Какой волной является электромагнитная волна. Что такое электромагнитные волны

Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля.

В 1864 году Джеймс Клерк Максвелл предсказал возможность существования в пространстве электромагнитных волн. Это утверждение он выдвинул основываясь на выводах, вытекающих из анализа всех известных к тому моменту экспериментальных данных касательно электричества и магнетизма.

Максвелл математически объединил законы электродинамики, связав электрические и магнитные явления, и таким образом пришел к выводу, что изменяющиеся с течением времени электрическое и магнитное поля порождают друг друга.


Изначально он сделал акцент на том факте, что взаимосвязь магнитных и электрических явлений не симметрична, и ввел термин «вихревое электрическое поле», предложив свое, по-настоящему новое объяснение явления электромагнитной индукции, открытого Фарадеем: «всякое изменение магнитного поля приводит к появлению в окружающем пространстве вихревого электрического поля, имеющего замкнутые силовые линии».

Справедливым, по мнению Максвелла, было и обратное утверждение, что «изменяющееся электрическое поле рождает магнитное поле в окружающем пространстве», однако это утверждение оставалось поначалу только гипотезой.


Максвелл записал систему математических уравнений, которые непротиворечиво описали законы взаимных превращений магнитного и электрического полей, эти уравнения стали впоследствии основными уравнениями электродинамики, и стали называться «уравнения Максвелла» в честь записавшего их великого ученого. Гипотеза Максвелла, с опорой на написанные уравнения, возымела несколько чрезвычайно важных для науки и техники выводов, которые приведены ниже.

Электромагнитные волны действительно существуют



В пространстве могут существовать поперечные электромагнитные волны, представляющие собой распространяющееся с течением времени . На то что волны являются поперечными, указывает тот факт, что векторы магнитной индукции В и напряженности электрического поля Е взаимно перпендикулярны и оба лежат в плоскости перпендикулярной направлению распространения электромагнитной волны.

Скорость распространения электромагнитных волн в веществе конечна, и определяется она электрическими и магнитными свойствами вещества, по которому волна распространяется. Длина синусоидальной волны λ при этом связана со скоростью υ определенным точным соотношением λ = υ / f, и зависит от частоты f колебаний поля. Скорость c электромагнитной волны в вакууме - одна из фундаментальных физических констант - скорость света в вакууме.

Поскольку Максвелл заявлял о конечности скорости распространения электромагнитной волны, то это создало противоречие между его гипотезой и принятой в те времена теорией дальнодействия, согласно которой скорость распространения волн должна была бы быть бесконечной. Теорию Максвелла назвали поэтому теорией близкодействия.

В электромагнитной волне одновременно происходит превращение электрического и магнитного полей друг в друга, следовательно объемные плотности магнитной энергии и электрической энергии равны между собой. Следовательно справедливо утверждение, что модули напряженности электрического поля и индукции магнитного поля связаны между собой в каждой точке пространства следующим соотношением:

Электромагнитная волна в процессе своего распространения создает поток электромагнитной энергии, и если рассмотреть площадку в плоскости перпендикулярной направлению распространения волны, то за малое время через нее переместится определенное количество электромагнитной энергии. Плотность потока электромагнитной энергии - это количество энергии, переносимой электромагнитной волной через поверхность единичной площади за единицу времени. Подставив значения скорости, а также магнитной и электрической энергии, можно получить выражение для плотности потока через величины Е и В.

Поскольку направление распространения энергии волны совпадает с направлением скорости распространения волны, то поток энергии, распространяющийся в электромагнитной волне можно задать при помощи вектора, направленного так же, как и скорость распространения волны. Этот вектор получил название «вектор Пойнтинга» - в честь британского физика Генри Пойнтинга, разработавшего в 1884 году теорию распространения потока энергии электромагнитного поля. Плотность потока энергии волны измеряется в Вт/кв.м.

При действии электрического поля на вещество, в нем появляются небольшие токи, представляющие собой упорядоченное движение электрически заряженных частиц. Эти токи в магнитном поле электромагнитной волны подвергаются действию силы Ампера, которая направлена вглубь вещества. Сила Ампера и порождает в итоге давление.

Это явление позже, в 1900 году, было исследовано и подтверждено опытным путем русским физиком Петром Николаевичем Лебедевым, экспериментальная работа которого явилась очень важной для подтверждения теории электромагнетизма Максвелла и ее принятия и утверждения в дальнейшем.

