Пуассоновский закон распределения. Распределение Пуассона

Например, регистрируется количество дорожных происшествий за неделю на определенном участке дороги. Это число представляет собой случайную величину, которая может принимать значения: (верхнего предела нет). Число дорожных происшествий может быть каким угодно большим. Если рассмотреть какой-либо короткий временной промежуток в течение недели, скажем минуту, то происшествие либо произойдет на его протяжении, либо нет. Вероятность дорожного происшествия в течение отдельно взятой минуты очень мала, и примерно такая же она для всех минут.

Распределение вероятностей числа происшествий описывается формулой:

где m - среднее количество происшествий за неделю на определенном участке дороги; е - константа, равная 2,718...

Характерные особенности данных, для которых наилучшим образом подходит распределение Пуассона, следующие:

1. Каждый малый интервал времени может рассматриваться как опыт, результатом которого является одно из двух: либо происшествие (“успех”), либо его отсутствие (“неудача”). Интервалы столь малы, что может быть только один “успех” в одном интервале, вероятность которого мала и неизменна.

2. Число “успехов" в одном большом интервале не зависит от их числа в другом, т.е. “успехи” беспорядочно разбросаны по временным промежуткам.

3. Среднее число “успехов” постоянно на протяжении всего времени. Распределение вероятностей Пуассона может быть использовано не только при работе со случайными величинами на временных интервалах, но и при учете дефектов дорожного покрытия на километр пути или опечаток на страницу текста. Общая формула распределения вероятностей Пуассона:

где m - среднее число “успехов” на единицу.

В таблицах распределения вероятностей Пуассона значения табулированы для определенных значений m и

Пример 2.7. В среднем на телефонной станции заказывают три телефонных разговора в течение пяти минут. Какова вероятность, что будет заказано 0, 1,2, 3, 4 или больше четырех разговоров в течение пяти минут?

Применим распределение вероятностей Пуассона, так как:

1. Существует неограниченное количество опытов, т.е. маленьких отрезков времени, когда может появиться заказ на телефонный разговор, вероятность чего мала и постоянна.

2. Считается, что спрос на телефонные разговоры беспорядочно распределен во времени.

3. Считается, что среднее число телефонных разговоров в любом -минутном отрезке времени одинаково.

В этом примере среднее число заказов равно 3 за 5 минут. Отсюда, распределение Пуассона:

При распределении вероятностей Пуассона, зная среднее число “успехов” на 5-минутном промежутке (например как в примере 2.7), для того чтобы узнать среднее число “успехов” за один час, нужно просто умножить на 12. В примере 2.7 среднее число заказов в час составит: 3 х 12 = 36. Аналогично, если требуется определить среднее число заказов в минуту:

Пример 2.8. В среднем за пять дней рабочей недели на автоматической линии происходят 3,4 неполадок. Какова вероятность двух неполадок в каждый день работы? Решение.

Можно применить распределение Пуассона:

1. Существует неограниченное количество опытов, т.е. малых промежутков времени, в течение каждого из них может произойти или не произойти неполадка на автоматической линии. Вероятность этого для каждого промежутка времени мала и постоянна.

2. Предполагается, что неполадки беспорядочно расположены во времени.

3. Предполагается, что среднее число неполадок в течение любых пяти дней постоянно.

Среднее число неполадок равно 3, 4 за пять дней. Отсюда число неполадок в день:

Следовательно,

Во многих практически важных приложениях большую роль играет распределение Пуассона. Многие из числовых дискретных величин являются реализациями пуассоновского процесса, обладающего следующими свойствами:

  • Нас интересует, сколько раз происходит некое событие в заданной области возможных исходов случайного эксперимента. Область возможных исходов может представлять собой интервал времени, отрезок, поверхность и т.п.
  • Вероятность данного события одинакова для всех областей возможных исходов.
  • Количество событий, происходящих в одной области возможных исходов, не зависит от количества событий, происходящих в других областях.
  • Вероятность того, что в одной и той же области возможных исходов данное событие происходит больше одного раза, стремится к нулю по мере уменьшения области возможных исходов.

