Боковая поверхность конуса и цилиндра. Тела и поверхности вращения

Цилиндр представляет собой геометрическое тело, ограниченное двумя параллельными плоскостями и цилиндрической поверхностью. В статье поговорим о том, как найти площадь цилиндра и, применив формулу, решим для примера несколько задач.

У цилиндра есть три поверхности: вершина, основание, и боковая поверхность.

Вершина и основание цилиндра являются окружностями, их легко определить.

Известно, что площадь окружности равна πr 2 . Поэтому, формула площади двух окружностей (вершины и основания цилиндра) будет иметь вид πr 2 + πr 2 = 2πr 2 .

Третья, боковая поверхность цилиндра, является изогнутой стенкой цилиндра. Для того чтобы лучше представить эту поверхность попробуем преобразовать её, чтобы получить узнаваемую форму. Представьте себе, что цилиндр, это обычная консервная банка, у которой нет верхней крышки и дна. Сделаем вертикальный надрез на боковой стенке от вершины до основания банки (Шаг 1 на рисунке) и попробуем максимально раскрыть (выпрямить) полученную фигуру (Шаг 2).

После полного раскрытия полученной банки мы увидим уже знакомую фигуру (Шаг 3), это прямоугольник. Площадь прямоугольника вычислить легко. Но перед этим вернемся на мгновение к первоначальному цилиндру. Вершина исходного цилиндра является окружностью, а мы знаем, что длина окружности вычисляется по формуле: L = 2πr. На рисунке она отмечена красным цветом.

Когда боковая стенка цилиндра полностью раскрыта, мы видим, что длина окружности становится длиной полученного прямоугольника. Сторонами этого прямоугольника будут длина окружности(L = 2πr) и высота цилиндра(h). Площадь прямоугольника равна произведению его сторон – S = длина х ширина = L x h = 2πr x h = 2πrh. В результате мы получили формулу для расчета площади боковой поверхности цилиндра.

Формула площади боковой поверхности цилиндра
S бок. = 2πrh

Площадь полной поверхности цилиндра

Наконец, если мы сложим площадь всех трёх поверхностей, мы получим формулу площади полной поверхности цилиндра. Площади поверхности цилиндра равна площадь вершины цилиндра + площадь основания цилиндра + площадь боковой поверхности цилиндра или S = πr 2 + πr 2 + 2πrh = 2πr 2 + 2πrh. Иногда это выражение записывается идентичной формулой 2πr (r + h).

Формула площади полной поверхности цилиндра
S = 2πr 2 + 2πrh = 2πr(r + h)
r – радиус цилиндра, h – высота цилиндра

Примеры расчета площади поверхности цилиндра

Для понимания приведенных формул попробуем посчитать площадь поверхности цилиндра на примерах.

1. Радиус ос­но­ва­ния цилиндра равен 2, высота равна 3. Определите площадь боковой поверхности цилиндра.

Площадь полной поверхности рассчитывается по формуле: S бок. = 2πrh

S бок. = 2 * 3,14 * 2 * 3

S бок. = 6,28 * 6

S бок. = 37,68

Площадь боковой поверхности цилиндра равна 37,68.

2. Как найти площадь поверхности цилиндра, если высота равна 4, а радиус 6?

Площадь полной поверхности рассчитывается по формуле: S = 2πr 2 + 2πrh

S = 2 * 3,14 * 6 2 + 2 * 3,14 * 6 * 4

S = 2 * 3,14 * 36 + 2 * 3,14 * 24

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

1. Объем конуса равен 16.Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.

Очевидно, что объем меньшего конуса в 8 раз меньше объема большого и равен двум.

Для решения некоторых задач полезны начальные знания стереометрии. Например - что такое правильная пирамида или прямая призма. Полезно помнить, что у цилиндра, конуса и шара есть еще общее название - тела вращения. Что сферой называется поверхность шара. А, например, фраза «образующая конуса наклонена к плоскости основания под углом 30 градусов предполагает, что вы знаете, что такое угол между прямой и плоскостью. Вам также может пригодиться теорема Пифагора и простые формулы площадей фигур.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, - снизу.