Тот факт, что электромагнитная волна оказывает давление, позволяет судить о наличии у электромагнитного поля механического импульса, который можно выразить для единичного объема через объемную плотность электромагнитной энергии и скорость распространения волны в вакууме:

Поскольку импульс связан с движением массы, можно ввести и такое понятие как электромагнитная масса, и тогда для единичного объема это соотношение (в соответствии с СТО) примет характер универсального закона природы, и окажется справедливым для любых материальных тел, вне зависимости от формы материи. А электромагнитное поле тогда сродни материальному телу - обладает энергией W, массой m, импульсом p и конечной скоростью распространения v. То есть электромагнитное поле - это одна из форм реально существующей в природе материи.

Впервые в 1888 году Генрих Герц подтвердил экспериментально электромагнитную теорию Максвелла. Он опытным путем доказал реальность электромагнитных волн и изучил такие их свойства как преломление и поглощение в различных средах, а также отражение волн от металлических поверхностей.

Герц измерил длину волны , и показал, что скорость распространения электромагнитной волны равна скорости света. Экспериментальная работа Герца стала последним шагом к признанию электромагнитной теории Максвелла. Семь лет спустя, в 1895 году, русский физик Александр Степанович Попов применил электромагнитные волны для создания беспроводной связи.



В цепях постоянного тока заряды движутся с постоянной скоростью, и электромагнитные волны в этом случае в пространство не излучаются. Чтобы имело место излучение, необходимо воспользоваться антенной, в которой возбуждались бы переменные токи, то есть токи, быстро изменяющие свое направление.

В простейшем виде для излучения электромагнитных волн пригоден электрический диполь небольшого размера, у которого бы быстро изменялся во времени дипольный момент. Именно такой диполь называют сегодня «диполь Герца», размер которого в несколько раз меньше длины излучаемой им волны.

При излучении диполем Герца, максимальный поток электромагнитной энергии приходится на плоскость, перпендикулярную оси диполя. Вдоль оси диполя излучения электромагнитной энергии не происходит. В важнейших экспериментах Герца были использованы элементарные диполи как для излучения, так и для приема электромагнитных волн, так и было доказано существование электромагнитных волн.

М. Фарадей ввел понятие поля:

    вокруг покоящегося заряда возникает электростатическое поле,

    вокруг движущихся зарядов (тока) возникает магнитное поле.

В 1830 г. М. Фарадей открыл явление электромагнитной индукции: при изменении магнитного поля возникает вихревое электрическое поле.

Рисунок 2.7 - Вихревое электрическое поле

где,
- вектор напряженности электрического поля,
- вектор магнитной индукции.

Переменное магнитное поле создает вихревое электрическое поле.

В 1862 г. Д.К. Максвелл выдвинул гипотезу: при изменении электрического поля возникает вихревое магнитное поле.

Возникла идея о едином электромагнитном поле.

Рисунок 2.8 - Единое электромагнитное поле.

Переменное электрическое поле создает вихревое магнитное поле.

Электромагнитное поле - это особая форма материи - совокупность электрических и магнитных полей. Переменные электрические и магнитные поля существуют одновременно и образуют единое электромагнитное поле. Оно материально:

Проявляет себя в действии как на покоящиеся, так и на движущиеся заряды;

Распространяется с большой, но конечной скоростью;

Существует независимо от нашей воли и желаний.

При скорости заряда, равной нулю, существует только электрическое поле. При постоянной скорости заряда возникает электромагнитное поле.

При ускоренном движении заряда происходит излучение электромагнитной волны, кото­рая распространяется в пространстве с конечной скоростью.

Разработка идеи электромагнитных волн принадлежит Максвеллу, но уже Фарадей догадывался об их существовании, хотя побоялся опубликовать работу (она была прочитана более чем через 100 лет после его смерти).

Главное условие возникновения электромагнитной волны - ускоренное движение электрических зарядов.

Что собой представляет электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электромагнитное поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимно связаны.

Основным источником спектра электромагнитных волн является звезда Солнце. Часть спектра электромагнитных волн видит глаз человека. Этот спектр лежит в пределах 380...780 нм (рис. 2.1). В области видимого спектра глаз ощущает свет по-разному. Электромагнитные колебания с различной длиной волн вызывают ощущение света с различной окраской.

Рисунок 2.9 - Спектр электромагнитных волн

Часть спектра электромагнитных волн используется для целей радиотелевизионного вешания и связи. Источник электромагнитных волн - провод (антенна), в котором происходит колебание электрических зарядов. Процесс формирования полей, начавшийся вблизи провода, постепенно, точку за точкой, захватывает все пространство. Чем выше частота переменного тока, проходящего по проводу и порождающего электрическое или магнитное поле, тем интенсивнее создаваемые проводом радиоволны заданной длины.

Ра́дио (лат. radio - излучаю, испускаю лучи ← radius - луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Радиоволны (от радио...), электромагнитные волны с длиной волны > 500 мкм (частотой < 6×10 12 Гц).