Чтобы глубже понять смысл пуассоновского процесса, предположим, что мы исследуем количество клиентов, посещающих отделение банка, расположенное в центральном деловом районе, во время ланча, т.е. с 12 до 13 часов. Предположим, требуется определить количество клиентов, приходящих за одну минуту. Обладает ли эта ситуация особенностями, перечисленными выше? Во-первых, событие, которое нас интересует, представляет собой приход клиента, а область возможных исходов - одноминутный интервал. Сколько клиентов придет в банк за минуту - ни одного, один, два или больше? Во-вторых, разумно предположить, что вероятность прихода клиента на протяжении минуты одинакова для всех одноминутных интервалов. В-третьих, приход одного клиента в течение любого одноминутного интервала не зависит от прихода любого другого клиента в течение любого другого одноминутного интервала. И, наконец, вероятность того, что в банк придет больше одного клиента стремится к нулю, если временной интервал стремится к нулю, например, становится меньше 0,1 с. Итак, количество клиентов, приходящих в банк во время ланча в течение одной минуты, описывается распределением Пуассона.

Распределение Пуассона имеет один параметр, обозначаемый символом λ (греческая буква «лямбда») – среднее количество успешных испытаний в заданной области возможных исходов. Дисперсия распределения Пуассона также равна λ, а его стандартное отклонение равно . Количество успешных испытаний Х пуассоновской случайной величины изменяется от 0 до бесконечности. Распределение Пуассона описывается формулой:

где Р(Х) - вероятность X успешных испытаний, λ - ожидаемое количество успехов, е - основание натурального логарифма, равное 2,71828, X - количество успехов в единицу времени.

Вернемся к нашему примеру. Допустим, что в течение обеденного перерыва в среднем в банк приходят три клиента в минуту. Какова вероятность того, что в данную минуту в банк придут два клиента? А чему равна вероятность того, что в банк придут более двух клиентов?

Применим формулу (1) с параметром λ = 3. Тогда вероятность того, что в течение данной минуты в банк придут два клиента, равна

Вероятность того, что в банк придут более двух клиентов, равна Р(Х > 2) = Р(Х = 3) + Р(Х = 4) + … + Р(Х = ∞) . Поскольку сумма всех вероятностей должна быть равной 1, члены ряда, стоящего в правой части формулы, представляют собой вероятность дополнения к событию Х≤ 2. Иначе говоря, сумма этого ряда равна 1 – Р(Х ≤ 2). Таким образом, Р(Х> 2) = 1 – Р(Х≤2) = 1 – [Р(Х = 0) + Р(Х = 1) + Р(Х = 2)]. Теперь, используя формулу (1), получаем:

Таким образом, вероятность того, что в банк в течение минуты придут не больше двух клиентов, равна 0,423 (или 42,3%), а вероятность того, что в банк в течение минуты придут больше двух клиентов, равна 0,577 (или 57,7%).

Такие вычисления могут показаться утомительными, особенно если параметр λ достаточно велик. Чтобы избежать сложных вычислений, многие пуассоновские вероятности можно найти в специальных таблицах (рис. 1). Например, вероятность того, что в заданную минуту в банк придут два клиента, если в среднем в банк приходят три клиента в минуту, находится на пересечении строки X = 2 и столбца λ = 3. Таким образом, она равна 0,2240 или 22,4%.

Рис. 1. Пуассоновская вероятность при λ = 3

Сейчас вряд ли кто-то будет пользоваться таблицами, если под рукой есть Excel с его функцией =ПУАССОН.РАСП() (рис. 2). Эта функция имеет три параметра: число успешных испытаний Х , среднее ожидаемое количество успешных испытаний λ, параметр Интегральная , принимающий два значения: ЛОЖЬ – в этом случае вычисляется вероятность числа успешных испытаний Х (только Х), ИСТИНА – в этом случае вычисляется вероятность числа успешных испытаний от 0 до Х.

