Фенол, его строение, химические свойства, применение. Фенолы — номенклатура, получение, химические свойства

Одноатомные фенолы - прозрачные жидкости или кристаллические вещества, часто окрашенные в розово-красный цвет благодаря их окислению. Это яды, и в случае попадания на кожу они вызывают ожоги. Они убивают множество микроорганизмов, то есть имеют дезинфицирующие и антисептические свойства. Растворимость фенолов в воде мала, их температуры кипения относительно большие вследствие существования межмолекулярных водородных связей.

Физические свойства

Фенолы - малорастворимы в воде, но хорошо растворяются в спирте, эфире, бензоле, с водой образуют кристаллогидраты, перегоняются с водяным паром. На воздухе сам фенол легко окисляется и темнеет. Введение в пара- положение молекулы фенола таких заместителей, как галоиды, нитрогруппы и др. значительно повышает температуру кипения и температуру плавления соединений:

Рисунок 1.

Фенолы - полярные вещества с дипольным моментом $\mu$ = 1,5-1,6 $D$. Значение $EI$ 8,5-8,6 эВ свидетельствует о больших донорных свойствах фенолов по сравнению с такими аренами, как бензол (9,25 эВ), толуол (8,82 эВ), этилбензол (8,76 эВ). Это связано со взаимодействием гидроксильной группы с $\pi$-связями бензольного ядра благодаря положительному $M$-эффекту $OH$-группы, преобладает ее негативный $I$ -эффект.

Спектральные характеристики фенолов

Максимум поглощения в УФ-части спектра для фенола смещен в сторону более длинных волн примерно на 15 нм по сравнению с бензолом (батохромное смещение) благодаря участию $\pi$-электронов кислорода в сопряжении с бензольным ядром и проявляется при 275 нм с тонкой структурой.

В ИК-спектрах для фенолов, как и для спиртов, характерны интенсивные полосы $v_{OH}$ в области 3200-3600 см$^{-1}$ и 3600-3615 см$^{-1}$ для сильно разведенных растворов, но для $v_{c\_D}$ фенолов прослеживается полоса около 1230 см$^{-1}$ в отличие от 1220-1125 см$^{-1}$ для спиртов.

В ПМР-спектрах сигнал протона $OH$-группы фенолов проявляется в широком диапазоне (4,0-12,0 м.ч.) по сравнению со спиртами в зависимости от природы и концентрации растворителя, температуры, наличия меж- или внутримолекулярных водородных связей. Часто сигнал протона $OH$-группы регистрируют при 8,5-9,5 м.ч. в диметилсульфоксиде или при 4,0-7,5 м.ч, в $CCl_4$.

В масс-спектре фенола основным направлением фрагментации является элиминирования частиц $HCO$ и $CO$:

Рисунок 2.

Если в молекуле фенола присутствуют алкильные радикалы, первичным процессом будет бензильное расщепление.

Химические свойства фенолов

В отличие от спиртов, для которых характерны реакции с расщеплением как $O-H$-связи (кислотно-основные свойства, образование эфиров, окисления и т.д.), так и $C-O$-связи (реакции нуклеофильного замещения, дегидратации, перегруппировки), фенолам более характерны реакции первого типа. Кроме того, им свойственны реакции электрофильного замещения в бензольном ядре, активированном электронодонорной гидроксильной группой.

Химические свойства фенолов обусловлены наличием взаимного влияния гидроксильной группы и бензольного ядра.

Гидроксильная группа имеет $-I-$ и + $M$-эффект. Последний значительно превышает $-I$ эффект, обусловливающий $n-\pi$-сопряжение свободных электронов кислорода с $\pi$-орбиталью бензольного ядра. Вследствие $n-\pi$-сопряжения уменьшается длина связи $C - O$, величина дипольного момента и положения полос поглощения связей в ИК-спектрах по сравнению с этиловым спиртом:

Некоторые характеристики фенола и этанола:

Рисунок 3.

$n-\pi$-Сопряжение приводит к уменьшению электронной плотности на атоме кислорода, поэтому полярность связи $O - H$ у фенолов растет. В связи с этим кислотные свойства фенолов выражены сильнее, чем у спиртов. Большая кислотность фенолов по сравнению со спиртами объясняется также возможностью делокализации заряда в фенолят-анион, что влечет стабилизацию системы:

Рисунок 4.

На различии кислотности фенола и спиртов указывает константа диссоциации. Для сравнения: Кд = $1,3 \cdot 10^{-10}$ для фенола и Кд = $10^{-18}$ для этилового спирта.

Поэтому фенолы, в отличие от спиртов, образуют феноляты не толькос щелочными металлами, но и через взаимодействие со щелочами:

Рисунок 5.

Реакция фенола с щелочными металлами проходит довольно бурно и может сопровождаться взрывом.

Но фенол является слабой кислотой, слабее даже угольной кислоты ($K = 4,7 \cdot 10^{-7}$). Поэтому угольная кислота вытесняет фенол из раствора фенолята. Эти реакции используют для разделения фенолов, спиртов или карбоновых кислот. Электронакцепторные группы в молекуле фенола значительно усиливают, а донорные - ослабляют кислотные свойства фенольного гидроксила.

