Уравнение Шредингера для частицы в потенциальной яме. Стационарное уравнение шредингера

Временное и стационарное уравнение Шредингера

Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (x,y,z,t), так как именно она, или точнее, величина 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV, т.е. в области с координатами х и х+dx, y и y+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

Это уравнение постулируется, а его правильность подтверждается согласием с опытом получаемых с его помощью результатов.

Основное уравнение нерелятивистской квантовой механики (1926 г.)

4.1.Временное уравнение Шредингера:

Уравнение справедливо для нерелятивистских частиц << ,

где {\displaystyle \hbar ={h \over 2\pi }} – масса частицы; - мнимая единица; – потенциальная функция частицы в силовом поле, в котором она движется; – искомая волновая функция; ∆ – оператор Лапласа

Условия, накладываемые на волновую функцию:

Волновая функция должна быть конечной, однозначной и непрерывной.

Производные ∂Ψ/∂x, ∂Ψ/∂y, ∂Ψ/∂z , ∂Ψ/∂t должны быть непрерывны.

Функция 2 должна быть интегрируема (это условие сводится к условию нормировки вероятностей).

4.2.Стационарное уравнение Шредингера

В случае стационарного силового поля (функция U=U(x, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем ).

Тогда волновая функция для стационарных состояний (состояний с фиксированными значениями энергии) может быть представлена в виде:

Стационарное уравнение Шредингера:

получилось после подстановки волновой функции во временное уравнение Шредингера и преобразований (∆ - оператор Лапласа, m – масса частицы; - приведенная постоянная Планка ( = h/2π ); E – полная энергия частицы, U – потенциальная энергия частицы. В классической физике величина (E –U )равнялась бы кинетической энергии частицы. В квантовой механике вследствие соотношения неопределенностей понятие кинетической энергии лишено смысла. Здесь потенциальная энергия U – это характеристика внешнего силового поля , в котором движется частица. Это величина вполне определенная. Она также является функцией координат, в данном случае U =U (x,y,z)).

Основная идея Шрёдингера состоит в том, чтобы математическую аналогию между геометрической оптикой и классической механикой перенести на волновые свойства света и частиц.

Получим уравнение Шрёдингера из выражения для волновой функции свободного электрона . Перепишем его в комплексной форме .

Используя связи частоты с энергией, а волнового числа с импульсом, получаем: .

В общем случае – полная энергия частицы, , – кинетическая энергия и –энергия взаимодействия.

Найдем первую производную по и вторую по координате от ф-ции Y: (1), (2).

Домножим уравнение (1) на , а уравнение (2) на (таким образом множители в правых частях будут иметь размерность энергии):

, .

Сложим полученные уравнения:

.

Так как , то последнее равенство перепишется в виде .

Это и есть уравнение Шрёдингера. Оно получено для одной координаты . Если его переписать для 3 координат , то введя оператор Лапласа, окончательно будем иметь

.

Уравнение Шрёдингера нельзя непосредственно вывести из фундаментальных законов классической физики. Уравнение Шрёдингера позволяет находить волновую функцию в произвольный момент времени. Для этого надо знать волновую ф-цию в фиксированный момент времени, массу частицы и энергию взаимодействия частицы с силовым полем. Найденная волновая ф-ция дает возможность рассчитать вероятность нахождения частицы в произвольной точке пространства для любого момента времени.

Основные свойства, которым должны удовлетворять волновые функции – решения уравнения Шрёдингера:

1. Волновая функция линейна, т.е. если …- решения уравнения, то их линейная комбинация – решение.

2. Первые частные производные по координатам являются линейными

3. Волновая функция и её пространственные производные должны быть однозначными, конечными и непрерывными.

4. При стремлении к ∞ значение волновой функции должно стремиться к нулю.

Уравнение Шрёдингера для стационарных состояний.

Если силовое поле, в котором движется описываемая частица, стационарно, то потенциал его не зависит явно от времени, а функция имеет смысл потенциальной энергии и зависит только от координат . В этом случае волновую функцию можно представить как произведение двух. Одна функция зависит только от , другая – только от времени :

Подставим последнее выражение в уравнение Шрёдингера

После сокращения на временной множитель и некоторых элементарных преобразований получим: (*).

Это уравнение Шрёдингера для стационарных состояний. В него входит только координатная часть волновой ф-ции – . Если последняя будет найдена, то полная волновая ф-ция находится домножением координатной части на временной множитель .

Поскольку вероятность определяется квадратом волновой ф-ции, а квадрат комплексной величины находится умножением на комплексно сопряженную, то имеет место следующее соотношение для стационарных волновых функций:

Таким образом, чтобы найти волновую ф-цию для стационарных состояний, необходимо решить уравнение (*) и знать полную энергию .

