Как складывать алгебраические дроби. Презентация к уроку по алгебре (7 класс) на тему: Сложение и вычитание алгебраических дробей

Видеоурок «Сложение и вычитание алгебраических дробей с разными знаменателями» является наглядным пособием, с помощью которого дается теоретический материал, подробно объясняются алгоритмы и особенности выполнения операций вычитания, сложения дробей, имеющих различные знаменатели. С помощью пособия учителю легче сформировать умение учеников выполнять операции с алгебраическими дробями. В ходе видеоурока рассматривается ряд примеров, решение которых описывается подробно, обращая внимание на важные детали.

Применение видеоурока на уроке математики дает возможность учителю быстрее достичь учебных целей, повысить эффективность обучения. Наглядность демонстрации помогает ученикам запомнить материал, более глубоко его освоить, поэтому видео может использоваться, сопровождая объяснение учителя. Если же данное видео используется как часть урока, то освобождается время учителя для усиления индивидуальной работы и использования других инструментов обучения для повышения эффективности обучения.

Демонстрация начинается с представления темы видеоурока. Отмечается, что выполнение операций вычитания, сложения алгебраических дробей аналогично выполнению операций с обыкновенными дробями. Напоминается механизм вычитания, сложения для обыкновенных дробей - приводятся дроби к общему знаменателю, после выполняются непосредственно сами операции.

Озвучивается и описывается на экране алгоритм вычитания, сложения алгебраических дробей. Он состоит из двух шагов - приведение дробей к одинаковым знаменателям и затем выполнение сложения (или вычитания) дробей с равными знаменателями. Применение алгоритма рассматривается на примере нахождения значений выражений a/4b 2 -a 2 /6b 3 , а также x/(х+у)-x/(х-у). Отмечается, что для решения первого примера необходимо привести обе дроби к одному знаменателю. Этим знаменателем будет 12b 3 . Приведение данных дробей к знаменателю 12b 3 подробно рассматривалось в прошлом видеоуроке. В результате преобразования получается две дроби с равными знаменателями 3ab/12b 3 и 2a 2 /12b 3 . Эти дроби складываются согласно правилу сложения дробей с равными знаменателями. После сложения числителей дробей в результате получается дробь (3ab+2a 2)/12b 3 . Далее описывается решение примера х/(x+у)-x/(х-у). После приведения дробей к одному знаменателю получаются дроби (х 2 -ху)/(х 2 -у 2) и (х 2 +ху)/(х 2 -у 2). Согласно правилу вычитания дробей с равными знаменателями, производим операцию с числителями, после чего получается дробь -2ху/(х 2 -у 2).

Отмечается, что самым трудным шагом в решении задач на сложение, вычитание дробей, имеющих различные знаменатели, является приведение их к общему знаменателю. Делаются подсказки, как легче выработать навыки в решении этих задач. Разбирается общий знаменатель дроби. Он состоит из числового коэффициента с переменной, возведенной в степень. Видно, что выражение может делиться на знаменатели первой и второй дробей. При этом числовой коэффициент 12 является наименьшим общим кратным числовых коэффициентов дробей 4 и 6. А переменную b содержат оба знаменателя 4b 2 и 6b 3 . При этом в общем знаменателе содержится переменная в наибольшей степени среди знаменателей исходных дробей. Также рассматривается нахождение общего знаменателя для х/(x+у) и x/(х-у). Отмечается, что общий знаменатель (x+у)(x-у) делится на каждый знаменатель. Итак, решение задачи сводится к нахождению наименьшего общего кратного имеющихся числовых коэффициентов, а также нахождению высшего показателя степени для буквенной переменной, встречающейся несколько раз. Затем после сбора данных частей в общее произведение получается общий знаменатель.