Кроме того фенолу характерен ряд реакций различной направленности:

  1. образование простых и сложных эфиров;
  2. реакции алкилирования и ацилирования;
  3. реакции окисления
  4. реакции электрофильного замещения в ароматическом кольце, в том числе реакции:

    • галогенирования,
    • сульфирования,
    • нитрозирование,
    • формилирования,
    • конденсации с альдегидами и кетонами,
    • карбоксилирования.

Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле (рис.1)

Рис. 1. ОДНО-, ДВУХ- И ТРЕХАТОМНЫЕ ФЕНОЛЫ

В соответствии с количеством конденсированных ароматических циклов в молекуле различают (рис. 2) сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы (рис. 2).

Рис. 2. МОНО- И ПОЛИЯДЕРНЫЕ ФЕНОЛЫ

Номенклатура спиртов.

Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто- , мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы , входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей (рис. 3).

Рис. 3. НОМЕНКЛАТУРА ФЕНОЛОВ . Замещающие группы и соответствующие цифровые индексы для наглядности выделены различными цветами.

Химические свойства фенолов.

Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе (рис. 4). В результате на атоме Н этой группы увеличивается частичный положительный заряд (обозначен значком d+), полярность связи О–Н возрастает, что проявляется в увеличении кислотных свойств этой группы. Таким образом, в сравнении со спиртами, фенолы представляют собой более сильные кислоты. Частичный отрицательный заряд (обозначен через d–), переходя на фенильную группу, сосредотачивается в положениях орто- и пара- (по отношению к ОН-группе). Эти реакционные точки могут атаковаться реагентами, тяготеющими к электроотрицательным центрам, так называемыми электрофильными («любящими электроны») реагентами.

Рис. 4. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В ФЕНОЛЕ

В итоге для фенолов возможны два типа превращений: замещение атома водорода в ОН-группе и замещение Н-атомобензольном ядре. Пара электронов атома О, оттянутая к бензольному кольцу, увеличивает прочность связи С–О, поэтому реакции, протекающие с разрывом этой связи, характерные для спиртов, для фенолов не типичны.

1. Реакции замещения атома водорода в ОН-группе. При действии на фенолы щелочей образуются феноляты (рис. 5А), каталитическое взаимодействие со спиртами приводит к простым эфирам (рис. 5Б), а в результате реакции с ангидридами или хлорангидридами карбоновых кислот образуются сложные эфиры (рис. 5В). При взаимодействии с аммиаком (повышенная температура и давление) происходит замена ОН-группы на NH 2 , образуется анилин, (рис. 5Г), восстанавливающие реагенты превращают фенол в бензол (рис. 5Д)

2. Реакции замещения атомов водорода в бензольном кольце.

При галогенировании, нитровании, сульфировании и алкилировании фенола атакуются центры с повышенной электронной плотностью (рис.4), т.е. замещение проходят преимущественно в орто- и пара- положениях (рис.6).

При более глубоком протекании реакции происходит замещение двух и трех атомов водорода в бензольном кольце.

Особое значение имеют реакции конденсации фенолов с альдегидами и кетонами, по существу, это алкилирование, проходящее легко и в мягких условиях (при 40–50° С, водная среда в присутствии катализаторов), при этом атом углерода в виде метиленовой группы СН 2 или замещенной метиленовой группы (CНR либо CR 2) встраивается между двумя молекулами фенола. Часто такая конденсация приводит к образованию полимерных продуктов (рис. 7).

Двухатомный фенол (торговое название бисфенол А, рис.7), используют в качестве компонента при получении эпоксидных смол. Конденсация фенола с формальдегидом лежит в основе производства широко применяемых феноло-формальдегидных смол (фенопласты).

Способы получения фенолов.

Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С 6 Н 5 ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H 2 SO 4 (рис. 8А). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ – каталитический гидролиз галогензамещенных бензолов (рис. 8Б).

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ФЕНОЛА

Применение фенолов.

Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин (рис. 3), а также гидрохинон (пара- дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – феноло-альдегидных смол (рис. 7), полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

Михаил Левицкий

Профильный химико-биологический класс

Тип урока: урок изучения нового материала.

Методы ведения урока:

  • словесные (беседа, объяснение, рассказ);
  • наглядные (компьютерная презентация);
  • практические (демонстрационные опыты, лабораторные опыты).

Цели урока: Обучающие цели: на примере фенола конкретизировать знания учащихся об особенностях строения веществ, принадлежащих к классу фенолы, рассмотреть зависимость взаимного влияния атомов в молекуле фенола на его свойства; познакомить учащихся с физическими и химическими свойствами фенола и некоторых его соединений, изучить качественные реакции на фенолы; рассмотреть нахождение в природе, применение фенола и его соединений, их биологическую роль

Воспитывающие цели: Создать условия для самостоятельной работы учащихся, укреплять навыки работы учащихся с текстом, выделять основное в тексте, выполнять тесты.

Развивающие цели: Создать на уроке диалоговое взаимодействие, содействовать развитию умений учащихся высказывать свое мнение, выслушивать товарища, задавать друг другу вопросы и дополнять выступления друг друга.

Оборудование: мел, доска, экран, проектор, компьютер, электронные носители, учебник «Химия», 10 кл., О.С. Габриелян, Ф.Н. Маскаев, учебник «Химия: в тестах, задачах и упражнениях», 10 кл., О.С. Габриелян, И.Г. Остроумов.