Свободное движение частиц.

Во время свободного движения квантовой частицы никакие силы на нее не действуют и можно ее потенциальную энергию равной нулю. Пусть движение частицы происходит в направлении , тогда (*) принимает вид: .

Частным решением этого уравнения является ф-ции вида , где и – константы. Если подставить искомое решение в само уравнение, то мы получим связь энергии частицы и величины :

Полная волновая функция с учетом зависимости от времени для свободной частицы имеет вид . Это плоская монохроматическая волна с частотой и волновым числом . Так как , а , то .

УРАВНЕНИЕ ШРЕДИНГЕРА
И ЕГО ЧАСТНЫЕ СЛУЧАИ (продолжение): прохождение частицы через ПОТЕНЦИАЛЬНЫЙ БАРЬЕР, Гармонический осциллятор

Прохождение частицы через потенциальный барьер для классического случая нами уже рассматривался в ЛЕКЦИИ 7 ЧАСТИ 1 (см. рис. 7.2). Рассмотрим теперь микрочастицу, полная энергия которой меньше уровня U потенциального барьера (рис. 19.1). В классическом варианте в этом случае прохождение частицы через барьер невозможно. Однако в квантовой физике существует вероятность, что частица пройдет. Причем она не "перепрыгнет" через него, а как бы "просочится", употребив свои волновые качества. Поэтому эффект еще называется "туннельным". Для каждой из областей I, II, III запишем стационарное уравнение Шредингера (18.3).

Для I и III : , (19.1, а)

для II: https://pandia.ru/text/78/010/images/image005_107.gif" width="71" height="32">, где a = const. Тогда и y" = . Подстановка y" в (19.1a) дает: Искомое общее решение для области I запишется в виде суперпозиции

https://pandia.ru/text/78/010/images/image010_62.gif" width="132" height="32 src="> . (19.3)

В этом случае начальная точка распространения волны сдвинута на L , a В 3 = 0 , поскольку в области III имеется только проходящая волна.

В области II (барьер) подстановка y" в (19.1б) дает

https://pandia.ru/text/78/010/images/image012_51.gif" width="177" height="32">.

Вероятность прохождения характеризуется коэффициентом прохождения - отношением интенсивности прошедшей волны к интенсивности падающей:

(0) = y2"(0) , y2"(L ) = y3"(L ); (19.5)

из которых первые два означают "сшивание" функций на левой и на правой границах барьера, а третье и четвертое - гладкость такого перехода. Подставляя в (19.5) функции y1, y2 и y3, получим уравнения

Поделим их на А 1 и обозначим a 2=A 2/A 1; b 1=B 1/A 1; a 3=A 3/A 1; b 2=B 2/A 1.

. (19.6)

Умножим первое уравнение (19.6) на i k и сложим со вторым. Получим 2 i k = a 2(q + i k ) - b 2(q - i k ) . (19.7)

Вторую пару уравнений (19.6) будем рассматривать как систему двух уравнений с неизвестными a 2 и b 2.

Детерминанты этой системы:

https://pandia.ru/text/78/010/images/image017_33.gif" width="319" height="32">,

где e-qL (q+ i k) 2 » 0, т. к. qL >> 1.

Поэтому https://pandia.ru/text/78/010/images/image019_32.gif" width="189" height="63">, и, чтобы найти модуль комплексной величины а 3, умножим числитель и знаменатель полученной дроби на (q + i k )2. После простых преобразований получим

https://pandia.ru/text/78/010/images/image021_30.gif" width="627" height="135 src=">Обычно E/U ~ 90% и весь коэффициент перед "е" имеет порядок единицы. Поэтому вероятность прохождения частицы через барьер определяется следуюшим соотношением:

https://pandia.ru/text/78/010/images/image023_24.gif" width="91" height="44">.

Это означает, что при E < U частица барьера не преодолеет, т. е. туннельный эффект в классической физике отсутствует.

Этот эффект используется в инженерной практике для создания туннельных диодов, широко применяемых в радиотехнических устройствах (см. ЧАСТЬ 3, ЛЕКЦИЯ 3).

Кроме того, оказалось возможным инициировать в земных условиях термоядерную реакцию синтеза, которая на Солнце идет в обычных для Солнца условиях - при температуре T ~ 109 K . На Земле такой температуры нет, однако, благодаря туннельному эффекту, есть вероятность запуска реакции при температуре T ~ 107 K , имеющей место при взрыве атомной бомбы, которая и явилась запальным устройством для водородной . Более подробно об этом в следующей части курса.