Рис. 2. Расчет в Excel вероятностей распределения Пуассона при λ = 3

Аппроксимация биноминального распределения с помощью распределения Пуассона

Если число n велико, а число р - мало, биномиальное распределение можно аппроксимировать с помощью распределения Пуассона. Чем больше число n и меньше число р , тем выше точность аппроксимации. Для аппроксимации биномиального распределения используется следующая модель Пуассона.

где Р(Х) - вероятность X успехов при заданных параметрах n и р , n - объем выборки, р - истинная вероятность успеха, е - основание натурального логарифма, X - количество успехов в выборке (X = 0, 1, 2, …, n ).

Теоретически случайная величина, имеющая распределение Пуассона, принимает значения от 0 до ∞. Однако в тех ситуациях, когда распределение Пуассона применяется для приближения биномиального распределения, пуассоновская случайная величина - количество успехов среди n наблюдений - не может превышать число n . Из формулы (2) следует, что с увеличением числа n и уменьшением числа р вероятность обнаружить большое количество успехов уменьшается и стремится к нулю.

Как говорилось выше, математическое ожидание µ и дисперсия σ 2 распределения Пуассона равны λ. Следовательно, при аппроксимации биномиального распределения с помощью распределения Пуассона для приближения математического ожидания следует применять формулу (3).

(3) µ = Е(Х) = λ = np

Для аппроксимации стандартного отклонения используется формула (4).

Обратите внимание на то, что стандартное отклонение, вычисленное по формуле (4), стремится к стандартному отклонению в биномиальной модели – , когда вероятность успеха p стремится к нулю, и, соответственно, вероятность неудачи 1 – р стремится к единице.

Предположим, что 8% шин, произведенных на некотором заводе, являются бракованными. Чтобы проиллюстрировать применение распределения Пуассона для аппроксимации биномиального распределения, вычислим вероятность обнаружить одну дефектную шину в выборке, состоящей из 20 шин. Применим формулу (2), получим

Если бы мы вычислили истинное биномиальное распределение, а не его приближение, то получили бы следующий результат:

Однако эти вычисления довольно утомительны. В то же время, если вы используете Excel для вычисления вероятностей, то применение аппроксимации в виде распределения Пуассона становится излишним. На рис. 3 показано, что трудоемкость вычислений в Excel одинакова. Тем не менее, этот раздел, на мой взгляд, полезен понимаем того, что при некоторых условиях биноминальное распределение и распределение Пуассона дают близкие результаты.

Рис. 3. Сравнение трудоемкости расчетов в Excel: (а) распределение Пуассона; (б) биноминальное распределение

Итак, в настоящей и двух предыдущих заметках были рассмотрены три дискретных числовых распределения: , и Пуассона. Чтобы лучше представлять, как эти распределения соотносятся друг с другом приведем небольшое дерево вопросов (рис. 4).

Рис. 4. Классификация дискретных распределений вероятностей

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 320–328

Во многих задачах практики приходится иметь дело со случайными величинами, распределенными по своеобразному закону, который называется законом Пуассона.

Рассмотрим прерывную случайную величину , которая может принимать только целые, неотрицательные значения:

причем последовательность этих значений теоретически не ограничена.

Говорят, что случайная величина распределена по закону Пуассона, если вероятность того, что она примет определенное значение , выражается формулой

где а – некоторая положительная величина, называемая параметром закона Пуассона.

Ряд распределения случайной величины , распределенной по закону Пуассона, имеет вид:

Убедимся, прежде всего, что последовательность вероятностей, задаваемая формулой (5.9.1), может представлять собой ряд распределения, т.е. что сумма всех вероятностей равна единице. Имеем:

.

На рис. 5.9.1 показаны многоугольники распределения случайной величины , распределенной по закону Пуассона, соответствующие различным значениям параметра . В таблице 8 приложения приведены значения для различных .

Определим основные характеристики – математическое ожидание и дисперсию – случайной величины , распределенной по закону Пуассона. По определению математического ожидания

.