Демонстрация: Д. 1. Вытеснение фенола из фенолята натрия угольной кислотой.

Д. 2. Взаимодействие фенола и бензола с бромной водой (видеоролик).

Д. 3. Реакция фенола с формальдегидом.

Лабораторный опыт: 1. Растворимость фенола в воде при обычной и повышенной температуре.

2. Взаимодействие фенола и этанола с раствором щелочи.

3. Реакция фенола с FeCl 3 .

Скачать:


Предварительный просмотр:

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ГИМНАЗИЯ №5»

г. ТЫРНЫАУЗА КБР

Открытый урок-исследование по химии

Учитель химии: Грамотеева С.В.

I квалификационной категории

Класс: 10 «А», химико-биологический

Дата: 14.02.2012

Фе нол: строение, физические и химические свойства фено ла.

Примене ние фенола.

Профильный химико-биологический класс

Тип урока: урок изучения нового материала.

Методы ведения урока:

  1. словесные (беседа, объяснение, рассказ);
  2. наглядные (компьютерная презентация);
  3. практические (демонстрационные опыты, лабораторные опыты).

Цели урока: Обучающие цели: на примере фенола конкретизировать знания учащихся об особенностях строения веществ, принадлежащих к классу фенолы, рассмотреть зависимость взаимного влияния атомов в молекуле фенола на его свойства; познакомить учащихся с физическими и химическими свойствами фенола и некоторых его соединений, изучить качественные реакции на фенолы; рассмотреть нахождение в природе, применение фенола и его соединений, их биологическую роль

Воспитывающие цели: Создать условия для самостоятельной работы учащихся, укреплять навыки работы учащихся с текстом, выделять основное в тексте, выполнять тесты.

Развивающие цели: Создать на уроке диалоговое взаимодействие, содействовать развитию умений учащихся высказывать свое мнение, выслушивать товарища, задавать друг другу вопросы и дополнять выступления друг друга.

Оборудование: мел, доска, экран, проектор, компьютер, электронные носители, учебник «Химия», 10 кл., О.С. Габриелян, Ф.Н. Маскаев, учебник «Химия: в тестах, задачах и упражнениях», 10 кл., О.С. Габриелян, И.Г. Остроумов.

Демонстрация: Д. 1. Вытеснение фенола из фенолята натрия угольной кислотой.

Д. 2. Взаимодействие фенола и бензола с бромной водой (видеоролик).

Д. 3. Реакция фенола с формальдегидом.

Лабораторный опыт: 1. Растворимость фенола в воде при обычной и повышенной температуре.

3. Реакция фенола с FeCl 3 .

ХОД УРОКА

  1. Организационный момент.
  2. Подготовка к изучению нового материала.
  1. Фронтальный опрос:
  1. Какие спирты называются многоатомными? Приведите примеры.
  2. Каковы физические свойства многоатомных спиртов?
  3. Какие реакции характерны для многоатомных спиртов?
  4. Напишите качественные реакции, характерные для многоатомных спиртов.
  5. Приведите примеры реакции этерификации этиленгликоля и глицерина с органическими и неорганическими кислотами. Как называются продукты реакций?
  6. Напишите реакции внутримолекулярной и межмолекулярной дегидратации. Назовите продукты реакций.
  7. Напишите реакции взаимодействия многоатомных спиртов с галогеноводородами. Назовите продукты реакций.
  8. Каковы способы получения этиленгликоля?
  9. Каковы способы получения глицерина?
  10. Каковы области применения многоатомных спиртов?
  1. Проверка дом. задания: стр. 158, упр. 4-6 (выборочно у доски).
  1. Изучение нового материала в форме беседы.

На слайде представлены структурные формулы органических соединений. Вам необходимо назвать эти вещества и, определить к какому классу они принадлежат.

Фенолы – это вещества, в которых гидроксогруппа соединена непосредственно с бензольным кольцом.

Назовите молекулярную формулу фенил-радикала: C 6 H 5 – фенил. Если к этому радикалу присоединить одну или несколько гидроксильных групп, то мы получим фенолы. Обратите внимание на то, что гидроксильные группы должны быть непосредственно связаны с бензольным кольцом, в противном случае мы получим ароматические спирты.

Классификация

Так же как и спирты, фенолы классифицируют по атомности , т.е. по количеству гидроксильных групп.

  1. Одноатомные фенолы, содержат в молекуле одну гидроксильную группу:
  1. Многоатомные фенолы содержат в молекулах более одной гидроксильной группы:

Самый главный представитель этого класса – фенол. Название этого вещества и легло в основу названия всего класса – фенолы.

Многие из вас в скором будущем станут врачами, поэтому о феноле они должны знать как можно больше. В настоящее время можно выделить несколько основных направлений использования фенола. Один из них – производство лекарственных средств. Большинство этих лекарств - производные получаемой из фенола салициловой кислоты: o-HOC 6 H 4 COOH. Самое распространенное жаропонижающее - аспирин не что иное, как ацетилсалициловая кислота. Эфир салициловой кислоты и самого фенола тоже хорошо известен под названием салол. При лечении туберкулеза применяют парааминосалициловую кислоту (сокращенно ПАСК). Ну и, наконец, при конденсации фенола с фталевым ангидридом получается фенолфталеин, он же пурген.