Гармонический осциллятор. Классический гармонический осциллятор нами также уже рассматривался (ЛЕКЦИИ 1,2 ЧАСТИ 3). Им, например, является пружинный маятник, полная энергия которого E = mV 2/2 + kx 2/2. Теоретически эта энергия может принимать непрерывный ряд значений, начиная от нуля.

Квантовый гармонический осциллятор - это колеблющаяся по гармоническому закону микрочастица, находящаяся в связанном состоянии внутри атома или ядра. При этом потенциальная энергия остается классической, характеризуя аналогичную упругую возвращающую силу kx . Учитывая, что циклическая частота получим для потенциальной энергии https://pandia.ru/text/78/010/images/image026_19.gif" width="235" height="59">. (19.9)

В математическом отношении задача эта еще более сложная, чем предыдущие. Поэтому ограничимся констатацией того, что получится в результате. Как и в случае с одномерной ямой, мы получим дискретный спектр собственных функций и собственных энергий, и одному собственному значению энергии будет соответствовать одна волновая функция: En Û yn (нет вырождения состояний, как в случае с трехмерной ямой). Плотность вероятности |yn|2 также представляет собой осциллирующую функцию, однако высота "горбов" различна. Это уже не банальный sin 2 , а более экзотические полиномы Эрмита Hn (x ). Волновая функция имеет вид

, где С n - зависящая от n константа. Спектр собственных значений энергий:

, (19.10)

где квантовое число n = 0, 1, 2, 3 ... . Таким образом, существует и "нулевая энергия" , выше которой спектр энергий образует "этажерку", где полочки расположены на одинаковом расстоянии друг от друга (рис. 19.2). На том же рисунке для каждого уровня энергии показана соответствующая плотность вероятности |yn|2, а также потенциальная энергия внешнего поля (пунктирная парабола).

Существование отличной от нуля минимально возможной энергии осциллятора имеет глубокий смысл. Это означает, что колебания микрочастиц не прекращаются никогда , что в свою очередь означает недостижимость абсолютного нуля температуры.

1. , Бурсиан физика: Курс лекций с компьютерной поддержкой: Учеб. пособие для студ. высш. учеб. заведений: В 2 т. – М.: Изд-во ВЛАДОС-ПРЕСС, 2001.

В принципе ничего особенного, их можно найти в таблицах и даже построить графики.

Для частиц квантового мира действуют другие законы, чем для объектов классической механики. Согласно предположению де Бройля, микрообъекты обладают свойствами и частицы, и волны – и, действительно, при рассеивании пучка электронов на отверстии наблюдается дифракция, характерная для волн.

Поэтому можно говорить не о движения квантовых частиц, а о вероятности того, что частица будет находиться в конкретной точке в некий момент времени.

Что описывает уравнение Шредингера

Уравнение Шрёдингера предназначено для описания особенностей движения квантовых объектов в полях внешних сил. Зачастую частица передвигается сквозь силовое поле, не зависящее от времени. Для этого случая записывается стационарное уравнение Шрёдингера:

В представленном уравнении m и Е – и соответственно энергия частицы, пребывающей в силовом поле, а U – этого поля. — оператор Лапласа. — постоянная Планка, равная 6,626 10 -34 Дж с.

(её также называют амплитудой вероятности, или пси-функцией) – это и есть функция, позволяющая узнать, в каком месте пространства, скорее всего, будет находиться наш микрообъект. Физический смысл имеет не сама функция, а её квадрат. Вероятность того, что частица находится в элементарном объеме :

Следовательно, найти функцию в конечном объеме можно с вероятностью:

Так как пси-функция – вероятность, то она не может быть ни меньше нуля, ни превышать единицу. Полная вероятность найти частицу в бесконечном объеме – это условие нормировки:

Для пси-функции работает принцип суперпозиции: если частица или система может находиться в ряде квантовых состояний , то для нее возможно и состояние, определяемое их суммой:

Стационарное уравнение Шрёдингера имеет множество решений, однако при решении следует учесть граничные условия и отобрать только собственные решения – те, которые обладают физическим смыслом. Такие решения существуют только для отдельных значений энергии частицы Е, которые и образуют дискретный энергетический спектр частицы.

Примеры решения задач

ПРИМЕР 1

Задание Волновая функция описывает расстояние электрона до ядра водорода: r – расстояние между электроном и ядром, a – первый Боровский радиус. На каком расстоянии от ядра электрон, скорее всего, находится?
Решение 1) Выразив объем через радиус ядра, найдем вероятность того, что электрон находится в пределах некоторого расстояния от ядра:

2) Вероятность того, что электрон находится в пределах элементарного «кольца» dr:

3) Чтобы найти наиболее вероятное расстояние, найдем из последнего выражения:

Решив это уравнение, получим r = a – самое вероятное расстояние между электроном и ядром.