Озвучивается и формулируется на экране алгоритм нахождения для нескольких дробей общего знаменателя. Этот алгоритм состоит из четырех этапов, в первом из которых знаменатели раскладываются на множители. На втором этапе алгоритма отыскивается наименьшее общее кратное имеющихся данных коэффициентов, входящих в состав знаменателей дробей. На третьем этапе составляется произведение, в состав которого входят буквенные множители разложений знаменателей, при этом буквенный показатель, присутствующий в нескольких знаменателях, выбирается в наибольшей степени. На четвертом этапе числовые и буквенные множители, найденные на предыдущих этапах, собираются в одно произведение. Это и будет общий знаменатель. К рассмотренному алгоритму делается замечание. В примере нахождения общего знаменателя дробей a/4b 2 и a 2 /6b 3 отмечается, что кроме 12b 3 есть и другие знаменатели 24b 3 и 48a 2 b 3 . И для каждого множества дробей можно найти много общих знаменателей. Однако знаменатель 12b 3 является наиболее простым и удобным, поэтому его называют также наименьшим общим знаменателем исходных дробей. Дополнительные множители представляют собой результат частного общего знаменателя и исходного знаменателя дроби. Подробно демонстрируется с помощью анимации, как числитель, знаменатель дробей умножается на дополнительный множитель.

Дальше предлагается рассмотреть алгоритм приведения к общему знаменателю алгебраических дробей в более простой форме, чтобы он был более понятным для учеников. Он также состоит из четырех этапов, в первом из которых разложение знаменателей на множители. Затем предлагается из первого знаменателя выписать все множители, из остальных знаменателей произведение дополнить недостающими множителями. Таким образом находится общий знаменатель. Находятся дополнительные множители к каждой дроби из тех множителей знаменателя, что не попали в общий знаменатель. Четвертым шагом является определение для каждой дроби нового числителя, являющегося произведением старого числителя и дополнительного множителя. Потом каждая дробь записывается с новым числителем и знаменателем.

В следующем примере описывается упрощение выражения 3а/(4а 2 -1)-(а+1)/(2а 2 +а). На первом этапе решения знаменатели каждой дроби раскладывается на множители. Для произведений общим множителем является (2а+1). Дополнив произведение оставшимися множителями (2а-1) и а, получается общий знаменатель вида а(2а-1)(2а+1). Строится вспомогательная таблица, в которой указываются общий знаменатель, знаменатели, дополнительные множители. На втором этапе решения каждый числитель умножается на дополнительный множитель, выполняется вычитание. В результате получается дробь (а 2 -а+1)/а(2а-1)(2а+1).

В примере 3 рассматривается упрощение выражения b/(2a 4 +4a 3 b+2a 2 b 2)-1/(3ab 2 -3a 3)+b/(6a 4 -6a 3 b). Решение также разбирается по этапам, обращается внимание на существенные особенности выполнения операций, подробно описывается приведение дробей к общему знаменателю, выполнение операций с числителем. В результате вычислений и после преобразования получается дробь (2а 3 +6а 2 b-ab 2 +b 3)/6a 3 (a-b)(a+b) 2 .

Видеоурок «Сложение и вычитание алгебраических дробей с разными знаменателями» может послужить средством повышения эффективности урока математики по данной теме. Пособие пригодится учителю, осуществляющему дистанционное обучение, для наглядного представления учебного материала. Ученикам видеоурок может быть рекомендованным для самостоятельного обучения, так как в нем подробно и понятно объясняются особенности выполнения изучаемых операций.

СЛОЖЕНИЕ И ВЫЧИТАНИЕ АЛГЕБРАИЧЕСКИХ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ

Сложение и вычитание алгебраических дробей с разными знаменателями выполняют по тому же алгоритму, что используется для сложения и вычитания обыкновенных дробей с разными знаменателями: сначала приводят дроби к общему знаменателю с помощью соответствующих дополнительных множи-
телей, а затем складывают или вычитают полученные дроби с одинаковыми знаменателями по правилу из § 3. Можно сформулировать алгоритм, охватывающий любые случаи сложения (вычитания) алгебраических дробей.