Фенолы – органические вещества, молекулы которых содержат радикал фенил, связанные с одной или несколькими гидроксигруппами.

Как вы считаете, почему фенолы выделили в отдельный класс, хотя они содержат ту же гидроксильную группу, что и спирты?

Их свойства сильно отличаются от свойств спиртов. Почему?

Атомы в молекуле взаимно влияют друг на друга. (Теория Бутлерова).

Рассмотрим свойства фенолов на примере простейшего фенола.

История открытия

В 1834г. немецкий химик-органик Фридлиб Рунге обнаружил в продуктах перегонки каменноугольной смолы белое кристаллическое вещество с характерным запахом. Ему не удалось определить состав вещества, сделал это в 1842г. Огюст Лоран. Вещество обладало выраженными кислотными свойствами и было производным открытого незадолго до этого бензола. Лоран назвал его бензол феном, поэтому новая кислота получила название фениловой. Шарль Жерар считал полученное вещество спиртом и предложил называть его фенолом.

Физические свойства

Лабораторный опыт: 1. Изучение физических свойств фенола.

Инструктивная карточка

1.Рассмотрите выданное вам вещество и пишите его физические свойства.

2.Растворите вещество в холодной воде.

3.Слегка нагрейте пробирку. Отметьте наблюдения.

Фенол C 6 H 5 OH (карболовая кислота) - бесцветное кристаллическое вещество, t пл = 43 0 C, t кип = 182 0 C, на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66 °C смешивается с водой в любых соотношениях. Фенол - токсичное вещество, вызывает ожоги кожи, является антисептиком, поэтому с фенолом необходимо обращаться осторожно !

Сам фенол и его пары ядовиты. Но существуют фенолы растительного происхождения, содержащиеся, например, в чае. Они благоприятно действуют на организм человека.

Следствием полярности связи О–Н и наличия неподеленных пар электронов на атоме кислорода является способность гидроксисоединений к образованию водородных связей

Это объясняет, почему у фенола довольно высокие температуры плавления (+43) и кипения (+182). Образование водородных связей с молекулами воды способствует растворимости гидроксисоединений в воде.

Способность растворяться в воде уменьшается с увеличением углеводородного радикала и от многоатомных гидроксисоединений к одноатомным. Метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин смешиваются с водой в любых соотношениях. Растворимость фенола в воде ограничена.

Изомерия и номенклатура

Возможны 2 типа изомерии :

  1. изомерия положения заместителей в бензольном кольце;
  2. изомерия боковой цепи (строения алкильного радикала и числа радикалов ).

Химические свойства

Посмотрите внимательно на структурную формулу фенола и ответьте на вопрос: «Что такого особенного в феноле, что его выделили в отдельный класс?»

Т.е. фенол содержит и гидроксильную группу и бензольное кольцо, которые, согласно третьему положению теории А.М. Бутлерова, влияют друг на друга.

Свойствами каких соединений формально должен обладать фенол? Правильно, спиртов и бензола.

Химические свойства фенолов обусловлены именно наличием в молекулах функциональной гидроксильной группы и бензольного кольца. Поэтому химические свойства фенола можно рассмотреть как по аналогии со спиртами, так и по аналогии с бензолом.

Вспомните, с какими веществами реагируют спирты. Посмотрим видеоролик взаимодействие фенола с натрием.

  1. Реакции с участием гидроксильной группы.
  1. Взаимодействие мо щелочными металлами (сходство со спиртами).

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2 (фенолят-натрия)

Вспомните реагируют ли спирты со щелочами? Нет, а фенол? Проведем лабораторный опыт.

Лабораторный опыт: 2. Взаимодействие фенола и этанола с раствором щелочи.

1. В первую пробирку налейте раствор NaOH и 2-3 капли фенолфталеина, затем добавьте 1\3 часть раствора фенола.

2. Во вторую пробирку добавьте раствор NaOH и 2-3 капли фенолфталеина, затем добавьте 1\3 часть этанола.

Оформите наблюдения и напишите уравнения реакций.

  1. Атом водорода гидроксильной группы фенола обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов. В отличие от спиртов и воды фенол реагирует не только со щелочными металлами, но со щелочами с образованием фенолятов:

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O

Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раза меньше, чем у угольной кислоты, поэтому пропуская через раствор фенолята натрия углекислый газ, можно выделить свободный фенол (демонстрация ):

C 6 H 5 ONa + H 2 O + CO 2 → C 6 H 5 OH + NaHCO 3

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола:

C 6 H 5 ONa + HCl → C 6 H 5 OH + NaCl

Феноляты используются в качестве исходных веществ для получения простых и сложных эфиров:

C 6 H 5 ONa + C 2 H 5 Br → C 6 H 5 OC 2 H 5 + NaBr (этифениловый эфир)

C 6 H 5 ONa + CH 3 COCl → CH 3 – COOC 6 H 5 + NaCl

Ацетилхлорид фенилацетат, фениловый эфир уксусной кислоты

Как можно объяснить то, что спирты с растворами щелочей не реагируют, а фенол реагирует?

Фенолы представляют собой полярные соединения (диполи). Бензольное кольцо является отрицательным концом диполя, группа - OH - положительным. Дипольный момент направлен в сторону бензольного кольца.