Ответ r = a – с наибольшей вероятностью ядро находится на расстоянии первого Боровского радиуса от ядра.

ПРИМЕР 2

Задание Найти уровни энергии частицы в бесконечно глубокой потенциальной яме.
Решение Пусть частица движется по оси абсцисс. Ширина ямы – l. Энергию мы отсчитываем от дна ямы и описываем функцией:


Запишем одномерное стационарное уравнение Шрёдингера:

Рассмотрим граничные условия. Так как мы считаем, что частица не может проникнуть за стенки, то за пределами ямы =0. На границе ямы пси-функция также равна нулю: В яме потенциальная энергия U=0.

Тогда уравнение Шрёдингера, записанное для ямы, упростится:

По форме это – ДУ гармонического осциллятора:

Движение микрочастиц в различных силовых полях описывается в рамках нерелятивистской квантовой механики с помощью уравнения Шредингера, из которого вытекают наблюдаемые на опыте волновые свойства частиц. Это уравнение, как и все основные уравнения физики, не выводятся, а постулируется. Его правильность подтверждается согласием результатов расчета с опытом. Волновое уравнение Шредингера имеет следующий общий вид :

- (ħ 2 / 2m) ∙ ∆ψ + U (x, y, z, t) ∙ ψ = i ∙ ħ ∙ (∂ψ / ∂t)

где ħ = h / 2π, h = 6,623∙10 -34 Дж ∙ с - постоянная Планка;
m - масса частицы;
∆ - оператор Лапласа (∆ = ∂ 2 / ∂x 2 + ∂ 2 / ∂y 2 + ∂ 2 / ∂z 2);
ψ = ψ (x, y, z, t) - искомая волновая функция;
U (x, y, z, t) - потенциальная функция частицы в силовом поле, где она движется;
i - мнимая единица.

Это уравнение имеет решение лишь при условиях, накладываемых на волновую функцию:

  1. ψ (x, y, z, t) должна быть конечной, однозначной и непрерывной;
  2. первые производные от нее должны быть непрерывны;
  3. функция | ψ | 2 должна быть интегрируема, что в простейших случаях сводится к условию нормировки вероятностей.
Для многих физических явлений, происходящих в микромире, уравнение (8.1) можно упростить, исключив зависимость ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т.е. U = U (x, y, z) не зависит явно от времени и имеет смысл потенциальной энергии. Тогда после преобразований можно прийти к уравнению Шредингера для стационарных состояний:

∆ψ + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

где ψ = ψ (x, y, z) - волновая функция только координат;
E - параметр уравнения - полная энергия частицы.

Для этого уравнения реальный физический смысл имеют лишь такие решения, которые выражаются регулярными функциями ψ (называемыми собственными функциями), имеющими место только при определенных значениях параметра E, называемого собственным значением энергии. Эти значения E могут образовывать как непрерывный, так и дискретный ряд, т.е. как сплошной, так и дискретный спектр энергий.

Для какой-либо микрочастицы при наличии уравнения Шредингера типа (8.2) задача квантовой механики сводится к решению этого уравнения, т.е. нахождению значений волновых функций ψ = ψ (x, y, z), соответствующих спектру собственных энергией E. Далее находится плотность вероятности | ψ | 2 , определяющая в квантовой механике вероятность нахождения частицы в единичном объеме в окрестности точки с координатами (x, y, z).

Одним из простейших случаев решения уравнения Шредингера является задача о поведении частицы в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками". Такая "яма" для частицы, движущейся только вдоль оси Х, описывается потенциальной энергией вида

где l - ширина "ямы", а энергия отсчитывается от ее дна (рис. 8.1).

Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

В силу того, что "стенки ямы" бесконечно высокие, частица не проникает за пределы "ямы". Это приводит к граничным условиям:

ψ (0) = ψ (l) = 0

В пределах "ямы" (0 ≤ x ≤ l) уравнение (8.4) сводится к виду:

∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ E ∙ ψ = 0

∂ 2 ψ / ∂x 2 + (k 2 ∙ ψ) = 0

где k 2 = (2m ∙ E) / ħ 2


Решение уравнения (8.7) с учетом граничных условий (8.5) имеет в простейшем случае вид:

ψ (x) = A ∙ sin (kx)


где k = (n ∙ π)/ l

при целочисленных значениях n.