Алгоритм сложения (вычитания) алгебраических дробей

Пример 1. Выполнить действия:

Решение. Для каждой пары заданных здесь алгебраических дробей общий знаменатель был найден выше, в примере из § 2. Опираясь на указанный пример, получаем:

Самое трудное в приведенном алгоритме — это, конечно, первый шаг: отыскание общего знаменателя и приведение дробей к общему знаменателю. В примере 1 вы этой трудности, может быть, не ощутили, поскольку мы воспользовались готовыми результатами из § 2.

Чтобы выработать правило отыскания общего знаменателя, проанализируем пример 1.
Для дробей общий знаменатель есть число 15 оно делится и на 3 и на 5, является их общим кратным (даже наименьшим общим кратным).
Для дробей — общим знаменателем является одночлен 12b 3 . Он делится и на 4b 2 и на 6b 3 , т. е. на оба одночлена, служащие знаменателями дробей.

Обратите внимание: число 12 — наименьшее общее кратное чисел 4 и 6. Переменная b входит в знаменатель первой дроби с показателем 2, в знаменатель
второй дроби — с показателем 3. Это наибольшее значение показателя 3 фигурирует в общем знаменателе.
Для дробей


общим знаменателем служит произведение (х + у)(х - у) — оно делится и на знаменатель х + у и на знаменатель х-у.

При отыскании общего знаменателя приходится, естественно, все заданные знаменатели разлагать на множители (если это не было подготовлено в условии). А далее следует провести работу по этапам: найти наименьшее общее кратное для числовых коэффициентов (речь идет о целочисленных коэффициентах), определить для каждого несколько раз встречающегося буквенного множителя наибольший показатель степени, собрать все это в одно произведение.

Теперь можно оформить соответствующий алгоритм.

Алгоритм отыскания общего знаменателя для нескольких алгебраических дробей


Прежде чем двигаться дальше, попробуйте применить этот алгоритм к обоснованию поиска общего знаменателя для алгебраических дробей из примера 1.
Замечание. На самом деле общих знаменателей для двух алгебраических дробей можно найти сколько угодно. Например, для дробей общим
знаменателем может быть и число 30, и число 60, и даже одночлен 15а2Ь. Дело в том, что и 30, и 60, и 15а 2 b можно разделить как на 3, так и на 5. Для
дробей —
общим знаменателем, кроме найденного выше одночлена 12b , может быть и 24b 3 и 48а 2 b 4 . Чем же одночлен 12b 3 лучше, чем 24b 3 , чем 48а 2 b 4 ? Он проще (по виду). Его иногда называют даже не общим знаменателем, а наименьшим общим знаменателем. Таким образом, приведенный алгоритм — это алгоритм
отыскания самого простого из общих знаменателей нескольких алгебраических дробей, алгоритм отыскания наименьшего общего знаменателя.

Снова вернемся к примеру 1, а. Чтобы сложить алгебраические дроби , надо было не только найти общий знаменатель (число 15), но и отыскать для каждой из дробей дополнительные множители, которые позволили бы привести дроби к общему знаменателю. Для дроби таким дополнительным мно-
жителем служит число 5 (числитель и знаменатель этой дроби умножили дополнительно на 5), для дроби число 3 (числитель и знаменатель этой дроби умножили дополнительно на 3).

Дополнительный множитель есть частное от деления общего знаменателя на знаменатель данной дроби.
Обычно используют следующую запись:


Снова вернемся к примеру 1,6. Общим знаменателем для дробей является одночлен 12b 3 . Дополнительный множитель для первой дроби равен Зb (поскольку 12b 3: 4b 2 = З Ь), для второй дроби он равен 2 (поскольку 12b 3: 6b 3 = 2). Значит, решение примера 1,6 можно оформить так:


Выше был сформулирован алгоритм отыскания общего знаменателя для нескольких алгебраических дробей. Но опыт показывает, что этот алгоритм не всегда бывает понятен учащимся, поэтому мы дадим несколько видоизмененную формулировку.

Правило приведения алгебраических дробей к общему знаменателю

Пример 2. Упростить выражение

Решение.
Первый этап. Найдем общий знаменатель и дополнительные множители.