Бензольное кольцо перетягивает электроны неподеленной пары электронов кислорода. Смещение неподелённой пары электронов атома кислорода в сторону бензольного кольца приводит к увеличению полярности связи O-H. Увеличение полярности связи O-H под действием бензольного ядра и появление достаточно большого положительного заряда на атоме водорода приводит к тому, что молекула фенола диссоциирует в водных растворах по кислотному типу:

C 6 H 5 OH ↔ C 6 H 5 O - + H + (фенолят-ион)

Фенол является слабой кислотой . В этом состоит главное отличие фенолов от спиртов , которые являются неэлектролитами .

  1. Реакции с участием бензольного кольца

Бензольное кольцо изменило свойства гидроксогруппы!

Есть ли обратное влияние – изменились ли свойства бензольного кольца?

Проведем еще один опыт.

Демонстрация: 2. Взаимодействие фенола с бромной водой (видеоролик).

Реакции замещения . Реакции электрофильного замещения в бензольном кольце фенолов протекают значительно легче, чем у бензола, и в более мягких условиях, благодаря наличию гидроксильного заместителя.

  1. Галогенирование

Особенно легко происходит бромирование в водных растворах. В отличие от бензола, для бромирование фенола не требуется добавление катализатора (FeBr 3 ). При взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола:

  1. Нитрование также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и параизомеров нитрофенола:

О-нитрофенол п-нитрофенол

При использовании концентрированной азотной кислоты образуется 2,4,6-тринитрофенол – пикриновая кислота, взрывчатое вещество:

Как вы видите фенол реагирует с бромной водой с образованием белого осадка, а вот бензол не реагирует. Фенол как и бензол реагирует с азотной кислотой, но не с одной молекулой а сразу с тремя. Чем это объясняется?

Приобретя избыток электронной плотности, бензольное кольцо дестабилизировалось. Отрицательный заряд сосредоточен в орто- и пара-положениях, поэтому эти положения наиболее активны. Замещение атомов водорода происходит именно здесь.

Фенол также как и бензол реагирует с серной кислотой, но с тремя молекулами.

  1. Сульфирование

Соотношение орто- и пара-измеров определяется температурой реакции: при комнатной температуре образуется в основном о-фенолсульфоксилота, при температуре 100 0 С – пара-изомер.

  1. Поликонденсация фенола с альдегидами, в част ности с формальдегидом, происходит с образовани ем продуктов реакции - фенолоформальдегидных смол и твердых полимеров (демонстрация ):

Реакция поликонденсации, т. е. реакция получения полимера, протекающая с выделением низкомолекулярного продукта (например, воды, аммиака и др.), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующие имеет разветвленное строение, он твердый и нерастворимый в воде. В результате нагревания фенолоформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами.

Полимеры на основе фенолоформальдегидных смол применяют для изготовления лаков и красок. Пластмассовые изделия, изготовленные на основе этих смол, устойчивы к нагреванию, охлаждению, действию щелочей и кислот, они также обладают высокими электрическими свойствами. Из полимеров на основе фенолоформальдегидных смол изготавливают наиболее важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов.

Клеи на основе фенолоформальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения в стеклянной колбе.

Все пластмассы с применением фенола опасны для человека и природы. Необходимо найти новый вид полимеров, безопасный для природы и легко разлагаемый в безопасные отходы. Это ваше будущее. Творите, изобретайте, не дайте опасным веществам погубить природу!”

Качественная реакция на фенолы

В водных растворах одноатомные фенолы взаимодействуют с FeCl 3 с образованием комплексных фенолятов, которые имеют фиолетовую окраску; окраска исчезает после прибавления сильной кислоты

Лабораторный опыт: 3. Реакция фенола с FeCl 3 .

В пробирку добавьте 1\3 часть раствора фенола и по каплям раствор FeCl 3 .

Оформите наблюдения.

Способы получения

  1. Кумольный способ.

В качестве исходного сырья используют бензол и пропилен, из которых получают изопропилбензол (кумол), подвергающийся дальнейшим превращениям.

Кумольный способ получения фенола (СССР, Сергеев П.Г., Удрис Р.Ю., Кружалов Б.Д., 1949 г.). Преимущества метода: безотходная технология (выход полезных продуктов > 99%) и экономичность. В настоящее время кумольный способ используется как основной в мировом производстве фенола.

  1. Из каменноугольной смолы.

Каменноугольную смолу, содержащую в качестве одно из компонентов фенол, обрабатывают вначале раствором щелочи (образуются феноляты), а затем кислотой:

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O (фенолят натрия, промежуточный продукт)

C 6 H 5 ONa + H 2 SO 4 → C 6 H 5 OH + NaHSO 4

  1. Сплавление солей аренсульфокислот со щелочью:

300 0 C

С 6 Н 5 SO 3 Na + NaOH → C 6 H 5 OH + Na 2 SO 3

  1. Взаимодействие галогенопроизводных ароматических УВ со щелочами:

300 0 C, P, Cu

C 6 H 5 Cl + NaOH (8-10 % р-р) → C 6 H 5 OH + NaCl

или с водяным паром:

450-500 0 C, Al 2 O 3

C 6 H 5 Cl + H 2 O → C 6 H 5 OH + HCl

Биологическая роль соединений фенола

Фенол , химическое вещество органического происхождения, принадлежит к группе ароматических углеводородов.