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Всё просто - рисуем вид снизу. Видим, что радиус большего круга в раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в 2 раза больше.

Упражнения для самостоятельной работы.

1.Измерение прямоугольного параллелепипеда 15, 50 и 36 м. Найти ребро равновеликого ему куба.

2.В правильной 4-угольной пирамиде высота 3 см, боковое ребро 5 см. Найти объем пирамиды.

3.Осевое сечение цилиндра – прямоугольник со сторонами 8 дм и 12 дм. Найти объем цилиндра.

4.Образующая конуса наклонена к плоскости основания под углом 30°, радиус основания равен 3 дм. Найти объем конуса.

5.Радиус шара равен 4 м. Найти объем шарового сегмента высотой, равной 3 м.

Список литературы

Геометрия, 10-11: Учеб. для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С. Б. Кадомцев и др.-Москва: Просвещение, 2009 год

2. Ершова А.П., Голобородько В.В., Ершова А.С. Самостоятельные и контрольные работы по геометрии для 10 класса.- 4-е издание, испр. и доп.- М.:Илекса, 2007,- 175 с.

3. Геометрия. 10-11 классы: тесты для текущего и обобщающего контроля/авт.сост.Г.И.Ковалёва, Н.И.Мазурова.- Волгоград: Учитель, 2009, 187 стр.

4. Виртуальная школа Кирилла и Мефодия. Репетитор по математике. Москва. 2007 год

5. Учебное электронное издание. Математика 5- 11 класссы. Практикум. Под редакцией Дубровского В.Н., 2004.

ПРАКТИЧЕСКАЯ РАБОТА № 16

«Использование координат и векторов при решении математических задач»

Цель урока:

1) Обобщить теоретические знания по теме: «Использование координат и векторов при решении математических задач».

2) Рассмотреть алгоритмы решений заданий теме «Использование координат и векторов при решении математических задач», решить задачи.

3) Формировать потребность к самопознанию, самоконтролю, достижению поставленных целей.

Теоретический материал


Похожая информация:

  1. F. Новый максимум цен сопровождается увеличением объема, аналогично точке А. Продолжайте удерживать позицию на повышение

Название науки «геометрия» переводится как "измерение земли". Зародилась стараниями самых первых древних землеустроителей. А было так: во время разливов священного Нила потоки воды иногда смывали границы участков земледельцев, а новые границы могли не совпасть со старыми. Налоги же крестьянами уплачивались в казну фараона пропорционально величине земельного надела. Измерением площадей пашни в новых границах после разлива занимались специальные люди. Именно в результате их деятельности и возникла новая наука, получившая развитие в Древней Греции. Там она и название получила, и приобрела практически современный вид. В дальнейшем термин стал интернациональным названием науки о плоских и объёмных фигурах.

Планиметрия - раздел геометрии, занимающийся изучением плоских фигур. Другим разделом науки является стереометрия, которая рассматривает свойства пространственных (объёмных) фигур. К таким фигурам относится и описываемая в этой статье - цилиндр.

Примеров присутствия предметов цилиндрической формы в повседневной жизни предостаточно. Цилиндрическую (гораздо реже - коническую) форму имеют почти все детали вращения - валы, втулки, шейки, оси и т.д. Цилиндр широко используется и в строительстве: башни, опорные, декоративные колонны. А кроме того посуда, некоторые виды упаковки, трубы всевозможных диаметров. И наконец - знаменитые шляпы, ставшие надолго символом мужской элегантности. Список можно продолжать бесконечно.

Определение цилиндра как геометрической фигуры

Цилиндром (круговым цилиндром) принято называть фигуру, состоящую из двух кругов, которые при желании совмещаются с помощью параллельного переноса. Именно эти круги и являются основаниями цилиндра. А вот линии (прямые отрезки), связывающие соответствующие точки, получили название «образующие».

Важно, что основания цилиндра всегда равны (если это условие не выполняется, то перед нами - усечённый конус, что-либо другое, но только не цилиндр) и находятся в параллельных плоскостях. Отрезки же, соединяющие соответствующие точки на кругах, параллельны и равны.