Имеем
4а 2 - 1 = (2а - 1) (2а + 1),
2а 2 + а = а(2а + 1).
Первый знаменатель берем целиком, а из второго — добавляем множитель а, которого нет в первом знаменателе. Получим общий знаменатель

a(2a - 1) (2a +1).

Удобно расположить записи в виде таблицы:


Второй этап.
Выполним преобразования:

При наличии некоторого опыта первый этап можно не выделять, выполняя его одновременно со вторым этапом.

В заключение рассмотрим более сложный пример (для желающих).

Пример 3 . Упростить выражение

Решение.
Первый этап.
Разложим все знаменатели на множители:

1) 2а 4 + 4а 3 b + 2a 2 b 2 = 2а 2 (а 2 + 2аb + b 2) = 2а 2 (а + b) 2 ;

2) 3ab 2 - За 3 = За (b 2 - а 2) = За (b - а) (b + а);

3) 6а 4 -6а 3 b = 6а 3 (а- b).

Первый знаменатель берем целиком, из второго возьмем недостающие множители 3 и b - а (или a — b), из третьего — недостающий множитель а (поскольку третий знаменатель содержит множитель а 3).

Алгебраические дроби


Заметим, что если у дополнительного множителя появляется знак «-», то его обычно ставят перед всей дробью, т. е. перед второй дробью придется поменять знак.

Второй этап.
Выполним преобразования:

Отметим, что замена выражения, данного в примере 3, той алгебраической дробью, которая получилась в результате, есть тождественное преобразование при допустимых значениях переменных. В данном случае допустимыми являются любые значения переменных а и Ь, кроме a = 0, a = b, a = - b (в этих
случаях знаменатели обращаются в нуль).

Обыкновенных дробей.

Сложение алгебраических дробей

Запомните!

Складывать можно только дроби с одинаковыми знаменателями!

Нельзя складывать дроби без преобразований

Можно складывать дроби

При сложении алгебраических дробей с одинаковыми знаменателями :

  1. числитель первой дроби складывается с числителем второй дроби;
  2. знаменатель остаётся прежним.

Рассмотрим пример сложения алгебраических дробей.

Так как знаменатель у обеих дробей «2а », значит, дроби можно сложить.

Сложим числитель первой дроби с числителем второй дроби, а знаменатель оставим прежним. При сложении дробей в полученном числителе приведем подобные .

Вычитание алгебраических дробей

При вычитании алгебраических дробей с одинаковыми знаменателями :

  1. из числителя первой дроби вычитается числитель второй дроби.
  2. знаменатель остаётся прежним.

Важно!

Обязательно заключите в скобки весь числитель вычитаемой дроби.

Иначе вы сделаете ошибку в знаках при раскрытии скобок вычитаемой дроби.

Рассмотрим пример вычитания алгебраических дробей.

Так как у обеих алгебраических дробей знаменатель «2с », значит, эти дроби можно вычитать.

Вычтем из числителя первой дроби «(a + d) » числитель второй дроби «(a − b) ». Не забудем заключить числитель вычитаемой дроби в скобки. При раскрытии скобок используем правило раскрытия скобок .

Приведение алгебраических дробей к общему знаменателю

Рассмотрим другой пример. Требуется сложить алгебраические дроби.

В таком виде сложить дроби нельзя, так как у них разные знаменатели.

Прежде чем складывать алгебраические дроби их необходимо привести к общему знаменателю .

Правила приведения алгебраических дробей к общему знаменателю очень похожи на правила приведения к общему знаменателю обыкновенных дробей. .

В итоге мы должны получить многочлен, который без остатка разделится на каждый прежний знаменатель дробей.

Чтобы привести алгебраические дроби к общему знаменателю необходимо сделать следующее.

  1. Работаем с числовыми коэффициентами. Определяем НОК (наименьшее общее кратное) для всех числовых коэффициентов.
  2. Работаем с многочленами. Определяем все различные многочлены в наибольших степенях.
  3. Произведение числового коэффициента и всех различных многочленов в наибольших степенях и будет общим знаменателем.
  4. Определяем, на что нужно умножить каждую алгебраическую дробь, чтобы получить общий знаменатель.