Из выражений (8.8) и (8.10) следует, что

E n = (n 2 ∙ π 2 ∙ ħ 2) / (2m ∙ l 2) (n = 1, 2, 3 ...)


т.е. энергия стационарных состояний зависит от целого числа n (называемого квантовым числом) и имеет определенные дискретные значения, называемые уровнями энергии.

Следовательно, микрочастица в "потенциальной яме" с бесконечно высокими "стенками" может находится только на определенном энергетическом уровне E n , т.е. в дискретных квантовых состояниях n.

Подставив выражение (8.10) в (8.9) найдем собственные функции

ψ n (x) = A ∙ sin (nπ / l) ∙ x


Постоянная интегрирования А найдется из квантовомеханического (вероятностного) условия нормировки

которое для данного случая запишется в виде:

Откуда в результате интегрирования получим А = √ (2 / l) и тогда имеем

ψ n (x) = (√ (2 / l)) ∙ sin (nπ / l) ∙ x (n = 1, 2, 3 ...)

Графики функции ψ n (х) не имеют физического смысла, тогда как графики функции | ψ n | 2 показывают распределение плотности вероятности обнаружения частицы на различных расстояниях от "стенок ямы"(рис. 8.1). Как раз эти графики (как и ψ n (х) - для сравнения) изучаются в данной работе и наглядно показывают, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (8.11) вытекает, что энергетический интервал между двумя соседними уровнями равен

∆E n = E n-1 - E n = (π 2 ∙ ħ 2) / (2m ∙ l 2) ∙ (2n + 1)

Отсюда видно, что для микрочастиц (типа электрона) при больших размерах "ямы" (l≈ 10 -1 м), энергетические уровни располагаются настолько тесно, что образуют практически непрерывный спектр. Такое состояние имеет место, например, для свободных электронов в металле. Если же размеры "ямы" соизмеримы с атомными (l ≈ 10 -10 м), то получается дискретный спектр энергии (линейчатый спектр). Эти виды спектров также могут быть изучены в данной работе для различных микрочастиц.

Другим случаем поведения микрочастиц (как, впрочем, и микросистем - маятников), часто встречаемым на практике (и рассматриваемым в этой работе), является задача о линейном гармоническом осцилляторе в квантовой механике.

Как известно, потенциальная энергия одномерного гармонического осциллятора массой m равна

U (x) = (m ∙ ω 0 2 ∙ x 2)/ 2

где ω 0 - собственная частота колебаний осциллятора ω 0 = √ (k / m);
k - коэффициент упругости осциллятора.

Зависимость (8.17) имеет вид параболы, т.е. "потенциальная яма" в данном случае является параболической (рис. 8.2).



Квантовый гармонический осциллятор описывается уравнением Шредингера (8.2), учитывающим выражение (8.17) для потенциальной энергии. Решение этого уравнения записывается в виде :

ψ n (x) = (N n ∙ e -αx2 / 2) ∙ H n (x)

где N n - постоянный нормирующий множитель, зависящий от целого числа n;
α = (m ∙ ω 0) / ħ;
H n (x) - полином степени n, коэффициенты которого вычисляются при помощи рекуррентной формулы при различных целочисленных n.
В теории дифференциальных уравнений можно доказать, что уравнение Шредингера имеет решение (8.18) лишь для собственных значений энергии:

E n = (n + (1 / 2)) ∙ ħ ∙ ω 0


где n = 0, 1, 2, 3... - квантовое число.

Это значит, что энергия квантового осциллятора может принимать лишь дискретные значения, т.е. квантуется. При n = 0 имеет место E 0 = (ħ ∙ ω 0) / 2, т.е. энергия нулевых колебаний, что является типичным для квантовых систем и представляет собой прямое следствие соотношения неопределенности.

Как показывает детальное решение уравнения Шредингера для квантового осциллятора , каждому собственному значению энергии при разных n соответствует своя волновая функция, т.к. от n зависит постоянный нормирующий множитель

а также H n (x) - полином Чебышева-Эрмита степени n.
При том первые два полинома равны:

H 0 (x) = 1;
H 1 (x) = 2x ∙ √ α

Любой последующий полином связан с нми по следующей рекуррентной формуле:

H n+1 (x) = 2x ∙ √ α ∙ H n (x) - 2n ∙ H n-1 (x)

Собственные функции типа (8.18) позволяют найти для квантового осциллятора плотность вероятности нахождения микрочастицы как | ψ n (х) | 2 и исследовать ее поведение на различных уровнях энергии. Решение этой задачи затруднительно ввиду необходимости использования рекуррентной формулы. Эта задача успешно может решаться лишь с использованием ЭВМ, что и делается в настоящей работе.