Радиоволны - это электрические и магнитные поля, меняющиеся во времени. Скорость распространения радиоволн в свободном пространстве составляет 300000 км/с. Исходя из этого, можно определить длину радиоволны (м).

λ=300/f, гдеf - частота (МГц)

Звуковые колебания воздуха, созданные во время телефонного разговора, преобразуются микрофоном в электрические колебания звуковой частоты, которые по проводам передаются к аппаратуре абонента. Там, на другом конце линии, они с помощью излучателя телефона преобразуются в колебания воздуха, воспринимаемые абонентом как звуки. В телефонии средством связи цепи являются провода, в радиовещании - радиоволны.

«Сердцем» передатчика любой радиостанции является генератор - устройство, вырабатывающее колебания высокой, но строго постоянной для данной радиостанции частоты. Эти колебания радиочастоты, усиленные до необходимой мощности, поступают в антенну и возбуждают в окружающем ее пространстве электромагнитные колебания точно такой же частоты - радиоволны. Скорость удаления радиоволн от антенны радиостанции равна скорости света: 300 000 км/с, что почти в миллион раз быстрее распространения звука в воздухе. Это значит, что если на Московской радиовещательной станции в некоторый момент времени включили передатчик, то ее радиоволны меньше чем за 1 /30 с дойдут до Владивостока, а звук за это время успеет распространиться всего, лишь на 10- 11 м.

Радиоволны распространяются не только в воздухе, но и там, где его нет, например, в космическом пространстве. Этим они отличаются от звуковых волн, для которых совершенно необходим воздух или какая-либо другая плотная среда, например вода.

Электромагнитная волна – распространяющееся в пространстве электромагнитное поле (колебания векторов
). Вблизи заряда электрическое и магнитное поля изменяются со сдвигом фаз p/2.

Рисунок 2.10 - Единое электромагнитное поле.

На большом расстоянии от заряда электрическое и магнитное поля изменяются синфазно.

Рисунок 2.11 - Синфазное изменение электрического и магнитного полей.

Электромагнитная волна поперечна . Направление скорости электромагнитной волны совпадает с направлением движения правого винта при повороте ручки буравчика вектора к вектору .

Рисунок 2.12 - Электромагнитная волна.

Причем в электромагнитной волне выполняется соотношение
, где с – скорость света в вакууме.

Максвелл теоретически рассчитал энергию и скорость электромагнитных волн.

Таким образом, энергия волны прямо пропорциональна четвертой степени частоты . Значит, чтобы легче зафиксировать волну, необходимо, чтобы она была высокой частоты.

Электромагнитные волны были открыты Г. Герцем (1887).

Закрытый колебательный контур электромагнитных волн не излучает: вся энергия электрического поля конденсатора переходит в энергию магнитного поля катушки. Частота колебаний определяется параметрами колебательного контура:
.

Рисунок 2.13 - Колебательный контур.

Для увеличения частоты необходимо уменьшить L и C, т.е. развернуть катушку до прямого провода и, т.к.
, уменьшить площадь пластин и развести их на максимальное расстояние. Отсюда видно, что мы получим, по существу, прямой проводник.

Такой прибор называется вибратором Герца. Середина разрезается и подсоединяется к высокочастотному трансформатору. Между концами проводов, на которых закрепляются маленькие шаровые кондукторы, проскакивает электрическая искра, которая и является источником электромагнитной волны. Волна распространяется так, что вектор напряженности электрического поля колеблется в плоскости, в которой расположен проводник.

Рисунок 2.14 - Вибратор Герца.

Если параллельно излучателю расположить такой же проводник (антенну), то заряды в нем придут в колебательное движение и между кондукторами проскакивают слабые искры.

Герц обнаружил электромагнитные волны на опыте и измерил их скорость, которая совпала с рассчитанной Максвеллом и равной с=3 . 10 8 м/с.

Переменное электрическое поле порождает переменное магнитное поле, которое, в свою очередь, порождает переменное электрическое поле, то есть антенна, возбудившее одно из полей, вызывает появление единого электромагнитного поля. Важнейшее свойство этого поля в том, что оно распространяется в виде электромагнитных волн.

Скорость распространения электромагнитных волн в среде без потерь зависит от относительно диэлектрической и магнитной проницаемости среды. Для воздуха магнитная проницаемость среды равняется единице, следовательно, скорость распространения электромагнитных волн в этом случае равна скорости света.