Совокупность бесконечного множества образующих - не что иное, как боковая поверхность цилиндра - один из элементов данной геометрической фигуры. Другая её важная составляющая - рассмотренные выше круги. Называются они основаниями.

Виды цилиндров

Самый простой и распространённый вид цилиндра - круговой. Его образуют два правильных круга, выступающих в роли оснований. Но вместо них могут быть и другие фигуры.

Основания цилиндров могут образовывать (кроме кругов) эллипсы, другие замкнутые фигуры. Но цилиндр может иметь не обязательно замкнутую форму. Например основанием цилиндра может служить парабола, гипербола, другая открытая функция. Такой цилиндр будет открытым или развернутым.

По углу наклона образующих к основаниям цилиндры могут быть прямыми или наклонными. У прямого цилиндра образующие строго перпендикулярны плоскости основания. Если данный угол отличается от 90°, цилиндр - наклонный.

Что такое поверхность вращения

Прямой круговой цилиндр, без сомнения - самая распространённая поверхность вращения, используемая в технике. Иногда по техническим показаниям применяется коническая, шарообразная, некоторые другие типы поверхностей, но 99% всех вращающихся валов, осей и т.д. выполнены именно в форме цилиндров. Для того чтобы лучше уяснить, что такое поверхность вращения, можно рассмотреть, как же образован сам цилиндр.

Допустим, имеется некая прямая a , расположенная вертикально. ABCD - прямоугольник, одна из сторон которого (отрезок АВ) лежит на прямой a . Если вращать прямоугольник вокруг прямой, как это показано на рисунке, объём, который он займёт, вращаясь, и будет нашим телом вращения - прямым круговым цилиндром с высотой H = AB = DC и радиусом R = AD = BC.

В данном случае, в результате вращения фигуры - прямоугольника - получается цилиндр. Вращая треугольник, можно получить конус, вращая полукруг - шар и т.д.

Площадь поверхности цилиндра

Для того чтобы вычислить площадь поверхности обычного прямого кругового цилиндра, необходимо подсчитать площади оснований и боковой поверхности.

Вначале рассмотрим, как вычисляют площадь боковой поверхности. Это произведение длины окружности на высоту цилиндра. Длина окружности, в свою очередь, равняется удвоенному произведению универсального числа П на радиус окружности.

Площадь круга, как известно, равняется произведению П на квадрат радиуса. Итак, сложив формулы для площади определения боковой поверхности с удвоенным выражением площади основания (их ведь два) и произведя нехитрые алгебраические преобразования, получаем окончательное выражение для определения площади поверхности цилиндра.

Определение объёма фигуры

Объем цилиндра определяется по стандартной схеме: площадь поверхности основания умножается на высоту.

Таким образом, конечная формула выглядит следующим образом: искомое определяется как произведение высоты тела на универсальное число П и на квадрат радиуса основания.

Полученная формула, надо сказать, применима для решения самых неожиданных задач. Точно так же, как объем цилиндра, определяется, например, объём электропроводки. Это бывает необходимо для вычисления массы проводов.

Отличия в формуле только в том, что вместо радиуса одного цилиндра стоит делённый надвое диаметр жилы проводки и в выражении появляется число жил в проводе N . Также вместо высоты используется длина провода. Таким образом рассчитывается объем «цилиндра» не одного, а по числу проводков в оплётке.

Такие расчёты часто требуются на практике. Ведь значительная часть ёмкостей для воды изготовлена в форме трубы. И вычислить объем цилиндра часто бывает нужно даже в домашнем хозяйстве.

Однако, как уже говорилось, форма цилиндра может быть разной. И в некоторых случаях требуется рассчитать, чему равен объем цилиндра наклонного.

Отличие в том, что площадь поверхности основания умножают не на длину образующей, как в случае с прямым цилиндром, а на расстояние между плоскостями - перпендикулярный отрезок, построенный между ними.

Как видно из рисунка, такой отрезок равен произведению длины образующей на синус угла наклона образующей к плоскости.

Как построить развёртку цилиндра

В некоторых случаях требуется выкроить развёртку цилиндра. На приведённом рисунке показаны правила, по которым строится заготовка для изготовления цилиндра с заданными высотой и диаметром.