Первый член суммы (соответствующий ) равен нулю, следовательно, суммирование можно начать с :

Обозначим ; тогда

. (5.9.2)

Таким образом, параметр представляет собой не что иное, как математическое ожидание случайной величины .

Для определения дисперсии найдем сначала второй начальный момент величины :

По ранее доказанному

кроме того,

Таким образом, дисперсия случайной величины, распределенной по закону Пуассона, равна её математическому ожиданию .

Это свойство распределения Пуассона часто применяется на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина распределена по закону Пуассона. Для этого определяют из опыта статистические характеристики – математическое ожидание и дисперсию – случайной величины. Если их значения близки, то это может служить доводом в пользу гипотезы о пуассоновском распределении; резкое различие этих характеристик, напротив, свидетельствует против гипотезы.

Определим для случайной величины , распределенной по закону Пуассона, вероятность того, что она примет значение не меньше заданного . Обозначим эту вероятность :

Очевидно, вероятность может быть вычислена как сумма

Однако значительно проще определить её из вероятности противоположного события:

(5.9.4)

В частности, вероятность того, что величина примет положительное значение, выражается формулой

(5.9.5)

Мы уже упоминали о том, что многие задачи практики приводят к распределению Пуассона. Рассмотрим одну из типичных задач такого рода.

Пусть на оси абсцисс Ох случайным образом распределяются точки (рис. 5.9.2). Допустим, что случайное распределение точек удовлетворяет следующим условиям:

1. Вероятность попадания того или иного числа точек на отрезок зависит только от длины этого отрезка, но не зависит от его положения на оси абсцисс. Иными словами, точки распределяются на оси абсцисс с одинаковой средней плотностью. Обозначим эту плотность (т.е. математическое ожидание числа точек, приходящихся на единицу длины) через .

2. Точки распределяются на оси абсцисс независимо друг от друга, т.е. вероятность попадания того или другого числа точек на заданный отрезок не зависит от того, сколько их попало на любой другой отрезок, не перекрывающийся с ним.

3. Вероятность попадания на малый участок двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек).

Выделим на оси абсцисс определенный отрезок длины и рассмотрим дискретную случайную величину – число точек, попадающих на этот отрезок. Возможные значения величины будут

Так как точки попадают на отрезок независимо друг от друга, то теоретически не исключено, что их там окажется сколь угодно много, т.е. ряд (5.9.6) продолжается неограниченно.

Докажем, что случайная величина имеет закон распределения Пуассона. Для этого вычислим вероятность того, что на отрезок попадет ровно точек.

Сначала решим более простую задачу. Рассмотрим на оси Ох малый участок и вычислим вероятность того, что на этот участок попадет хотя бы одна точка. Будем рассуждать следующим образом. Математическое ожидание числа точек, попадающих на этот участок, очевидно, равно (т.к. на единицу длины попадает в среднем точек). Согласно условию 3 для малого отрезка можно пренебречь возможностью попадания на него двух или больше точек. Поэтому математическое ожидание числа точек, попадающих на участок , будет приближенно равно вероятности попадания на него одной точки (или, что в наших условиях равнозначно, хотя бы одной).

Таким образом, с точностью до бесконечно малых высшего порядка, при можно считать вероятность того, что на участок попадет одна (хотя бы одна) точка, равной , а вероятность того, что не попадет ни одной, равной .

Воспользуемся этим для вычисления вероятности попадания на отрезок ровно точек. Разделим отрезок на равных частей длиной . Условимся называть элементарный отрезок «пустым», если в него не попало ни одной точки, и «занятым», если в него попала хотя бы одна. Согласно вышедоказанному вероятность того, что отрезок окажется «занятым», приближенно равна ; вероятность того, что он окажется «пустым», равна . Так как, согласно условию 2, попадания точек в неперекрывающиеся отрезки независимы, то наши n отрезков можно рассмотреть как независимых «опытов», в каждом из которых отрезок может быть «занят» с вероятностью . Найдем вероятность того, что среди отрезков будет ровно «занятых». По теореме о повторении опытов эта вероятность равна