Антенной может служить вертикальный провод, питаемый от генератора высокой частоты. Генератор затрачивает энергию на ускорение движения свободных электронов в проводнике, а эта энергия преобразуется в переменное электромагнитное поле, то есть электромагнитные волны. Чем больше частота тока генератора, тем быстрее изменяется электромагнитное поле и интенсивнее излечение волн.

С проводом антенны связаны как электрическое поле, силовые линии которого начинаются на положительных и кончаются на отрицательных зарядах, так и магнитное поле, линии которого замыкаются вокруг тока провода. Чем меньше период колебаний, тем меньше времени остается для возвращения энергии связанных полей в провод (то есть, к генератору) и тем больше переходит ее в свободные поля, которые распространяются далее в виде электромагнитных волн. Эффективное излучения электромагнитных волн происходит при условии соизмеримости длины волны и длины излучающего провода.

Таким образом, можно определить, что радиоволна - это не связанное с излучателем и каналообразующими устройствами электромагнитное поле, свободно распространяющееся в пространстве в виде волны с частотой колебаний от 10 -3 до 10 12 Гц.

Колебания электронов в антенне создаются источником периодически изменяющейся ЭДС с периодом Т . Если в некоторый момент поле у антенны имело максимальное значение, то такое же значение оно будет иметь спустя время Т . За это время существовавшее в начальный момент у антенны электромагнитное поле переместится на расстояние

λ = υТ (1)

Минимальное расстояние между двумя точками пространства, поле в которых имеет одинаковое значение, называется длиной волны. Как следует из (1), длина волны λ зависит от скорости ее распространения и периода колебаний электронов в антенне. Так как частота тока f = 1 / T , то длина волны λ = υ / f .

Радиолиния включает в себя следующие основные части:

Передатчик

Приемник

Среда, в которой распространяются радиоволны.

Передатчик и приемник являются управляемыми элементами радиолинии, так как можно увеличить мощность передатчика, подключить более эффективную антенну и увеличить чувствительность приемника. Среда является неуправляемым элементом радиолинии.

Отличие линии радиосвязи от проводных линий заключается в том, что в проводных линиях в качестве связующего звена используются провода или кабель, которые являются управляемыми элементами (можно изменить их электрические параметры).

Многие закономерности волновых процессов имеют универсальный характер и в равной мере справедливы для волн различной природы: механических волн в упругой среде, волн на поверхности воды, в натянутой струне и т. д. Не являются исключением и электромагнитные волны, представляющие собой процесс распространения колебаний электромагнитного поля. Но в отличие от других видов волн, распространение которых происходит в какой-то материальной среде, электромагнитные волны могут распространяться в пустоте: никакой материальной среды для распространения электрического и магнитного полей не требуется. Однако электромагнитные волны могут существовать не только в вакууме, но и в веществе.

Предсказание электромагнитных волн. Существование электромагнитных волн было теоретически предсказано Максвеллом в результате анализа предложенной им системы уравнений, описывающих электромагнитное поле. Максвелл показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью см/с, в которых векторы электрического и магнитного полей в каждый момент времени в каждой точке пространства перпендикулярны друг другу и перпендикулярны направлению распространения волн.

Экспериментально электромагнитные волны были открыты и изучены Герцем только спустя 10 лет после смерти Максвелла.

Открытый вибратор. Чтобы понять, каким образом можно получить электромагнитные волны на опыте, рассмотрим «открытый» колебательный контур, у которого обкладки конденсатора раздвинуты (рис. 176) и поэтому электрическое поле занимает большую область пространства. При увеличении расстояния между обкладками емкость С конденсатора убывает и в соответствии с формулой Томсона возрастает частота собственных колебаний. Если еще и катушку индуктивности заменить отрезком провода, то уменьшится индуктивность а частота собственных колебаний возрастет еще больше. При этом не только электрическое, но и магнитное поле, которое раньше было заключено внутри катушки, теперь займет большую область пространства, охватывающую этот провод.

Увеличение частоты колебаний в контуре, как и увеличение его линейных размеров, приводит к тому, что период собственных

колебаний становится сравнимым со временем распространения электромагнитного поля вдоль всего контура. Это означает, что процессы собственных электромагнитных колебаний в таком открытом контуре уже нельзя считать квазистационарными.

Рис. 176. Переход от колебательного контура к открытому вибратору

Сила тока в разных его местах в один и тот же момент времени разная: на концах контура она всегда равна нулю, а в середине (там, где прежде была катушка) она осциллирует с максимальной амплитудой.