Вернемся к нашему примеру.

Рассмотрим знаменатели «15a » и «3 » обеих дробей и найдем для них общий знаменатель.

  1. Работаем с числовыми коэффициентами. Находим НОК (наименьшее общее кратное — это число, которое без остатка делится на каждый числовый коэффициент). Для «15 » и «3 » — это «15 ».
  2. Работаем с многочленами. Необходимо перечислить все многочлены в наибольших степенях. В знаменателях «15a » и «5 » есть только
    один одночлен — «а ».
  3. Перемножим НОК из п.1 «15 » и одночлен «а » из п.2. У нас получится «15a ». Это и будет общим знаменателем.
  4. Для каждой дроби зададим себе вопрос: «На что нужно умножить знаменатель этой дроби, чтобы получить «15a »?».

Рассмотрим первую дробь. В этой дроби и так знаменатель «15a », значит, ее не требуется ни на что умножать.

Рассмотрим вторую дробь. Зададим вопрос: «На что нужно умножить «3 », чтобы получить «15a »?» Ответ — на «5a ».

При приведении к общему знаменателю дроби умножаем на «5a » и числитель, и знаменатель .

Сокращенную запись приведения алгебраической дроби к общему знаменателю можно записать через «домики» .

Для этого держим в уме общий знаменатель. Над каждой дробью сверху «в домике» пишем, на что умножаем каждую из дробей.


Теперь, когда у дробей одинаковые знаменатели, дроби можно сложить.

Рассмотрим пример вычитания дробей с разными знаменателями.

Рассмотрим знаменатели «(x − y) » и «(x + y) » обеих дробей и найдем для них общий знаменатель.

У нас есть два различных многочлена в знаменателях «(x − y) » и «(x + y) ». Их произведение будет общим знаменателем, т.е. «(x − y)(x + y) » — общий знаменатель.


Сложение и вычитание алгебраических дробей с помощью формул сокращенного умножения

В некоторых примерах, чтобы привести алгебраические дроби к общему знаменателю, нужно использовать формулы сокращенного умножения .

Рассмотрим пример сложения алгебраических дробей, где нам потребуется использовать формулу разности квадратов.

В первой алгебраической дроби знаменатель «(p 2 − 36) ». Очевидно, что к нему можно применить формулу разности квадратов .

После разложения многочлена «(p 2 − 36) » на произведение многочленов
«(p + 6)(p − 6) » видно, что в дробях повторяется многочлен «(p + 6) ». Значит, общим знаменателем дробей будет произведение многочленов «(p + 6)(p − 6) ».

В данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с одинаковыми знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с одинаковыми знаменателями. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. Умение работать с дробями с одинаковыми знаменателями является одним из краеугольных камней в изучении правил работы с алгебраическими дробями. В частности, понимание данной темы позволит легко освоить более сложную тему - сложение и вычитание дробей с разными знаменателями. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с одинаковыми знаменателями, а также разберём целый ряд типовых примеров

Правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями

Сфор-му-ли-ру-ем пра-ви-ло сло-же-ния (вы-чи-та-ния) ал-геб-ра-и-че-ских дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми (оно сов-па-да-ет с ана-ло-гич-ным пра-ви-лом для обык-но-вен-ных дро-бей): То есть для сло-же-ния или вы-чи-та-ния ал-геб-ра-и-че-ских дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми необ-хо-ди-мо со-ста-вить со-от-вет-ству-ю-щую ал-геб-ра-и-че-скую сумму чис-ли-те-лей, а зна-ме-на-тель оста-вить без из-ме-не-ний.

Это пра-ви-ло мы раз-бе-рём и на при-ме-ре обык-но-вен-ных дро-бей, и на при-ме-ре ал-геб-ра-и-че-ских дро-бей.

Примеры применения правила для обыкновенных дробей

При-мер 1. Сло-жить дроби: .