или, обозначая ,

(5.9.7)

При достаточно большом эта вероятность приближенно равна вероятности попадания на отрезок ровно точек, так как попадание двух или больше точек на отрезок имеет пренебрежимо малую вероятность. Для того чтобы найти точное значение , нужно в выражении (5.9.7) перейти к пределу при :

(5.9.8)

Преобразуем выражение, стоящее под знаком предела:

(5.9.9)

Первая дробь и знаменатель последней дроби в выражении (5.9.9) при , очевидно, стремятся к единице. Выражение от не зависит. Числитель последней дроби можно преобразовать так:

(5.9.10)

При и выражение (5.9.10) стремится к . Таким образом, доказано, что вероятность попадания ровно точек в отрезок выражается формулой

где , т.е. величина Х распределена по закону Пуассона с параметром .

Отметим, что величина по смыслу представляет собой среднее число точек, приходящееся на отрезок .

Величина (вероятность того, что величина Х примет положительное значение) в данном случае выражает вероятность того, что на отрезок попадет хотя бы одна точка:

Таким образом, мы убедились, что распределение Пуассона возникает там, где какие-то точки (или другие элементы) занимают случайное положение независимо друг от друга, и подсчитывается количество этих точек, попавших в какую-то область. В нашем случае такой «областью» был отрезок на оси абсцисс. Однако наш вывод легко распространить и на случай распределения точек на плоскости (случайное плоское поле точек) и в пространстве (случайное пространственное поле точек). Нетрудно доказать, что если соблюдены условия:

1) точки распределены в поле статистически равномерно со средней плотностью ;

2) точки попадают в неперекрывающиеся области независимым образом;

3) точки появляются поодиночке, а не парами, тройками и т.д., то число точек , попадающих в любую область (плоскую или пространственную), распределяются по закону Пуассона:

где – среднее число точек, попадающих в область .

Для плоского случая

где – площадь области ; для пространственного

где - объем области .

Заметим, что для пуассоновского распределения числа точек, попадающих в отрезок или область, условие постоянной плотности () несущественно. Если выполнены два других условия, то закон Пуассона все равно имеет место, только параметр а в нем приобретает другое выражение: он получается не простым умножение плотности на длину, площадь или объем области, а интегрированием переменной плотности по отрезку, площади или объему. (Подробнее об этом см. n° 19.4)

Наличие случайных точек, разбросанных на линии, на плоскости или объеме – неединственное условие, при котором возникает распределение Пуассона. Можно, например, доказать, что закон Пуассона является предельным для биномиального распределения:

, (5.9.12)

если одновременно устремлять число опытов к бесконечности, а вероятность – к нулю, причем их произведение сохраняет постоянное значение:

Действительно, это предельное свойство биномиального распределения можно записать в виде:

. (5.9.14)

Но из условия (5.9.13) следует, что

Подставляя (5.9.15) в (5.9.14), получим равенство

, (5.9.16)

которое только что было доказано нами по другому поводу.

Это предельное свойство биномиального закона часто находит применение на практике. Допустим, что производится большое количество независимых опытов , в каждом из которых событие имеет очень малую вероятность . Тогда для вычисления вероятности того, что событие появится ровно раз, можно воспользоваться приближенной формулой:

, (5.9.17)

где - параметр того закона Пуассона, которым приближенно заменяется биномиальное распределение.

От этого свойства закона Пуассона – выражать биномиальное распределение при большом числе опытов и малой вероятности события – происходит его название, часто применяемое в учебниках статистики: закон редких явлений.

Рассмотрим несколько примеров, связанных с пуассоновским распределением, из различных областей практики.

Пример 1. На автоматическую телефонную станцию поступают вызовы со средней плотностью вызовов в час. Считая, что число вызовов на любом участке времени распределено по закону Пуассона, найти вероятность того, что за две минуты на станцию поступит ровно три вызова.

Решение. Среднее число вызовов за две минуты равно:

Кв.м. Для поражения цели достаточно попадания в нее хотя бы одного осколка. Найти вероятность поражения цели при данном положении точки разрыва.