В предельном случае, когда колебательный контур превратился просто в отрезок прямого провода, распределение силы тока вдоль контура в некоторый момент времени показано на рис. 177а. В тот момент, когда сила тока в таком вибраторе максимальна, охватывающее его магнитное поле также достигает максимума, а электрическое поле вблизи вибратора отсутствует. Через четверть периода обращается в нуль сила тока, а вместе с ней и магнитное поле вблизи вибратора; электрические заряды сосредоточиваются вблизи концов вибратора, а их распределение имеет вид, показанный на рис. 1776. Электрическое поле вблизи вибратора в этот момент максимально.

Рис. 177. Распределение вдоль открытого вибратора силы тока в момент, когда она максимальна (а), и распределение зарядов спустя четверть периода (б)

Эти колебания заряда и тока, т. е. электромагнитные колебания в открытом вибраторе, вполне аналогичны механическим колебаниям, которые могут происходить в пружине осциллятора, если убрать присоединенное к ней массивное тело. В этом случае придется учитывать массу отдельных частей пружины и рассматривать ее как распределенную систему, у которой каждый элемент обладает как упругими, так и инертными свойствами. В случае открытого электромагнитного вибратора каждый его элемент также одновременно обладает и индуктивностью, и емкостью.

Электрическое и магнитное поля вибратора. Неквазистационарный характер колебаний в открытом вибраторе приводит к тому, что создаваемые отдельными его участками поля на некотором расстоянии от вибратора уже не компенсируют друг друга, как это имеет место для «закрытого» колебательного контура с сосредоточенными параметрами, где колебания квазистационарны, электрическое поле целиком сосредоточено внутри конденсатора, а магнитное - внутри катушки. Из-за такого пространственного разделения электрического и магнитного полей они непосредственно не связаны друг с другом: их взаимное превращение обусловлено только током - переносом заряда по контуру.

У открытого вибратора, где электрическое и магнитное поля перекрываются в пространстве, происходит их взаимное влияние: изменяющееся магнитное поле порождает вихревое электрическое поле, а изменяющееся электрическое поле порождает магнитное поле. В результате оказывается возможным существование таких «самоподдерживающихся» и распространяющихся в свободном пространстве полей на большом расстоянии от вибратора. Это и есть излучаемые вибратором электромагнитные волны.

Опыты Герца. Вибратор, с помощью которого Г. Герцем в 1888 г. впервые были экспериментально получены электромагнитные волны, представлял собой прямолинейный проводник с небольшим воздушным промежутком посредине (рис. 178а). Благодаря такому промежутку можно было сообщить двум половинам вибратора значительные заряды. Когда разность потенциалов достигала определенного предельного значения, в воздушном зазоре возникал пробой (проскакивала искра) и электрические заряды через ионизированный воздух могли перетекать с одной половины вибратора на другую. Б открытом контуре возникали электромагнитные колебания. Чтобы быстропеременные токи существовали только в вибраторе и не замыкались через источник питания, между вибратором и источником включались дроссели (см. рис. 178а).

Рис. 178. Вибратор Герца

Высокочастотные колебания в вибраторе существуют, пока искра замыкает промежуток между его половинами. Затухание таких колебаний в вибраторе происходит в основном не за счет джоулевых потерь на сопротивлении (как в закрытом колебательном контуре), а за счет излучения электромагнитных волн.

Для обнаружения электромагнитных волн Герц применял второй (приемный) вибратор (рис. 1786). Под действием переменного электрического поля приходящей от излучателя волны электроны в приемном вибраторе совершают вынужденные колебания, т. е. в вибраторе возбуждается быстропеременный ток. Если размеры приемного вибратора такие же, как и у излучающего, то частоты собственных электромагнитных колебаний в них совпадают и вынужденные колебания в приемном вибраторе достигают заметной величины вследствие резонанса. Эти колебания Герц обнаруживал по проскакиванию искры в микроскопическом зазоре в середине приемного вибратора или по свечению миниатюрной газоразрядной трубки Г, включенной между половинами вибратора.

Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства - поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. На опыте удалось также измерить скорость электромагнитных волн, которая оказалась равной скорости света.

Совпадение скорости электромагнитных волн с измеренной задолго до их открытия скоростью света послужило отправным пунктом для отождествления света с электромагнитными волнами и создания электромагнитной теории света.

Электромагнитная волна существует без источников полей в том смысле, что после ее излучения электромагнитное поле волны не связано с источником. Этим электромагнитная волна отличается от статических электрического и магнитного полей, которые не существуют в отрыве от источника.

Механизм излучения электромагнитных волн. Излучение электромагнитных волн происходит при ускоренном движении электрических зарядов. Понять, каким образом поперечное электрическое поле волны возникает из радиального кулоновского поля точечного заряда, можно с помощью следующего простого рассуждения, предложенного Дж. Томсоном.