Ре-ше-ние

Сло-жим чис-ли-те-ли дро-бей, а зна-ме-на-тель оста-вим таким же. После этого раз-ло-жим чис-ли-тель и зна-ме-на-тель на про-стые мно-жи-те-ли и со-кра-тим. По-лу-чим: .

При-ме-ча-ние: стан-дарт-ная ошиб-ка, ко-то-рую до-пус-ка-ют при ре-ше-нии по-доб-но-го рода при-ме-ров, за-клю-ча-ет-ся в сле-ду-ю-щем спо-со-бе ре-ше-ния: . Это гру-бей-шая ошиб-ка, по-сколь-ку зна-ме-на-тель оста-ёт-ся таким же, каким был в ис-ход-ных дро-бях.

При-мер 2. Сло-жить дроби: .

Ре-ше-ние

Дан-ная за-да-ча ничем не от-ли-ча-ет-ся от преды-ду-щей: .

Примеры применения правила для алгебраических дробей

От обык-но-вен-ных дро-бей пе-рей-дём к ал-геб-ра-и-че-ским.

При-мер 3. Сло-жить дроби: .

Ре-ше-ние:как уже го-во-ри-лось выше, сло-же-ние ал-геб-ра-и-че-ских дро-бей ничем не от-ли-ча-ет-ся от сло-же-ния обык-но-вен-ных дро-бей. По-это-му метод ре-ше-ния такой же: .

При-мер 4. Вы-честь дроби: .

Ре-ше-ние

Вы-чи-та-ние ал-геб-ра-и-че-ских дро-бей от-ли-ча-ет-ся от сло-же-ния толь-ко тем, что в чис-ли-тель за-пи-сы-ва-ет-ся раз-ность чис-ли-те-лей ис-ход-ных дро-бей. По-это-му .

При-мер 5. Вы-честь дроби: .

Ре-ше-ние: .

При-мер 6. Упро-стить: .

Ре-ше-ние: .

Примеры применения правила с последующим сокращением

В дроби, ко-то-рая по-лу-ча-ет-ся в ре-зуль-та-те сло-же-ния или вы-чи-та-ния, воз-мож-ны со-кра-ще-ния. Кроме того, не стоит за-бы-вать об ОДЗ ал-геб-ра-и-че-ских дро-бей.

При-мер 7. Упро-стить: .

Ре-ше-ние: .

При этом . Во-об-ще, если ОДЗ ис-ход-ных дро-бей сов-па-да-ет с ОДЗ ито-го-вой, то его можно не ука-зы-вать (ведь дробь, по-лу-чен-ная в от-ве-те, также не будет су-ще-ство-вать при со-от-вет-ству-ю-щих зна-че-ни-ях пе-ре-мен-ных). А вот если ОДЗ ис-ход-ных дро-бей и от-ве-та не сов-па-да-ет, то ОДЗ ука-зы-вать необ-хо-ди-мо.

При-мер 8. Упро-стить: .

Ре-ше-ние: . При этом y (ОДЗ ис-ход-ных дро-бей не сов-па-да-ет с ОДЗ ре-зуль-та-та).

Сложение и вычитание обыкновенных дробей с разными знаменателями

Чтобы скла-ды-вать и вы-чи-тать ал-геб-ра-и-че-ские дроби с раз-ны-ми зна-ме-на-те-ля-ми, про-ве-дём ана-ло-гию с обык-но-вен-ны-ми дро-бя-ми и пе-ре-не-сём её на ал-геб-ра-и-че-ские дроби.

Рас-смот-рим про-стей-ший при-мер для обык-но-вен-ных дро-бей.

При-мер 1. Сло-жить дроби: .

Ре-ше-ние:

Вспом-ним пра-ви-ло сло-же-ния дро-бей. Для на-ча-ла дроби необ-хо-ди-мо при-ве-сти к об-ще-му зна-ме-на-те-лю. В роли об-ще-го зна-ме-на-те-ля для обык-но-вен-ных дро-бей вы-сту-па-ет наи-мень-шее общее крат-ное (НОК) ис-ход-ных зна-ме-на-те-лей.