Решение. . По формуле (5.9.4) находим вероятность попадания хотя бы одного осколка:

(Для вычисления значения показательной функции пользуемся таблицей 2 приложения).

Пример 7. Средняя плотность болезнетворных микробов в одном кубическом метре воздуха равна 100. Берется на пробу 2 куб. дм воздуха. Найти вероятность того, что в нем будет обнаружен хотя бы один микроб.

Решение. Принимая гипотезу о пуассоновском распределении числа микробов в объеме, находим:

Пример 8. По некоторой цели производится 50 независимых выстрелов. Вероятность попадания в цель при одном выстреле равна 0,04. Пользуясь предельным свойством биномиального распределения (формула (5.9.17)), найти приближенно вероятность того, что в цель попадет: ни одного снаряда, один снаряд, два снаряда.

Решение. Имеем . По таблице 8 приложения находим вероятности.

Распределение Пуассона.

Рассмотрим наиболее типичную ситуацию, в которой возникает распределение Пуассона. Пусть событие А появляется некоторое число раз в фиксированном участке пространства (интервале, площади, объеме) или промежутке времени с постоянной интенсивностью. Для определенности рассмотрим последовательное появление событий во времени, называемое потоком событий. Графически поток событий можно иллюстрировать множеством точек, расположенных на оси времени.

Это может быть поток вызовов в сфере обслуживания (ремонт бытовой техники, вызов скорой помощи и др.), поток вызовов на АТС, отказ в работе некоторых частей системы, радиоактивный распад, куски ткани или металлические листы и число дефектов на каждом из них и др. Наиболее полезным распределение Пуассона оказывается в тех задачах, где требуется определить лишь число положительных исходов («успехов»).

Представим себе булку с изюмом, разделенную на маленькие кусочки равной величины. Вследствие случайного распределения изюминок нельзя ожидать, что все кусочки будут содержать их одинаковое число. Когда среднее число изюминок, содержащееся в этих кусочках, известно, тогда распределение Пуассона задает вероятность того, что любой взятый кусочек содержит X =k (k = 0,1,2,...,)число изюминок.

Иначе говоря, распределение Пуассона определяет, какая часть длинной серии кусочков будет содержать равное 0, или 1, или 2, или и т.д. число изюминок.

Сделаем следующие предположения.

1. Вероятность появления некоторого числа событий в данном промежутке времени зависит только от длины этого промежутка, а не от его положения на временной оси. Это свойство стационарности.

2. Появление более одного события в достаточно малом промежутке времени практически невозможно, т.е. условная вероятность появления в этом же интервале другого события стремится к нулю при ® 0. Это свойство ординарности.

3. Вероятность появления данного числа событий на фиксированном промежутке времени не зависит от числа событий, появляющихся в другие промежутки времени. Это свойство отсутствия последействия.

Поток событий, удовлетворяющий перечисленным предложениям, называется простейшим .

Рассмотрим достаточно малый промежуток времени . На основании свойства 2 событие может появиться на этом промежутке один раз или совсем не появиться. Обозначим вероятность появления события через р , а непоявления – через q = 1-p. Вероятность р постоянна (свойство 3) и зависит только от величины (свойство 1). Математическое ожидание числа появлений события в промежутке будет равно 0×q + 1×p = p . Тогда среднее число появления событий в единицу времени называется интенсивностью потока и обозначается через a, т.е. a = .

Рассмотрим конечный отрезок времени t и разделим его на n частей = . Появления событий в каждом из этих промежутков независимы (свойство 2). Определим вероятность того, что в отрезке времени t при постоянной интенсивности потока а событие появится ровно X = k раз и не появится n – k . Так как событие может в каждом из n промежутков появиться не более чем 1 раз, то для появления его k раз на отрезке длительностью t оно должно появиться в любых k промежутках из общего числа n. Всего таких комбинаций , а вероятность каждой равна . Следовательно, по теореме сложения вероятностей получим для искомой вероятности известную формулу Бернулли

Это равенство записано как приближенное, так как исходной посылкой при его выводе послужило свойство 2, выполняемое тем точнее, чем меньше . Для получения точного равенства перейдем к пределу при ® 0 или, что то же, n ® . Получим после замены

P = a = и q = 1 – .