Рис. 179. Поле неподвижного точечного заряда

Рассмотрим электрическое поле, создаваемое точечным зарядом Если заряд покоится, то его электростатическое поле изображается радиальными силовыми линиями, выходящими из заряда (рис. 179). Пусть в момент времени заряд под действием какой-то внешней силы начинает двигаться с ускорением а, а спустя некоторое время действие этой силы прекращается, так что дальше заряд движется равномерно со скоростью График скорости движения заряда показан на рис. 180.

Представим себе картину линий электрического поля, создаваемого этим зарядом, спустя большой промежуток времени Поскольку электрическое поле распространяется со скоростью света с,

то до точек, лежащих за пределами сферы радиуса изменение электрического поля, вызванное движением заряда, дойти не могло: за пределами этой сферы поле такое же, каким оно было при неподвижном заряде (рис. 181). Напряженность этого поля (в гауссовой системе единиц) равна

Все изменение электрического поля, вызванное ускоренным движением заряда в течение времени в момент времени находится внутри тонкого шарового слоя толщины наружный радиус которого равен а внутренний - Это показано на рис. 181. Внутри сферы радиуса электрическое поле - это поле равномерно движущегося заряда.

Рис. 180. График скорости заряда

Рис. 181. Линии напряженности электрического поля заряда, движущегося согласно графику на рис. 180

Рис. 182. К выводу формулы для напряженности поля излучения ускоренно движущегося заряда

Если скорость заряда много меньше скорости света с, то это поле в момент времени совпадает с полем неподвижного точечного заряда находящегося на расстоянии от начала (рис. 181): поле медленно движущегося с постоянной скоростью заряда перемещается вместе с ним, а пройденное зарядом за время расстояние, как видно из рис. 180, можно считать равным если г»т.

Картину электрического поля внутри шарового слоя легко найти, учитывая непрерывность силовых линий. Для этого нужно соединить соответствующие радиальные силовые линии (рис. 181). Вызванный ускоренным движением заряда излом силовых линий «убегает» от заряда со скоростью с. Излом на силовых линиях между

сферами это и есть интересующее нас поле излучения, распространяющееся со скоростью с.

Чтобы найти поле излучения, рассмотрим одну из линий напряженности, составляющую некоторый угол с направлением движения заряда (рис. 182). Разложим вектор напряженности электрического поля в изломе Е на две составляющие: радиальную и поперечную Радиальная составляющая - это напряженность электростатического поля, создаваемого зарядом на расстоянии от него:

Поперечная составляющая - это напряженность электрического поля в волне, излученной зарядом при ускоренном движении. Так как эта волна бежит по радиусу, то вектор перпендикулярен направлению распространения волны. Из рис. 182 видно, что

Подставляя сюда из (2), находим

Учитывая, что а отношение есть ускорение а, с которым двигался заряд в течение промежутка времени от 0 до перепишем это выражение в виде

Прежде всего обратим внимание на то, что напряженность электрического поля волны убывает обратно пропорционально расстоянию от центра, в отличие от напряженности электростатического поля которая пропорциональна Такой зависимости от расстояния и следовало ожидать, если принять во внимание закон сохранения энергии. Так как при распространении волны в пустоте поглощения энергии не происходит, то количество энергии, прошедшее через сферу любого радиуса, одинаково. Поскольку площадь поверхности сферы пропорциональна квадрату ее радиуса, то поток энергии через единицу ее поверхности должен быть обратно пропорционален квадрату радиуса. Учитывая, что плотность энергии электрического поля волны равна приходим к выводу, что

Далее отметим, что напряженность поля волны в формуле (4) в момент времени зависит от ускорения заряда а в момент времени волна, излученная в момент достигает точки, находящейся на расстоянии спустя время, равное

Излучение осциллирующего заряда. Предположим теперь, что заряд все время движется вдоль прямой с некоторым переменным ускорением вблизи начала координат, например совершает гармонические колебания. Тоща он будет излучать электромагнитные волны непрерывно. Напряженность электрического поля волны в точке, находящейся на расстоянии от начала координат, по-прежнему определяется формулой (4), причем поле в момент времени зависит от ускорения заряда а в более ранний момент

Пусть движение заряда представляет собой гармоническое колебание вблизи начала координат с некоторой амплитудой А и частотой со:

Ускорение заряда при таком движении дается выражением

Подставляя ускорение заряда в формулу (5), получаем

Изменение электрического поля в любой точке при прохождении такой волны представляет собой гармоническое колебание с частотой , т. е. осциллирующий заряд излучает монохроматическую волну. Разумеется, формула (8) справедлива на расстояниях больших по сравнению с амплитудой колебаний заряда А.