Опре-де-ле-ние

Наи-мень-шее на-ту-раль-ное число, ко-то-рое де-лит-ся од-но-вре-мен-но на числа и .

Для на-хож-де-ния НОК необ-хо-ди-мо раз-ло-жить зна-ме-на-те-ли на про-стые мно-жи-те-ли, а затем вы-брать все про-стые мно-жи-те-ли, ко-то-рые вхо-дят в раз-ло-же-ние обоих зна-ме-на-те-лей.

; . Тогда в НОК чисел долж-ны вхо-дить две двой-ки и две трой-ки: .

После на-хож-де-ния об-ще-го зна-ме-на-те-ля, необ-хо-ди-мо для каж-дой из дро-бей найти до-пол-ни-тель-ный мно-жи-тель (фак-ти-че-ски, по-де-лить общий зна-ме-на-тель на зна-ме-на-тель со-от-вет-ству-ю-щей дроби).

Затем каж-дая дробь умно-жа-ет-ся на по-лу-чен-ный до-пол-ни-тель-ный мно-жи-тель. По-лу-ча-ют-ся дроби с оди-на-ко-вы-ми зна-ме-на-те-ля-ми, скла-ды-вать и вы-чи-тать ко-то-рые мы на-учи-лись на про-шлых уро-ках.

По-лу-ча-ем: .

Ответ: .

Рас-смот-рим те-перь сло-же-ние ал-геб-ра-и-че-ских дро-бей с раз-ны-ми зна-ме-на-те-ля-ми. Сна-ча-ла рас-смот-рим дроби, зна-ме-на-те-ли ко-то-рых яв-ля-ют-ся чис-ла-ми.

Сложение и вычитание алгебраических дробей с разными знаменателями

При-мер 2. Сло-жить дроби: .

Ре-ше-ние:

Ал-го-ритм ре-ше-ния аб-со-лют-но ана-ло-ги-чен преды-ду-ще-му при-ме-ру. Легко по-до-брать общий зна-ме-на-тель дан-ных дро-бей: и до-пол-ни-тель-ные мно-жи-те-ли для каж-дой из них.

.

Ответ: .

Итак, сфор-му-ли-ру-ем ал-го-ритм сло-же-ния и вы-чи-та-ния ал-геб-ра-и-че-ских дро-бей с раз-ны-ми зна-ме-на-те-ля-ми :

1. Найти наи-мень-ший общий зна-ме-на-тель дро-бей.

2. Найти до-пол-ни-тель-ные мно-жи-те-ли для каж-дой из дро-бей (по-де-лив общий зна-ме-на-тель на зна-ме-на-тель дан-ной дроби).

3. До-мно-жить чис-ли-те-ли на со-от-вет-ству-ю-щие до-пол-ни-тель-ные мно-жи-те-ли.

4. Сло-жить или вы-честь дроби, поль-зу-ясь пра-ви-ла-ми сло-же-ния и вы-чи-та-ния дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми.

Рас-смот-рим те-перь при-мер с дро-бя-ми, в зна-ме-на-те-ле ко-то-рых при-сут-ству-ют бук-вен-ные вы-ра-же-ния.

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Развивающие и обучающие пособия в интернет-магазине "Интеграл"
Пособие к учебнику Муравина Г.К.    Пособие к учебнику Макарычева Ю.Н.

Что такое алгебраическая дробь?

Алгебраическая дробь - это выражение вида: $\frac{P}{Q}$ .

Где:
P - числитель алгебраической дроби.
Q - знаменатель алгебраической дроби.

Приведем примеры алгебраических дробей:

$\frac{a}{b}$, $\frac{12}{q-p}$, $\frac{7y-4}{y}$.

Основные свойства алгебраических дробей

Свойство 1.
И числитель и знаменатель дроби можно умножить на одно и то же число (или на одночлен, или на многочлен). В итоге, мы получим ту же самую дробь, но представленную в другом виде.

По другому это преобразование называется тождественным . Его используют, чтобы привести алгебраическое (и не только) выражение к более простому виду, и работа с этим выражением будет удобнее.