Следует учитывать, что рисунок приведен без учёта швов.

Отличия скошенного цилиндра

Представим себе некий прямой цилиндр, ограниченный с одной стороны плоскостью, перпендикулярной образующим. А вот плоскость, ограничивающая цилиндр с другой стороны, не перпендикулярна образующим и не параллельна первой плоскости.

На рисунке представлен скошенный цилиндр. Плоскость а под неким углом, отличным от 90° к образующим, пересекает фигуру.

Такая геометрическая форма чаще встречается на практике в виде соединений трубопроводов (колена). Но бывают даже здания, построенные в виде скошенного цилиндра.

Геометрические характеристики скошенного цилиндра

Наклон одной из плоскостей скошенного цилиндра слегка изменяет порядок расчёта как площади поверхности такой фигуры, так и ее объёма.

Цели урока:

Образовательные: ввести понятия цилиндра, конуса и шара, познакомить учащихся с формулами нахождения площадей тел вращения, сформировать умения применять формулы (полученные знания) при решении задач на цилиндр, конус и шар;

Воспитательные: воспитание внимательности у учащихся.

Развивающие: развитие пространственного воображения, логического мышления, культуры устной математической речи.

План урока:

  1. Организационный момент;
  2. Объяснение нового материала;
  3. Закрепление нового материала;
  4. Постановка домашнего задания и подведение итогов урока.

Оборудование: Компьютер, проектор, экран.

Ход урока

I. Организационный момент.

II. Объяснение нового материала.

Сегодня на уроке мы познакомимся с новыми для вас понятиями: понятием цилиндра, конуса и сферы, площадями боковых поверхностей данных тел и рассмотрим сечения цилиндра и конуса различными плоскостями, а также взаимное расположение сферы и плоскости.

1. Начнем мы с понятия цилиндра .

Рассмотрим две параллельные плоскости и и окружность L с центром в точке O радиуса r, расположенную в плоскости (слайд 2). Через каждую точку окружности L проведем прямую, перпендикулярную к плоскости .

Отрезки этих прямых, заключенные между плоскостям и , образуют цилиндрическую поверхность . Сами отрезки называются образующими цилиндрической поверхности.

Тело, ограниченное цилиндрической поверхностью и двумя кругами с границами L и L 1 , называется цилиндром (слайд 2).

Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра .

Образующие цилиндрической поверхности называются образующими цилиндра , прямая OO 1 – осью цилиндра .

Все образующие цилиндра параллельны и равны друг другу. Почему? (как отрезки параллельных прямых, заключенные между параллельными плоскостями).

Длина образующей называется высотой цилиндра, а радиус основания – радиусом цилиндра.

Ребята, давайте изобразим в своих тетрадях цилиндр и запишем его определение.

Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон (слайд 2).

Теперь давайте найдем площадь полной поверхности конуса. Какие будут предложения? (площадь полной поверхности конуса равна сумме площадей боковой поверхности и основания) Чему равна площадь основания конуса? () А площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую, т.е. (пояснить). Тогда получаем, что .

Об усеченном конусе вы прочтете дома (стр.125) и сделаете конспект данного пункта.

3. Понятие сфера и шар .

- Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки (слайд 6).

Данная точка называется центром сферы, а данное расстояние – радиусом сферы. Отрезок, соединяющий две точки сферы и проходящей через ее центр, называется диаметром сферы.

Сфера может быть получена вращением полуокружности вокруг ее диаметра (слайд 6).

Тело, ограниченное сферой, называется шаром . Центр, радиус и диаметр сферы называются также центром, радиусом и сферой шара.

А теперь, ребята, давайте выведем уравнение сферы радиуса R с центром в точке C(x 0 , y 0 , z 0) . Изображаем в тетрадях рисунок такой же как у меня (слайд 7).

Расстояние от произвольной точки M (x, y, z) до точки C вычисляется по формуле . Если точка M лежит на данной сфере, то или , т.е. координаты точки M удовлетворяют уравнению .