В 1842 году французский органик Огюст Лоран сумел вывести формулу фенола (C6H5OH), состоящего из бензольного кольца и гидроксигруппы OH. Фенол имеет несколько названий, которые используются как в научной литературе, так и в разговорной речи, и возникли благодаря составу этого вещества. Так, фенол часто называют оксибензолом либо карболовой кислотой .

Фенол ядовит. Пыль и раствор фенола раздражают слизистые оболочки глаз, дыхательных путей, кожу. Обладает слабокислотными свойствами, при действии щелочей образует соли - феноляты. При действии брома образуется трибромфенол, который используют для получения антисептика - ксероформа. Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Особое значение имеют реакции конденсации фенолов с альдегидами и кетонами в результате которых получаются полимерные продукты.

Физические свойства фенола

Химические свойства фенола

Фенол представляет собой кристаллическое вещество белого цвета, с характерным резким сладковато-приторным запахом, которое легко окисляется при взаимодействии с воздухом, приобретая сначала розоватый, а спустя некоторое время насыщенный бурый цвет. Особенностью фенола является прекрасная растворимость не только в воде, но и в спирте, щелочной среде, бензоле и ацетоне. Кроме этого, фенол обладает очень низкой температурой плавления и легко переходит в жидкое состояние при температуре +42°C, а также имеет слабые кислотные свойства. Поэтому при взаимодействии со щелочами фенол образует соли, именуемые фенолятами.

В зависимости от технологии производства и назначения фенол выпускают трех марок: А, Б и В по ГОСТ 23519-93. Ниже представлены его технические характеристики.

Технические характеристики фенола согласно ГОСТ 23519-93

Положительная

Отрицательная (токсическое действие)

  1. лекарственные препараты (пурген, парацетамол)
  2. антисептики (3-5 % раствор –карболовая кислота)
  3. эфирные масла (обладают сильными бактерицидными и противовирусными свойствами, стимулируют иммунную систему, повышают артериальное давление: - анетол в укропе, фенхеле, анисе - карвакрол и тимол в чабреце - эвгенол в гвоздике, базилике

На рисунке показана взаимосвязь различных методов производства фенола, а в таблице под теми же номерами приведены их технико-экономические показатели (в % относительно сульфонатного метода).

Рис. 1.1. Методы производства фенола

Таблица 1.3

Технико-экономические показатели производства фенола
Методы
Показатель 1 2 3 4 5 6
Капитальные затраты 100 83 240 202 208 202
Стоимость сырья 100 105 58 69 72 45
Себестоимость 100 96 70 73 76 56

Таким образом, наиболее целесообразным с экономической точки зрения является наиболее востребованный в настоящее время кумольный процесс. Ниже кратко описаны промышленные процессы, которые в то или иное время использовались для получения фенола.

1. Сульфонатный процесс был первым фенольным процессом, реализованным в промышленном масштабе фирмой «BASF» в 1899 г. Этот метод основан на сульфировании бензола серной кислотой с последующим щелочным плавлением сульфокислоты. Несмотря на применение агрессивных реагентов и образование большого количества отходов сульфита натрия, данный метод использовался в течение почти 80 лет. В США это производство было закрыто лишь в 1978 году.

2. В 1924 г. фирмой «Dow Chemical» был разработан процесс получения фенола, включающий реакцию хлорирования бензола и последующий гидролиз монохлорбензола (процесс каталитического гидролиза галогензамещенных бензолов ). Независимо аналогичная технология была разработана немецкой фирмой «I.G. Farbenindustrie Co». Впоследствии стадия получения монохлорбензола и стадия его гидролиза были усовершенствованы, и процесс получил название «процесс Рашига». Суммарный выход фенола по двум стадиям составляет 70-85%. Данный процесс был основным методом получения фенола в течение нескольких десятилетий.

3. Циклогексановый процесс , разработанный фирмой «Scientific Design Co.», основан на окислении циклогексана в смесь циклогексанона и циклогексанола, которая далее дегидрируется с образованием фенола. В 60-е годы фирма «Monsanto» в течение нескольких лет использовала этот метод на одном из своих заводов в Австралии, однако в дальнейшем перевела его на кумольный способ получения фенола.

4. В 1961 г. фирмой «Dow Chemical of Canada» был реализован процесс через разложение бензойной кислоты , это единственный способ синтеза фенола, основанный на использовании небензольного сырья. Обе реакции протекают в жидкой фазе. Первая реакция. окисление толуола. использовалась в Германии уже в период Второй мировой войны для получения бензойной кислоты. Реакция протекает в довольно мягких условиях с высоким выходом. Вторая стадия является более трудной вследствие дезактивации катализатора и низкой селективности по фенолу. Полагают, что проведение этой стадии в газовой фазе может сделать процесс более эффективным. В настоящее время этот метод используется на практике, хотя его доля в мировом производстве фенола составляет лишь около 5%.