$\frac{a}{4b^2}=\frac{a*3b}{4b^2*3b}=\frac{3ab}{12b^3}$.


И числитель и знаменатель мы умножили на одночлен $3b$. В итоге у нас получилась дробь, тождественная исходной.

$\frac{a^2}{6b^3}=\frac{a^2*2}{6b^3*2}=\frac{2a^2}{12b^3}$.


При необходимости алгебраическую дробь можно умножить на простое число. В этом примере и числитель и знаменатель мы умножили на число 2. И опять мы получили дробь, тождественную исходной.

Свойство 2.
И числитель, и знаменатель дроби можно разделить на одно и то же число (или одночлен, или многочлен). В итоге мы получим ту же самую дробь, но представленную в другом виде.

Как и в случае с умножением, к такому тождественному преобразованию прибегают, чтобы представить дробь в более простом виде и облегчить работу с ней.

Сложение и вычитание алгебраических дробей с одинаковыми знаменателями

Если у алгебраических дробей одинаковые знаменатели, их складывают, как обыкновенные дроби (складывают только числители, а знаменатель остается общим).

Общее правило:

$\frac{a}{d}+\frac{b}{d}-\frac{c}{d}=\frac{a+b-c}{d}$.


Пример.

Упростите выражение:

$\frac{2a^2+5}{a^2-ab}+\frac{2ab+b}{a^2-ab}-\frac{b+5}{a^2-ab}$.


Решение.

Используем правило сложения дробей о котором рассказано выше, то есть сложим числители, а знаменатель запишем общий.

$\frac{2a^2+5}{a^2-ab}+\frac{2ab+b}{a^2-ab}-\frac{b+5}{a^2-ab}=\frac{(2a^2+5)+(2ab+b)-(b+5)}{a^2-ab}$.


Поработаем с числителем.

$(2a^2+5)+(2ab+b)-(b+5)=$
$2a^2+5+2ab+b-b-5=2a^2+2ab$.


В результате получаем дробь:

$\frac{2a^2+2ab}{a^2-ab}$.


Ребята, перед тем как закончить решение проверьте: нельзя ли ещё упростить полученный результат. Ведь в этом заключается весь смысл преобразования - упростить выражение.
Если посмотреть внимательно, то можно понять, что полученную дробь можно еще упростить.

$\frac{2a^2+2ab}{a^2-ab}=\frac{2a(a+b)}{a(a-b)}=\frac{2(a+b)}{a-b}=\frac{2a+2b}{a-b}$.

Сложение и вычитание алгебраических дробей с разными знаменателями

При сложении алгебраических дробей с разными знаменателями надо действовать так же, как при работе с обыкновенными дробями. Сперва нужно привести дробь к общему знаменателю, а за тем сложить или вычесть числители дробей, в соответствии с общим правилом, которое мы рассмотрели.

Пример.
Вычислите:

$\frac{a}{4b^2}+\frac{a^2}{6b^3}$.


Решение.
Приведем эти дроби к общему знаменателю. В данного примера общим знаменателем является одночлен $12b^3$.
Тогда.

$\frac{a}{4b^2}+\frac{a^2}{6b^3}=\frac{3ab}{12b^3}+\frac{2a^2}{12b^3}=
\frac{3ab+2a^2}{12b^3}$.


Самое сложное - это нахождение общего знаменателя для дробей. В некоторых случаях - это не простая задача.
При нахождении общего знаменателя можно придерживаться правил:
1. Если оба знаменателя являются одночленами без скобок, то лучше в начале подобрать общий знаменатель для числа, а затем - для переменной. В нашем примере число - 12, а переменная - $b^3$.
2. Если знаменатель представляет из себя более сложное выражение, например, $х + 1$, $x +y$ и тому подобное, то лучше подобрать знаменатель в виде произведения знаменателей, например, $(х + у)(х - у)$. Такой знаменатель делится и на $х + у$, и на $х - у$.

Запомните!
Для двух алгебраических дробей общих знаменателей можно подобрать сколько угодно. Но для упрощения расчетов, нужно выбрать самый простой из возможных.