Если же точка M (x, y, z) не лежит на данной сфере, то , т.е. координаты точки M не удовлетворяют уравнению. Следовательно, в прямоугольной системе координат уравнение сферы радиуса R с центром в точке C(x 0 , y 0 , z 0) имеет вид . Запишем это себе в тетрадь. У кого есть вопросы?

Рассмотрим сечения цилиндра различными плоскостями . Если секущая плоскость проходит через ось цилиндра, то сечение представляет собой прямоугольник, две стороны которого – образующие, а две другие – диаметры оснований цилиндра (слайд 8). Такое сечение называется осевым .

Если секущая плоскость перпендикулярна к оси цилиндра, то сечение является кругом (слайд 8). Изображаем у себя в тетрадях.

Рассмотрим сечения конуса различными плоскостями . Если секущая плоскость проходит через ось конуса, то сечение представляет собой равнобедренный треугольник (почему?) , основание которого – диаметр основания конуса, а боковые стороны – образующие конуса. Такое сечение называется осевым .

Если секущая плоскость перпендикулярна к оси конуса, то сечение представляет собой круг, расположенным на оси конуса. Изображаем у себя в тетрадях сечения конуса. Давайте сверим рисунки, посмотрите на экран (слайд 8).

О взаимном расположении сферы и плоскости вы узнаете самостоятельно, сейчас поговорим о касательной плоскости к сфере.

Записываем определение: плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере , а их общая точка называется точкой касания плоскости и сферы (слайд 10).

Касательная плоскость к сфере обладает следующим свойством:

Теорема. Радиус сферы, проведенный в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.

Доказательство.

Вернемся к нашему рисунку. Докажем, что радиус перпендикулярен к плоскости .

Предположим, что это не так. Тогда радиус является наклонной к плоскости , и, следовательно, расстояние от центра сферы до плоскости меньше радиуса сферы. Поэтому сфера и плоскость пересекаются по окружности. Но это противоречит тому, что плоскость – касательная, т.е. сфера и плоскость имеют только одну общую точку. Полученное противоречие доказывает, что радиус перпендикулярен к плоскости . Теорема доказана.

Верна и обратная теорема . Давайте сформулируем ее вместе (если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательной к сфере)

Формула для вычисления площади сферы: .

III. Закрепление нового материала.

Задача 539. Сколько понадобится краски, чтобы покрасить бак цилиндрической формы с диаметром основания 1,5 м и высотой 3 м, если на один квадратный метр расходуется 200 г краски?

Вопросы учителя Ответы учащихся
Что нужно найти? Сколько понадобится краски, чтобы покрасить бак цилиндрической формы с диаметром основания 1,5 м и высотой 3 м, если на один квадратный метр расходуется 200 г краски?
Как будем находить? Давайте сначала найдем площадь поверхности цилиндра.
Сразу условимся, что бак будет с крышкой. Тогда будем находить площадь полной поверхности цилиндра или боковой поверхности цилиндра? Площадь полной поверхности цилиндра.
А что потом? Полученную площадь умножим на 200 г.
Запишем ответ

Сейчас проверим, как вы усвоили материал. (В зависимости от условий проведения урока тест может быть представлен учащимся в электронном варианте или в печатном.)

Решите тест (печатный вариант) . Я вам сейчас выдам таблицу, в первой строке таблицы записаны номера заданий, во второй строке вы пишете номера правильных ответов.

1 2 3 4 5

IV. Постановка домашнего задания и подведение итогов урока.

Домашнее задание: учебник глава VI (выучить основные определения, теоремы) , задача 541

Итоги: на данном занятии мы познакомились с такими понятиями как цилиндр, конус, шар и сферы (показать

\[{\Large{\text{Цилиндр}}}\]

Рассмотрим окружность \(C\) с центром \(O\) радиуса \(R\) на плоскости \(\alpha\) . Через каждую точку окружности \(C\) проведем прямую перпендикулярно плоскости \(\alpha\) . Поверхность, образованная этими прямыми, называется цилиндрической поверхностью .
Сами прямые называются образующими данной поверхности.