5. Метод синтеза, по которому в наши дни получают большую часть производимого в мире фенола - кумольный процесс - открыт группой советских химиков во главе с профессором П. Г. Сергеевым в 1942 году. Метод основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной серной кислотой. В 1949 году в г. Дзержинске Горьковской области был введен в действие первый в мире кумольный завод. До этого гидроперекиси считались малостабильными промежуточными продуктами окисления углеводородов. Даже в лабораторной практике их почти не использовали. На Западе кумольный метод был разработан в конце 40-х годов и отчасти известен как процесс Хока, по имени немецкого ученого, позднее независимо открывшего кумольный путь синтеза фенола. В ромышленном масштабе этот метод стал впервые использоваться в США в начале 50-х годов. С этого времени на многие десятилетия кумольный процесс становится образцом химических технологий во всем мире.

Несмотря на прекрасно отлаженную технологию и длительный опыт эксплуатации, кумольный метод имеет ряд недостатков. Прежде всего это наличие взрывоопасного промежуточного соединения (гидропероксид кумола), а также многостадийность метода, что требует повышенных капитальных затрат и делает труднодостижимым высокий выход фенола в расчете на исходный бензол. Так, при выходе полезного продукта 95% на каждой из трех стадий итоговый выход составит лишь 86%. Приблизительно такой выход фенола и дает кумольный метод в настоящее время. Но самый важный и принципиально неустранимый недостаток кумольного метода связан с тем, что в качестве побочного продукта образуется ацетон. Это обстоятельство, которое первоначально рассматривалось как сильная сторона метода, становится все более серьезной проблемой, поскольку ацетон не находит эквивалентного рынка сбыта. В 90-х годах эта проблема стала особенно ощутимой после создания новых способов синтеза метилметакрилата путем окисления углеводородов С4, что резко сократило потребность в ацетоне. Об остроте ситуации говорит тот факт, что в Японии разработана технология, предусматривающая рецикл ацетона. С этой целью к традиционной кумольной схеме добавляются еще две стадии, гидрирование ацетона в изопропиловый спирт и дегидратация последнего в пропилен. Образующийся пропилен снова возвращают на стадию алкилирования бензола. В 1992 году фирма «Mitsui» пустила крупное производство фенола (200 тыс. т/год), основанное на этой пятистадийной кумольной технологии.


Рис. 1.2. Рецикл ацетона с получением пропилена

Предлагаются также другие сходные модификации кумольного метода, которые позволили бы смягчить проблему ацетона. Однако все они приводят к значительному усложнению технологии и не могут рассматриваться как перспективное решение проблемы. Поэтому исследования, ориентированные на поиск новых путей синтеза фенола, которые основывались бы на прямом окислении бензола, в последнее десятилетие приобрели особенно интенсивный характер. Работы ведутся главным образом в следующих направлениях: окисление молекулярным кислородом, окисление моноатомными донорами кислорода и сопряженное окисление. Рассмотрим более подробно направления поиска новых путей синтеза фенола.

Наименование показателя

Значение
Марка А Марка Б Марка В
Внешний вид Белое
кристаллическое
вещество
Белое кристалли-
ческое в-во.
Допускается
розоватый или
желтоватый оттенок
Температура кристаллизации, °С, не ниже 40,7 40,6 40,4
Массовая доля нелетучего остатка, %, не более 0,001 0,008 0,01
Оптическая плотность водного раствора фенола
(8,3 г марки А, 8,0 г марки Б, 5,0 г марки В в 100 см3воды)
при 20 °С, не более
0,03 0,03 0,03
Оптическая плотность сульфированного фенола, не более 0,05 Не нормируют
Цветность расплава фенола по платиново-кобальтовой
шкале, единицы Хазена:
у изготовителя, не более 5 Не нормируют
у потребителя:
при транспортировании по трубопроводу и в
цистернах из нержавеющей стали, не более
10 То же
при транспортировании в цистернах из углеродистой
стали и оцинкованных, не более
20 >>
Массовая доля воды, %, не более 0,03 Не нормируют
Массовая доля суммы органических примесей, %, не более 0,01 Не нормируют
в том числе оксида мезитила, %, не более 0,0015 0,004 Не нормируют
суммы -метилстирола и изопропилбензола (кумола), %, не более Не нормируют 0,01 То же

Способы получения фенола

В чистом виде в природе фенол не встречается, он является искусственным продуктом органической химии. В настоящее время существует три основных способа получения фенола в промышленных объемах. Основная доля его производства приходится на так называемый кумпольный метод, который подразумевает окисление воздухом ароматического органического соединения изопропилбензола. В результате химической реакции получается гидропероксид кумпола, который при взаимодействии с серной кислотой разлагается на ацетон с последующим выпадением фенола в виде кристаллического осадка. Для производства также используется метилбензол (толуол), в результате окисления которого образуется данное химическое вещество и бензойная кислота. Кроме этого, в некоторых видах промышленности, таких, как производство металлургического кокса, фенол выделяется из каменноугольной смолы. Однако этот способ получения является нерентабельным из-за повышенной энергоемкости. Среди последних достижений химической промышленности – получение фенола путем взаимодействия бензола и уксусной кислоты, а также окислительное хлорирование бензола.

Впервые в промышленных объемах фенол был получен немецкой фирмой BASF в 1899 году, путем сульфирования бензола серной кислотой. Технология его производства заключалась в том, что впоследствии сульфокислота подвергалась щелочному плавлению, в результате чего образовывался фенол. Этот метод использовался более 100 лет, но во второй половине 20 века предприятия химической промышленности вынуждены были от него отказаться из-за огромного количества отходов сульфита натрия, который являлся побочным продуктом органического синтеза фенола.