Энергия электромагнитной волны. Плотность энергии электрического поля монохроматической волны, излучаемой зарядом, можно найти с помощью формулы (8):

Плотность энергии пропорциональна квадрату амплитуды колебаний заряда и четвертой степени частоты.

Любое колебание связано с периодическими переходами энергии из одного вида в другой и обратно. Например, колебания механического осциллятора сопровождаются взаимными превращениями кинетической энергии и потенциальной энергии упругой деформации. При изучении электромагнитных колебаний в контуре мы видели, что аналогом потенциальной энергии механического осциллятора является энергия электрического поля в конденсаторе, а аналогом кинетической энергии - энергия магнитного поля катушки. Эта аналогия справедлива не только для локализованных колебаний, но и для волновых процессов.

В монохроматической волне, бегущей в упругой среде, плотности кинетической и потенциальной энергий в каждой точке совершают гармоническое колебание с удвоенной частотой, причем так, что их значения совпадают в любой момент времени. Так же и в бегущей монохроматической электромагнитной волне: плотности энергии электрического и магнитного полей, совершая гармоническое колебание с частотой равны друг другу в каждой точке в любой момент времени.

Плотность энергии магнитного поля выражается через индукцию В следующим образом:

Приравнивая плотности энергии электрического и магнитного полей в бегущей электромагнитной волне, убеждаемся, что индукция магнитного поля в такой волне зависит от координат и времени точно так же, как напряженность электрического поля. Другими словами, в бегущей волне индукция магнитного поля и напряженность электрического поля равны друг другу в любой точке в любой момент времени (в гауссовой системе единиц):

Поток энергии электромагнитной волны. Полная плотность энергии электромагнитного поля в бегущей волне вдвое больше плотности энергии электрического поля (9). Плотность потока энергии у, переносимой волной, равна произведению плотности энергии на скорость распространения волны . С помощью формулы (9) можно увидеть, что поток энергии через любую поверхность осциллирует с частотой Для нахождения среднего значения плотности потока энергии необходимо усреднить по времени выражение (9). Так как среднее значение равно 1/2, то для получаем

Рис. 183. Угловое распределение энергии» излучаемой осциллирующим зарядом

Плотность потока энергии в волне зависит от направления: в том направлении, по которому происходят колебания заряда, энергия вовсе не излучается Наибольшее количество энергии излучается в плоскости, перпендикулярной этому направлению Угловое распределение излучаемой осциллирующим зарядом энергии показано на рис. 183. Заряд совершает колебания вдоль оси Из начала координат проводятся отрезки, длина которых пропорциональна излучаемой в данном

направлении энергии, т. е. На диаграмме показана линия, соединяющая концы этих отрезков.

Распределение энергии по направлениям в пространстве характеризуется поверхностью, которая получается вращением диаграммы вокруг оси

Поляризация электромагнитных волн. Волна, порождаемая вибратором при гармонических колебаниях, называется монохроматической. Монохроматическая волна характеризуется определенной частотой со и длиной волны X. Длина волны и частота связаны через скорость распространения волны с:

Электромагнитная волна в вакууме является поперечной: вектор напряженности электромагнитного поля волны, как это видно из приведенных выше рассуждений, перпендикулярен направлению распространения волны. Проведем через точку наблюдения Р на рис. 184 сферу с центром в начале координат, около которого вдоль оси совершает колебания излучающий заряд. Проведем на ней параллели и меридианы. Тогда вектор Е поля волны будет направлен по касательной к меридиану, а вектор В перпендикулярен вектору Е и направлен по касательной к параллели.

Чтобы убедиться в этом, рассмотрим подробнее взаимосвязь электрического и магнитного полей в бегущей волне. Эти поля после излучения волны уже не связаны с источником. При изменении электрического поля волны возникает магнитное поле, силовые линии которого, как мы видели при изучении тока смещения, перпендикулярны силовым линиям электрического поля. Это переменное магнитное поле, изменяясь, в свою очередь приводит к появлению вихревого электрического поля, которое перпендикулярно породившему его магнитному полю. Таким образом, при распространении волны электрическое и магнитное поля поддерживают друг друга, оставаясь все время взаимно перпендикулярными. Так как в бегущей волне изменение электрического и магнитного полей происходит в фазе друг с другом, то мгновенный «портрет» волны (векторы Е и В в разных точках линии вдоль направления распространения) имеет вид, показанный на рис. 185. Такая волна называется линейно поляризованной. Совершающий гармоническое колебание заряд излучает по всем направлениям линейно поляризованные волны. В бегущей по любому направлению линейно поляризованной волне вектор Е все время находится в одной плоскости.