Проведем теперь через некоторую точку некоторой образующей плоскость \(\beta\parallel \alpha\) . Множество точек, по которым образующие пересекут плоскость \(\beta\) , образует окружность \(C"\) , равную окружности \(C\) .
Часть пространства, ограниченная двумя кругами \(K\) и \(K"\) с границами \(C\) и \(C"\) соответственно, а также частью цилиндрической поверхности, заключенной между плоскостями \(\alpha\) и \(\beta\) , называется цилиндром .

Круги \(K\) и \(K"\) называются основаниями цилиндра; отрезки образующих, заключенных между плоскостями, – образующими цилиндра; часть цилиндрической поверхности, образованная ими, - боковой поверхностью цилиндра. Отрезок, соединяющий центры оснований цилиндра равен образующей цилиндра и равен высоте цилиндра (\(l=h\) ).

Теорема

Площадь боковой поверхности цилиндра равна \

где \(R\) – радиус основания цилиндра, \(h\) – высота (образующая).

Теорема

Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей обоих оснований \

Теорема

Объем цилиндра вычисляется по формуле \

\[{\Large{\text{Конус}}}\]

Рассмотрим плоскость \(\alpha\) и на ней окружность \(C\) с центром \(O\) и радиусом \(R\) . Через точку \(O\) проведем прямую, перпендикулярную плоскости \(\alpha\) . Отметим на этой прямой некоторую точку \(P\) . Поверхность, образованная всеми прямыми, проходящими через точку \(P\) и каждую точку окружности \(C\) , называется конической поверхностью , а эти прямые – образующими конической поверхности. Часть пространства, ограниченная кругом с границей \(C\) и отрезками образующих, заключенными между точкой \(P\) и точкой на окружности, называется конусом . Отрезки \(PA\) , где \(A\in \text{окр. } C\) , называются образующими конуса ; точка \(P\) – вершина конуса; круг с границей \(C\) – основание конуса; отрезок \(PO\) – высота конуса.


Замечание

Заметим, что у конуса высота и образующая не равны друг другу, как было в случае с цилиндром.

Теорема

Площадь боковой поверхности конуса равна \

где \(R\) – радиус основания конуса, \(l\) – образующая.

Теорема

Площадь полной поверхности конуса равна сумме площади боковой поверхности и площадей основания \

Теорема

Объем конуса вычисляется по формуле \

Замечание

Заметим, что цилиндр в каком-то смысле является призмой, только в основании находится не многоугольник (как у призмы), а круг.
Формула объема цилиндра такая же, как и формула объема призмы: произведение площади основания на высоту.

Аналогично конус в каком-то смысле является пирамидой. Поэтому формула объема конуса такая же, как и у пирамиды: треть площади основания на высоту.

\[{\Large{\text{Сфера и шар}}}\]

Рассмотрим множество точек пространства, равноудаленных от некоторой точки \(O\) на расстояние \(R\) . Это множество называется сферой с центром в точке \(O\) радиуса \(R\) .
Отрезок, соединяющий две точки сферы и проходящий через ее центр называется диаметром сферы.

Сфера вместе со своей внутренностью называется шаром .


Теорема

Площадь сферы вычисляется по формуле \

Теорема

Объем шара вычисляется по формуле \

Определение

Шаровой сегмент – это часть шара, отсекаемая от него некоторой плоскостью.
Пусть плоскость пересекла шар по кругу \(K\) с центром в точке \(Q\) . Соединим точки \(O\) (центр шара) и \(Q\) и продлим этот отрезок до пересечения со сферой – получим радиус \(OP\) . Тогда отрезок \(QP\) называется высотой сегмента.


Теорема

Пусть \(R\) – радиус шара, \(h\) – высота сегмента, то объем шарового сегмента равен \

Определение

Шаровой слой – это часть шара, заключенная между двумя параллельными плоскостями, пересекающими этот шар. Круги, по которым плоскости пересекают шар, называются основаниями шарового слоя, отрезок, соединяющий центры оснований – высотой шарового слоя.
Две оставшиеся части шара являются в этом случае шаровыми сегментами.

Объем шарового слоя равен разности объема шара и объемов шаровых сегментов с высотами \(AP\) и \(BT\) .