В первой половине 20 века американская компания Dow Chemical внедрила еще один метод производства фенола, путем хлорирования бензола, который получил название «процесс Рашига». Метод оказался довольно эффективным, так как удельный вес получаемого вещества доходил до 85%. Впоследствии эта же фирма внедрила метод окисления метилбензлола с последующим разложением бензойной кислоты, однако из-за проблематичной деактивации катализатора сегодня он применяется примерно на 3-4% предприятий химической промышленности.

Наиболее эффективным является кумпольный метод получения фенола, который был разработан советским химиком Петром Сергеевым и внедрен в производство в 1942 году. Первый кумпольный завод, построенный в 1949 году в городе Дзержинске Горьковской области, смог обеспечить треть потребности СССР в феноле.

Область применения фенола

Первоначально фенол использовался для производства различного рода красителей, благодаря своему свойству изменять цвет в процессе окисления с бледно-розового до бурого оттенка. Это химическое вещество вошло в состав многих видов синтетических красок. Кроме этого, свойство фенола уничтожать бактерии и микроорганизмы, было взято на вооружение в кожевенном производстве при дублении шкур животных. Позже фенол успешно использовался в медицине как одно из средств обеззараживания и дезинфекции хирургических инструментов и помещений, а в качестве 1,4-процентного водного раствора - как болеутоляющее и антисептик для внутреннего и наружного применения. Кроме этого, фенол салициловой кислоты является основой аспирина, а ее производная – парааминосалициловая кислота – используется для лечения больных туберкулезом. Фенол также входит в состав сильнодействующего слабительного препарата – пургена.

В настоящее время основное предназначение фенола – химическая промышленность, где это вещество применяется для изготовления пластмассы, фенолформальдегидных смол, таких искусственных волокон, как капрон и нейлон, а также различных антиоксидантов. Кроме этого, фенол применяется для производства пластификаторов, присадок для масел, является одним из компонентов, входящих в состав препаратов по защите растений. Фенол также активно используется в генной инженерии и молекулярной биологии, в качестве средства для очистки и выделения молекул ДНК.

Вредные свойства фенола

Практически сразу после получения фенола ученые установили, что это химическое вещество обладает не только полезными свойствами, что позволяет его использовать в различных сферах науки и производства, но и является сильнодействующим ядом. Так, вдыхание паров фенола в течение непродолжительного времени может привести к раздражению носоглотки, ожогам дыхательных путей и последующему отеку легких с летальным исходом. При соприкосновении раствора фенола с кожей образуются химические ожоги, которые впоследствии трансформируются в язвы. Если обработать раствором более 25 процентов кожных покровов, то это может стать причиной смерти человека. Попадание фенола внутрь организма с питьевой водой, приводит к развитию язвенной болезни, атрофии мышц, нарушению координации движений, кровотечениям. Кроме этого, ученые установили, что именно фенол является причиной возникновения раковых заболеваний, способствует развитию сердечной недостаточности и бесплодия.

Благодаря свойству окисления, пары этого химического вещества полностью растворяются в воздухе примерно через 20-25 часов. При попадании в почву фенол сохраняет свои ядовитые свойства на протяжении суток. Однако в воде его жизнеспособность может достигать 7-12 дней. Поэтому наиболее вероятный путь попадания этого ядовитого вещества в человеческий организм и на кожные покровы – загрязненная вода.

В составе пластмасс фенол не теряет своих летучих свойств, поэтому использование фенопластов в пищевой промышленности, производстве предметов быта и детских игрушек на сегодняшний день категорически запрещено. Их применение также не рекомендовано для отделки жилых и служебных помещений, где человек проводит хотя бы несколько часов в сутки. Как правило, из организма фенол выводится с потом и мочой в течение 24 часов, однако за это время он успевает нанести здоровью человека непоправимый урон. Из-за вредных свойств во многих странах мира действует ограничение на использование данного вещества в медицинских целях.

Условия транспортировки и хранения

Существуют международные стандарты транспортировки фенола, разработанные для того, чтобы избежать выброса вещества в окружающую среду.

Фенол по железной дороге транспортируют в соответствии с правилами перевозок грузов в цистернах, снабженных устройством для обогрева. Цистерны должны быть изготовлены из нержавеющей хромоникелевой стали, углеродистой стали с цинковым покрытием или углеродистой стали. Фенол, предназначенный для производства медицинских препаратов, транспортируют в железнодорожных цистернах из нержавеющей хромоникелевой стали и углеродистой стали с цинковым покрытием. Фенол транспортируют также по обогреваемому трубопроводу, изготовленному из нержавеющей хромоникелевой стали.

Фенол в расплавленном и твердом состоянии хранят в герметичных резервуарах из нержавеющей хромоникелевой стали, углеродистой стали, покрытой цинком, или из углеродистой стали, а также в емкостях из монолитного алюминия. Допускается хранить фенол в расплавленном состоянии под азотом (объемная доля кислорода в азоте не должна превышать 2 %) при температуре (60 ± 10) °С в течение 2-3 сут. при хранении в емкостях из алюминия необходимо строго контролировать температуру во избежание растворения алюминия в продукте.