Так как в линейном электромагнитном вибраторе заряды совершают именно такое осциллирующее движение, то излучаемая вибратором электромагнитная волна поляризована линейно. В этом легко убедиться на опыте, изменяя ориентацию приемного вибратора относительно излучающего.

Рис. 185. Электрическое и магнитное поля в бегущей линейно поляризованной волне

Сигнал имеет наибольшую величину, когда приемный вибратор параллелен излучающему (см. рис. 178). Если приемный вибратор повернуть перпендикулярно излучающему, то сигнал пропадает. Электрические колебания в приемном вибраторе могут появиться только благодаря составляющей электрического поля волны, направленной вдоль вибратора. Поэтому такой опыт свидетельствует о том, что электрическое поле в волне параллельно излучающему вибратору.

Возможны и другие виды поляризации поперечных электромагнитных волн. Если, например, вектор Е в некоторой точке при прохождении волны равномерно вращается вокруг направления распространения, оставаясь неизменным по модулю, то волна называется циркулярно поляризованной или поляризованной по кругу. Мгновенный «портрет» электрического поля такой электромагнитной волны показан на рис. 186.

Рис. 186. Электрическое поле в бегущей циркулярно поляризованной волне

Волну круговой поляризации можно получить при сложении двух распространяющихся в одном направлении линейно поляризованных волн одинаковой частоты и амплитуды, векторы электрического поля в которых взаимно перпендикулярны. В каждой из волн вектор электрического поля в каждой точке совершает гармоническое колебание. Чтобы при сложении таких взаимно перпендикулярных колебаний получилось вращение результирующего вектора, необходим сдвиг фаз на Другими словами, складываемые линейно поляризованные волны должны быть сдвинуты на четверть длины волны одна относительно другой.

Импульс волны и давление света. Наряду с энергией электромагнитная волна обладает и импульсом. Если волна поглощается, то ее импульс передается тому объекту, который ее поглощает. Отсюда следует, что при поглощении электромагнитная волна оказывает давление на преграду. Объяснить происхождение давления волны и найти величину этого давления можно следующим образом.

Направлены по одной прямой. Тогда поглощаемая зарядом мощность Р равна

Будем считать, что вся энергия падающей волны поглощается преградой. Так как на единицу площади поверхности преграды в единицу времени волна приносит энергию то оказываемое волной при нормальном падении давление равно плотности энергии волны Сила давления поглощаемой электромагнитной волны сообщает преграде в единицу времени импульс, равный согласно формуле (15) поглощенной энергии, деленной на скорость света с. А это означает, что поглощенная электромагнитная волна обладала импульсом, который равен энергии, деленной на скорость света.

Впервые давление электромагнитных волн экспериментально было обнаружено П. Н. Лебедевым в 1900 г. в исключительно тонких опытах.

Чем отличаются квазистационарные электромагнитные колебания в закрытом колебательном контуре от высокочастотных колебаний в открытом вибраторе? Приведите механическую аналогию.

Поясните, почему при электромагнитных квазистационарных колебаниях в закрытом контуре не происходит излучение электромагнитных волн. Почему излучение происходит при электромагнитных колебаниях в открытом вибраторе?

Опишите и объясните опыты Герца по возбуждению и обнаружению электромагнитных волн. Какую роль играет искровой промежуток в передающем и приемном вибраторах?

Поясните, каким образом при ускоренном движении электрического заряда продольное электростатическое поле превращается в поперечное электрическое поле излучаемой им электромагнитной волны.

Исходя из энергетических соображений, покажите, что напряженность электрического поля сферической волны, излучаемой вибратором, убывает как 1 1г (в отличие от для электростатического поля).

Что такое монохроматическая электромагнитная волна? Что такое длина волны? Как она связана с частотой? В чем заключается свойство поперечности электромагнитных волн?

Что называется поляризацией электромагнитной волны? Какие виды поляризации вам известны?

Какие доводы вы можете привести для обоснования того, что электромагнитная волна обладает импульсом?

Объясните роль силы Лоренца в возникновении силы давления электромагнитной волны на преграду.

В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.

Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна - распространение электромагнитных полей в пространстве и во времени.

Электромагнитные волны, в отличие от упругих (звуковых) волн , могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с , то есть со скоростью света.

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна , ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Радиоволны - это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением . Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Принцип радиосвязи

Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур "открывают", т.е. создают условия для того, чтобы поле "уходило" в пространство. Это устройство называется открытым колебательным контуром - антенной .

Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от до Гц.

Радар (радиолокатор)

Устройство, которое передает ультракороткие волны и тут же их принимает. Излучение осуществляется короткими импульсами. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить дальность до предмета.

Радар скорости работает по аналогичному принципу. Подумайте, как радар определяет скорость движущейся машины.