Введем новый параметр = at , означающий среднее число появлений события в отрезке t . После несложных преобразований и переходу к пределу в сомножителях получим.

= 1, = ,

Окончательно получим

, k = 0, 1, 2, ...

е = 2,718... –основание натурального логарифма.

Определение . Случайная величина Х , которая принимает только целые, положительные значения 0, 1, 2, ... имеет закон распределения Пуассона с параметром , если

для k = 0, 1, 2, ...

Распределение Пуассона было предложено французским математиком С.Д. Пуассоном (1781-1840 гг). Оно используется для решения задач исчисления вероятностей относительно редких, случайных взаимно независимых событий в единицу времени, длины, площади и объема.

Для случая, когда а) – велико и б) k = , справедлива формула Стирлинга:

Для расчета последующих значений используется рекуррентная формула

P (k + 1) = P (k ).

Пример 1. Чему равна вероятность того, что из 1000 человек в данный день родились: а) ни одного, б) один, в) два, г) три человека?

Решение. Так как p = 1/365, то q = 1 – 1/365 = 364/365 » 1.

Тогда

а) ,

б) ,

в) ,

г) .

Следовательно, если имеются выборки из 1000 человек, то среднее число человек, которые родились в определенный день, соответственно будут равны 65; 178; 244; 223.

Пример 2. Определить значение , при котором с вероятностью Р событие появилось хотя бы один раз.

Решение. Событие А = {появиться хотя бы один раз} и = {не появиться ни одного раза}. Следовательно .

Отсюда и .

Например, для Р = 0,5 , для Р = 0,95 .

Пример 3. На ткацких станках, обслуживаемых одной ткачихой, в течение часа происходит 90 обрывов нити. Найти вероятность того, что за 4 минуты произойдет хотя бы один обрыв нити.

Решение. По условию t = 4 мин. и среднее число обрывов за одну минуту , откуда . Требуемая вероятность равна .

Свойства . Математическое ожидание и дисперсия случайной величины, имеющей распределение Пуассона с параметром , равны:

M (X ) = D (X ) = .

Эти выражения получаются прямыми вычислениями:

Здесь была осуществлена замена n = k – 1 и использован тот факт, что .

Выполнив преобразования, аналогичные использованным при выводе М (X ), получим

Распределение Пуассона используется для аппроксимации биноминального распределения при больших n

Как сразу стали поступать запросы: «Где Пуассон? Где задачи на формулу Пуассона?» и т.п . И поэтому я начну с частного применения распределения Пуассона – ввиду большой востребованности материала.

Задача до боли эйфории знакома:

И следующие две задачи принципиально отличаются от предыдущих:

Пример 4

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет значение, меньшее, чем ее математическое ожидание.

Отличие состоит в том, что здесь речь идёт ИМЕННО о распределении Пуассона.

Решение : случайная величина принимает значения с вероятностями:

По условию, , и тут всё просто: событие состоит в трёх несовместных исходах :

Вероятность того, что случайная величина примет значение, меньшее, чем ее математическое ожидание.

Ответ :

Аналогичная задача на понимание:

Пример 5

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет положительное значение.

Решение и ответ в конце урока.

Помимо приближения биномиального распределения (Примеры 1-3), распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:

Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим , если он удовлетворяет условиям стационарности , отсутствия последствий и ординарности . Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невозможно появление двух или бОльшего количества заявок. «Две старушки в двери?» – нет уж, увольте.

Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью заявок в минуту (в час, в день или в произвольный промежуток времени). Тогда вероятность того, что за данный промежуток времени , в систему поступит ровно заявок, равна:

Пример 6

Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.

Решение : используем формулу Пуассона:

а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
вызова – в среднем за одну минуту.

По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.

б) Вычислим среднее количество вызов за пять минут: