Метод регрессии применяется при. Регрессионный анализ

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.


Теперь, когда мы перейдем во вкладку «Данные» , на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных» .

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Линейная регрессия в программе Excel

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк. В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.


Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Одним из основных показателей является R-квадрат . В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты» . Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

В своих работах, датированных ещё 1908 годом. Он описал его на примере работы агента, осуществляющего продажу недвижимости. В своих записях специалист по торговле домами вёл учёт широкого спектра исходных данных каждого конкретного строения. По результатам торгов определялось, какой фактор имел наибольшее влияние на цену сделки.

Анализ большого количества сделок дал интересные результаты. На конечную стоимость оказывали влияние множество факторов, иногда приводя к парадоксальным выводам и даже к явным «выбросам», когда дом с высоким изначальным потенциалом продавался по заниженному ценовому показателю.

Вторым примером применения подобного анализа приведена работа которому было доверено определение вознаграждения сотрудникам. Сложность задачи заключалась в том, что требовалась не раздача фиксированной суммы каждому, а строгое соответствие её величины конкретно выполненной работе. Появление множества задач, имеющих практически сходный вариант решения, потребовало более детального их изучения на математическом уровне.

В существенное место было отведено под раздел «регрессионный анализ», в нём объединились практические методы, используемые для исследования зависимостей, подпадающих под понятие регрессионных. Эти взаимосвязи наблюдаются между данными, полученными в ходе статистических исследований.

Среди множества решаемых задач основными ставит перед собой три цели: определение для уравнения регрессии общего вида; построение оценок параметров, являющихся неизвестными, которые входят в состав уравнения регрессии; проверка статистических регрессионных гипотез. В ходе изучения связи, возникающей между парой величин, полученных в результате экспериментальных наблюдений и составляющих ряд (множество) типа (x1, y1), ..., (xn, yn), опираются на положения теории регрессии и предполагают, что для одной величины Y наблюдается определённое вероятностное распределение, при том, что другое X остаётся фиксированным.

Результат Y зависит от значения переменной X, зависимость эта может определяться различными закономерностями, при этом на точность полученных результатов оказывает влияние характер наблюдений и цель анализа. Экспериментальная модель основывается на определённых допущениях, которые являются упрощёнными, но правдоподобными. Основным условием является то, что параметр X является величиной контролируемой. Его значения задаются до начала эксперимента.

Если в ходе эксперимента используется пара неконтролируемых величин XY, то регрессионный анализ осуществляется одним и тем же способом, но для интерпретации результатов, в ходе которой изучается связь исследуемых случайных величин, применяются методы Методы математической статистики не являются отвлеченной темой. Они находят себе применение в жизни в самых различных сферах деятельности человека.

В научной литературе для определения выше указанного метода нашёл широкое использование термин линейный регрессионный анализ. Для переменной X применяют термин регрессор или предиктор, а зависимые Y-переменные ещё называют критериальными. В данной терминологии отражается лишь математическая зависимость переменных, но никак не следственно-причинные отношения.

Регрессионный анализ служит наиболее распространённым методом, который используется в ходе обработки результатов самых различных наблюдений. Физические и биологические зависимости изучаются по средствам данного метода, он реализован и в экономике, и в технике. Масса других областей используют модели регрессионного анализа. Дисперсионный анализ, статистический анализ многомерный тесно сотрудничают с данным способом изучения.

Понятия корреляции и регрессии непосредственно связаны меж­ду собой. В корреляционном и регрессионном анализе много общих вычислительных приемов. Они используются для выявления причин­но-следственных соотношений между явлениями и процессами. Одна­ко, если корреляционный анализ позволяет оценить силу и направ­ление стохастической связи, то регрессионный анализ - еще и фор­му зависимости.

Регрессия может быть:

а) в зависимости от числа явлений (переменных):

Простой (регрессия между двумя переменными);

Множественной (регрессия между зависимой переменной (y) и несколькими объясняющими ее переменными (х1, х2...хn);

б) в зависимости от формы:

Линейной (отображается линейной функцией, а между изучае­мыми переменными существуют линейные соотношения);

Нелинейной (отображается нелинейной функцией, между изу­чаемыми переменными связь носит нелинейный характер);

в) по характеру связи между включенными в рассмотрение пе­ременными:

Положительной (увеличение значения объясняющей переменной приводит к увеличению значения зависимой переменной и наоборот);

Отрицательной (с увеличением значения объясняющей переменной значение объясняемой переменной уменьшается);

г) по типу:

Непосредственной (в этом случае причина оказывает прямое воздействие на следствие, т.е. зависимая и объясняющая перемен­ные связаны непосредственно друг с другом);

Косвенной (объясняющая переменная оказывает опосредован­ное действие через третью или ряд других переменных на зависимую переменную);

Ложной (нонсенс регрессия) - может возникнуть при поверх­ностном и формальном подходе к исследуемым процессам и явлениям. Примером бессмысленных является регрессия, устанавливающая связь между уменьшением количества потребляемого алкоголя в нашей стране и уменьшением продажи стирального порошка.

При проведении регрессионного анализа решаются следующие основные задачи:

1. Определение формы зависимости.

2. Определение функции регрессии. Для этого используют ма­тематическое уравнение того или иного типа, позволяющее, во-пер­вых, установить общую тенденцию изменения зависимой перемен­ной, а, во-вторых, вычислить влияние объясняющей переменной (или нескольких переменных) на зависимую переменную.

3. Оценка неизвестных значений зависимой переменной. Полу­ченная математическая зависимость (уравнение регрессии) позволя­ет определять значение зависимой переменной как в пределах ин­тервала заданных значений объясняющих переменных, так и за его пределами. В последнем случае регрессионный анализ выступает в качестве полезного инструмента при прогнозировании изменений со­циально-экономических процессов и явлений (при условии сохране­ния существующих тенденций и взаимосвязей). Обычно длина вре­менного отрезка, на который осуществляется прогнозирование, выбирается не более половины интервала времени, на котором прове­дены наблюдения исходных показателей. Можно осуществить как пас­сивный прогноз, решая задачу экстраполяции, так и активный, ведя рассуждения по известной схеме "если..., то" и подставляя раз­личные значения в одну или несколько объясняющих переменных рег­рессии.



Для построения регрессии используется специальный метод, получивший название метода наименьших квадратов . Этот метод име­ет преимущества перед другими методами сглаживания: сравнительно простое математическое определение искомых параметров и хорошее теоретическое обоснование с вероятностной точки зрения.

При выборе модели регрессии одним из существенных требова­ний к ней является обеспечение наибольшей возможной простоты, позволяющей получить решение с достаточной точностью. Поэтому для установления статистических связей вначале, как правило, рассматривают модель из класса линейных функций (как наиболее простейшего из всех возможных классов функций):

где bi, b2...bj - коэффициенты, определяющие влияние независимых переменных хij на величину yi; аi - свободный член; ei - слу­чайное отклонение, которое отражает влияние неучтенных факторов на зависимую переменную; n - число независимых переменных; N ­число наблюдений, причем должно соблюдаться условие (N . n+1).

Линейная модель может описывать весьма широкий класс различных задач. Однако на практике, в частности в социально-эконо­мических системах, подчас затруднительно применение линейных мо­делей из-за больших ошибок аппроксимации. Поэтому нередко ис­пользуются функции нелинейной множественной регрессии, допускающие линеаризацию. К их числу, например, относится производст­венная функция (степенная функция Кобба-Дугласа), нашедшая при­менение в различных социально-экономических исследованиях. Она имеет вид:

где b 0 - нормировочный множитель, b 1 ...b j - неизвестные коэффи­циенты, e i - случайное отклонение.

Используя натуральные логарифмы, можно преобразовать это уравнение в линейную форму:

Полученная модель позволяет использовать стандартные проце­дуры линейной регрессии, описанные выше. Построив модели двух видов (аддитивные и мультипликативные), можно выбрать наилучшие и провести дальнейшие исследования с меньшими ошибками аппрокси­мации.

Существует хорошо развитая система подбора аппроксимирующих функций - методика группового учета аргументов (МГУА) .

О правильности подобранной модели можно судить по результа­там исследования остатков, являющихся разностями между наблю­даемыми величинами y i и соответствующими прогнозируемыми с по­мощью регрессионного уравнения величинами y i . В этом случае для проверки адекватности модели рассчитывается средняя ошибка ап­проксимации:

Модель считается адекватной, если e находится в пределах не более 15%.

Особо подчеркнем, что применительно к социально-экономичес­ким системам далеко не всегда выполняются основные условия адек­ватности классической регрессионной модели.

Не останавливаясь на всех причинах возникающей неадекват­ности, назовем лишь мультиколлинеарность - самую сложную пробле­му эффективного применения процедур регрессионного анализа при изучении статистических зависимостей. Под мультиколлинеарностью понимается наличие линейной связи между объясняющими переменны­ми.

Это явление:

а) искажает смысл коэффициентов регрессии при их содержа­тельной интерпретации;

б) снижает точность оценивания (возрастает дисперсия оце­нок);

в) усиливает чувствительность оценок коэффициентов к выбо­рочным данным (увеличение объема выборки может сильно повлиять на значения оценок).

Существуют различные приемы снижения мультиколлинеарности. Наиболее доступный способ - устранение одной из двух переменных, если коэффициент корреляции между ними превышает значение, рав­ное по абсолютной величине 0,8. Какую из переменных оставить ре­шают, исходя из содержательных соображений. Затем вновь прово­дится расчет коэффициентов регрессии.

Использование алгоритма пошаговой регрессии позволяет пос­ледовательно включать в модель по одной независимой переменной и анализировать значимость коэффициентов регрессии и мультиколли­неарность переменных. Окончательно в исследуемой зависимости ос­таются только те переменные, которые обеспечивают необходимую значимость коэффициентов регрессии и минимальное влияние мульти­коллинеарности.

Регрессионный анализ лежит в основе создания большинства эконометрических моделей, к числу которых следует отнести и модели оценки стоимости. Для построения моделей оценки этот метод можно использовать, если количество аналогов (сопоставимых объектов) и количество факторов стоимости (элементов сравнения) соотносятся между собой следующим образом: п > (5 -г-10) х к, т.е. аналогов должно быть в 5-10 раз больше, чем факторов стоимости. Это же требование к соотношению количества данных и количества факторов распространяется и на другие задачи: установление связи между стоимостью и потребительскими параметрами объекта; обоснование порядка расчета корректирующих индексов; выяснение трендов цен; установление связи между износом и изменениями влияющих факторов; получение зависимостей для расчета нормативов затрат и т.п. Выполнение данного требования необходимо для того, чтобы уменьшить вероятность работы с выборкой данных, которая не удовлетворяет требованию нормальности распределения случайных величин.

Регрессионная связь отражает лишь усредненную тенденцию изменения результирующей переменной, например, стоимости, от изменения одной или нескольких факторных переменных, например, местоположения, количества комнат, площади, этажа и т.п. В этом заключается отличие регрессионной связи от функциональной, при которой значение результирующей переменной строго определено при заданном значении факторных переменных.

Наличие регрессионной связи / между результирующей у и факторными переменными х р ..., х к (факторами) свидетельствует о том, что эта связь определяется не только влиянием отобранных факторных переменных, но и влиянием переменных, одни из которых вообще неизвестны, другие не поддаются оценке и учету:

Влияние неучтенных переменных обозначается вторым слагаемым данного уравнения ?, которое называют ошибкой аппроксимации.

Различают следующие типы регрессионных зависимостей:

  • ? парная регрессия - связь между двумя переменными (результирующей и факторной);
  • ? множественная регрессия - зависимость одной результирующей переменной и двух или более факторных переменных, включенных в исследование.

Основная задача регрессионного анализа - количественное определение тесноты связи между переменными (при парной регрессии) и множеством переменных (при множественной регрессии). Теснота связи количественно выражается коэффициентом корреляции.

Применение регрессионного анализа позволяет установить закономерность влияния основных факторов (гедонистических характеристик ) на изучаемый показатель как в их совокупности, так и каждого из них в отдельности. С помощью регрессионного анализа, как метода математической статистики, удается, во-первых, найти и описать форму аналитической зависимости результирующей (искомой) переменной от факторных и, во-вторых, оценить тесноту этой зависимости.

Благодаря решению первой задачи получают математическую регрессионную модель, с помощью которой затем рассчитывают искомый показатель при заданных значениях факторов. Решение второй задачи позволяет установить надежность рассчитанного результата.

Таким образом, регрессионный анализ можно определить как совокупность формальных (математических) процедур, предназначенных для измерения тесноты, направления и аналитического выражения формы связи между результирующей и факторными переменными, т.е. на выходе такого анализа должна быть структурно и количественно определенная статистическая модель вида:

где у - среднее значение результирующей переменной (искомого показателя, например, стоимости, аренды, ставки капитализации) по п ее наблюдениям; х - значение факторной переменной (/-й фактор стоимости); к - количество факторных переменных.

Функция f(x l ,...,x lc), описывающая зависимость результирующей переменной от факторных, называется уравнением (функцией) регрессии. Термин «регрессия» (regression (лат.) - отступление, возврат к чему-либо) связан со спецификой одной из конкретных задач, решенных на стадии становления метода, и в настоящее время не отражает всей сущности метода, но продолжает применяться.

Регрессионный анализ в общем случае включает следующие этапы:

  • ? формирование выборки однородных объектов и сбор исходной информации об этих объектах;
  • ? отбор основных факторов, влияющих на результирующую переменную;
  • ? проверка выборки на нормальность с использованием х 2 или биноминального критерия;
  • ? принятие гипотезы о форме связи;
  • ? математическую обработку данных;
  • ? получение регрессионной модели;
  • ? оценку ее статистических показателей;
  • ? поверочные расчеты с помощью регрессионной модели;
  • ? анализ результатов.

Указанная последовательность операций имеет место при исследовании как парной связи между факторной переменной и одной результирующей, так и множественной связи между результирующей переменной и несколькими факторными.

Применение регрессионного анализа предъявляет к исходной информации определенные требования:

  • ? статистическая выборка объектов должна быть однородной в функциональном и конструктивно-технологическом отношениях;
  • ? достаточно многочисленной;
  • ? исследуемый стоимостной показатель - результирующая переменная (цена, себестоимость, затраты) - должен быть приведен к одним условиям его исчисления у всех объектов в выборке;
  • ? факторные переменные должны быть измерены достаточно точно;
  • ? факторные переменные должны быть независимы либо минимально зависимы.

Требования однородности и полноты выборки находятся в противоречии: чем жестче ведут отбор объектов по их однородности, тем меньше получают выборку, и, наоборот, для укрупнения выборки приходится включать в нее не очень схожие между собой объекты.

После того как собраны данные по группе однородных объектов, проводят их анализ для установления формы связи между результирующей и факторными переменными в виде теоретической линии регрессии. Процесс нахождения теоретической линии регрессии заключается в обоснованном выборе аппроксимирующей кривой и расчете коэффициентов ее уравнения. Линия регрессии представляет собой плавную кривую (в частном случае прямую), описывающую с помощью математической функции общую тенденцию исследуемой зависимости и сглаживающую незакономерные, случайные выбросы от влияния побочных факторов.

Для отображения парных регрессионных зависимостей в задачах по оценке чаще всего используют следующие функции: линейную - у - а 0 + арс + с степенную - у - aj&i + с показательную - у - линейно-показательную - у - а 0 + ар* + с. Здесь - е ошибка аппроксимации, обусловленная действием неучтенных случайных факторов.

В этих функциях у - результирующая переменная; х - факторная переменная (фактор); а 0 , а р а 2 - параметры регрессионной модели, коэффициенты регрессии.

Линейно-показательная модель относится к классу так называемых гибридных моделей вида:

где

где х (i = 1, /) - значения факторов;

b t (i = 0, /) - коэффициенты регрессионного уравнения.

В данном уравнении составляющие А, В и Z соответствуют стоимости отдельных составляющих оцениваемого актива, например, стоимости земельного участка и стоимости улучшений, а параметр Q является общим. Он предназначен для корректировки стоимости всех составляющих оцениваемого актива на общий фактор влияния, например, местоположение.

Значения факторов, находящихся в степени соответствующих коэффициентов, представляют собой бинарные переменные (0 или 1). Факторы, находящиеся в основании степени, - дискретные или непрерывные переменные.

Факторы, связанные с коэффициентами знаком умножения, также являются непрерывными или дискретными.

Спецификация осуществляется, как правило, с использованием эмпирического подхода и включает два этапа:

  • ? нанесение на график точек регрессионного поля;
  • ? графический (визуальный) анализ вида возможной аппроксимирующей кривой.

Тип кривой регрессии не всегда можно выбрать сразу. Для его определения сначала наносят на график точки регрессионного поля по исходным данным. Затем визуально проводят линию по положению точек, стремясь выяснить качественную закономерность связи: равномерный рост или равномерное снижение, рост (снижение) с возрастанием (убыванием) темпа динамики, плавное приближение к некоторому уровню.

Этот эмпирический подход дополняют логическим анализом, отталкиваясь от уже известных представлений об экономической и физической природе исследуемых факторов и их взаимовлияния.

Например, известно, что зависимости результирующих переменных - экономических показателей (цены, аренды) от ряда факторных переменных - ценообразующих факторов (расстояния от центра поселения, площади и др.) имеют нелинейный характер, и достаточно строго их можно описать степенной, экспоненциальной или квадратичной функциями. Но при небольших диапазонах изменения факторов приемлемые результаты можно получить и с помощью линейной функции.

Если все же невозможно сразу сделать уверенный выбор какой- либо одной функции, то отбирают две-три функции, рассчитывают их параметры и далее, используя соответствующие критерии тесноты связи, окончательно выбирают функцию.

В теории регрессионный процесс нахождения формы кривой называется спецификацией модели, а ее коэффициентов - калибровкой модели.

Если обнаружено, что результирующая переменная у зависит от нескольких факторных переменных (факторов) х { , х 2 , ..., х к, то прибегают к построению множественной регрессионной модели. Обычно при этом используют три формы множественной связи: линейную - у - а 0 + а х х х + а^х 2 + ... + а к х к, показательную - у - а 0 a *i а х т- а х ь, степенную - у - а 0 х х ix 2 a 2. .х^или их комбинации.

Показательная и степенная функции более универсальны, так как аппроксимируют нелинейные связи, каковыми и является большинство исследуемых в оценке зависимостей. Кроме того, они могут быть применены при оценке объектов и в методе статистического моделирования при массовой оценке, и в методе прямого сравнения в индивидуальной оценке при установлении корректирующих коэффициентов.

На этапе калибровки параметры регрессионной модели рассчитывают методом наименьших квадратов, суть которого состоит в том, что сумма квадратов отклонений вычисленных значений результирующей переменной у ., т.е. рассчитанных по выбранному уравнению связи, от фактических значений должна быть минимальной:

Значения j) (. и у. известны, поэтому Q является функцией только коэффициентов уравнения. Для отыскания минимума S нужно взять частные производные Q по коэффициентам уравнения и приравнять их к нулю:

В результате получаем систему нормальных уравнений, число которых равно числу определяемых коэффициентов искомого уравнения регрессии.

Положим, нужно найти коэффициенты линейного уравнения у - а 0 + арс. Сумма квадратов отклонений имеет вид:

/=1

Дифференцируют функцию Q по неизвестным коэффициентам а 0 и и приравнивают частные производные к нулю:

После преобразований получают:

где п - количество исходных фактических значений у их (количество аналогов).

Приведенный порядок расчета коэффициентов регрессионного уравнения применим и для нелинейных зависимостей, если эти зависимости можно линеаризовать, т.е. привести к линейной форме с помощью замены переменных. Степенная и показательная функции после логарифмирования и соответствующей замены переменных приобретают линейную форму. Например, степенная функция после логарифмирования приобретает вид: In у = 1пя 0 +а х 1пх. После замены переменных Y- In у, Л 0 - In а № X- In х получаем линейную функцию

Y=A 0 + cijX, коэффициенты которой находят описанным выше способом.

Метод наименьших квадратов применяют и для расчета коэффициентов множественной регрессионной модели. Так, система нормальных уравнений для расчета линейной функции с двумя переменными Xj и х 2 после ряда преобразований имеет следующий вид:

Обычно данную систему уравнений решают, используя методы линейной алгебры. Множественную степенную функцию приводят к линейной форме путем логарифмирования и замены переменных таким же образом, как и парную степенную функцию.

При использовании гибридных моделей коэффициенты множественной регрессии находятся с использованием численных процедур метода последовательных приближений.

Чтобы сделать окончательный выбор из нескольких регрессионных уравнений, необходимо проверить каждое уравнение на тесноту связи, которая измеряется коэффициентом корреляции, дисперсией и коэффициентом вариации. Для оценки можно использовать также критерии Стьюдента и Фишера. Чем большую тесноту связи обнаруживает кривая, тем она более предпочтительна при прочих равных условиях.

Если решается задача такого класса, когда надо установить зависимость стоимостного показателя от факторов стоимости, то понятно стремление учесть как можно больше влияющих факторов и построить тем самым более точную множественную регрессионную модель. Однако расширению числа факторов препятствуют два объективных ограничения. Во-первых, для построения множественной регрессионной модели требуется значительно более объемная выборка объектов, чем для построения парной модели. Принято считать, что количество объектов в выборке должно превышать количество п факторов, по крайней мере, в 5-10 раз. Отсюда следует, что для построения модели с тремя влияющими факторами надо собрать выборку примерно из 20 объектов с разным набором значений факторов. Во-вторых, отбираемые для модели факторы в своем влиянии на стоимостный показатель должны быть достаточно независимы друг от друга. Это обеспечить непросто, поскольку выборка обычно объединяет объекты, относящиеся к одному семейству, у которых имеет место закономерное изменение многих факторов от объекта к объекту.

Качество регрессионных моделей, как правило, проверяют с использованием следующих статистических показателей.

Стандартное отклонение ошибки уравнения регрессии (ошибка оценки):

где п - объем выборки (количество аналогов);

к - количество факторов (факторов стоимости);

Ошибка, необъясняемая регрессионным уравнением (рис. 3.2);

у. - фактическое значение результирующей переменной (например, стоимости); y t - расчетное значение результирующей переменной.

Этот показатель также называют стандартной ошибкой оценки {СКО ошибки ). На рисунке точками обозначены конкретные значения выборки, символом обозначена линия среднего значений выборки, наклонная штрихпунктирная линия - это линия регрессии.


Рис. 3.2.

Стандартное отклонение ошибки оценки измеряет величину отклонения фактических значений у от соответствующих расчетных значений у { , полученных с помощью регрессионной модели. Если выборка, на которой построена модель, подчинена нормальному закону распределения, то можно утверждать, что 68% реальных значений у находятся в диапазоне у ± & е от линии регрессии, а 95% - в диапазоне у ± 2d e . Этот показатель удобен тем, что единицы измерения сг? совпадают с единицами измерения у ,. В этой связи его можно использовать для указания точности получаемого в процессе оценки результата. Например, в сертификате стоимости можно указать, что полученное с использованием регрессионной модели значение рыночной стоимости V с вероятностью 95% находится в диапазоне от (V -2d,.) до + 2d s).

Коэффициент вариации результирующей переменной:

где у - среднее значение результирующей переменной (рис. 3.2).

В регрессионном анализе коэффициент вариации var представляет собой стандартное отклонение результата, выраженное в виде процентного отношения к среднему значению результирующей переменной. Коэффициент вариации может служить критерием прогнозных качеств полученной регрессионной модели: чем меньше величина var , тем более высокими являются прогнозные качества модели. Использование коэффициента вариации предпочтительнее показателя & е, так как он является относительным показателем. При практическом использовании данного показателя можно порекомендовать не применять модель, коэффициент вариации которой превышает 33%, так как в этом случае нельзя говорить о том, что данные выборки подчинены нормальному закону распределения.

Коэффициент детерминации (квадрат коэффициента множественной корреляции):

Данный показатель используется для анализа общего качества полученной регрессионной модели. Он указывает, какой процент вариации результирующей переменной объясняется влиянием всех включенных в модель факторных переменных. Коэффициент детерминации всегда лежит в интервале от нуля до единицы. Чем ближе значение коэффициента детерминации к единице, тем лучше модель описывает исходный ряд данных. Коэффициент детерминации можно представить иначе:

Здесь- ошибка, объясняемая регрессионной моделью,

а - ошибка, необъясняемая

регрессионной моделью. С экономической точки зрения данный критерий позволяет судить о том, какой процент вариации цен объясняется регрессионным уравнением.

Точную границу приемлемости показателя R 2 для всех случаев указать невозможно. Нужно принимать во внимание и объем выборки, и содержательную интерпретацию уравнения. Как правило, при исследовании данных об однотипных объектах, полученных примерно в один и тот же момент времени величина R 2 не превышает уровня 0,6-0,7. Если все ошибки прогнозирования равны нулю, т.е. когда связь между результирующей и факторными переменными является функциональной, то R 2 =1.

Скорректированный коэффициент детерминации:

Необходимость введения скорректированного коэффициента детерминации объясняется тем, что при увеличении числа факторов к обычный коэффициент детерминации практически всегда увеличивается, но уменьшается число степеней свободы (п - к - 1). Введенная корректировка всегда уменьшает значение R 2 , поскольку (п - 1) > {п- к - 1). В результате величина R 2 CKOf) даже может стать отрицательной. Это означает, что величина R 2 была близка к нулю до корректировки и объясняемая с помощью уравнения регрессии доля дисперсии переменной у очень мала.

Из двух вариантов регрессионных моделей, которые различаются величиной скорректированного коэффициента детерминации, но имеют одинаково хорошие другие критерии качества, предпочтительнее вариант с большим значением скорректированного коэффициента детерминации. Корректировка коэффициента детерминации не производится, если (п - к): к> 20.

Коэффициент Фишера:

Данный критерий используется для оценки значимости коэффициента детерминации. Остаточная сумма квадратов представляет собой показатель ошибки предсказания с помощью регрессии известных значений стоимости у.. Ее сравнение с регрессионной суммой квадратов показывает, во сколько раз регрессионная зависимость предсказывает результат лучше, чем среднее у . Существует таблица критических значений F R коэффициента Фишера, зависящих от числа степеней свободы числителя - к , знаменателя v 2 = п - к - 1 и уровня значимости а. Если вычисленное значение критерия Фишера F R больше табличного значения, то гипотеза о незначимости коэффициента детерминации, т.е. о несоответствии заложенных в уравнении регрессии связей реально существующим, с вероятностью р = 1 - а отвергается.

Средняя ошибка аппроксимации (среднее процентное отклонение) вычисляется как средняя относительная разность, выраженная в процентах, между фактическими и расчетными значениями результирующей переменной:

Чем меньше значение данного показателя, тем лучше прогнозные качества модели. При значении данного показателя не выше 7% говорят о высокой точности модели. Если 8 > 15%, говорят о неудовлетворительной точности модели.

Стандартная ошибка коэффициента регрессии:

где (/I) -1 .- диагональный элемент матрицы {Х Г Х)~ 1 к - количество факторов;

X - матрица значений факторных переменных:

X 7 - транспонированная матрица значений факторных переменных;

(ЖЛ) _| - матрица, обратная матрице.

Чем меньше эти показатели для каждого коэффициента регрессии, тем надежнее оценка соответствующего коэффициента регрессии.

Критерий Стьюдента (t-статистика):

Этот критерий позволяет измерить степень надежности (существенности) связи, обусловленной данным коэффициентом регрессии. Если вычисленное значение t . больше табличного значения

t av , где v - п - к - 1 - число степеней свободы, то гипотеза о том, что данный коэффициент является статистически незначимым, отвергается с вероятностью (100 - а)%. Существуют специальные таблицы /-распределения, позволяющие по заданному уровню значимости а и числу степеней свободы v определять критическое значение критерия. Наиболее часто употребляемое значение а равно 5%.

Мультиколлинеарность , т.е. эффект взаимных связей между факторными переменными, приводит к необходимости довольствоваться ограниченным их числом. Если это не учесть, то можно в итоге получить нелогичную регрессионную модель. Чтобы избежать негативного эффекта мультиколлинеарности, до построения множественной регрессионной модели рассчитываются коэффициенты парной корреляции r xjxj между отобранными переменными х. и х

Здесь XjX; - среднее значение произведения двух факторных переменных;

XjXj - произведение средних значений двух факторных переменных;

Оценка дисперсии факторной переменной х..

Считается, что две переменные регрессионно связаны между собой (т.е. коллинеарные), если коэффициент их парной корреляции по абсолютной величине строго больше 0,8. В этом случае какую-либо из этих переменных надо исключить из рассмотрения.

С целью расширения возможностей экономического анализа получаемых регрессионных моделей используются средние коэффициенты эластичности, определяемые по формуле:

где Xj - среднее значение соответствующей факторной переменной;

у - среднее значение результирующей переменной; a i - коэффициент регрессии при соответствующей факторной переменной.

Коэффициент эластичности показывает, на сколько процентов в среднем изменится значение результирующей переменной при изменении факторной переменной на 1 %, т.е. как реагирует результирующая переменная на изменение факторной переменной. Например, как реагирует цена кв. м площади квартиры на удаление от центра города.

Полезным с точки зрения анализа значимости того или иного коэффициента регрессии является оценка частного коэффициента детерминации:

Здесь - оценка дисперсии результирующей

переменной. Данный коэффициент показывает, на сколько процентов вариация результирующей переменной объясняется вариацией /-й факторной переменной, входящей в уравнение регрессии.

  • Под гедонистическими характеристиками понимаются характеристики объекта, отражающие его полезные (ценные) с точки зрения покупателей и продавцов свойства.

При наличии корреляционной связи между факторными и результативными признаками врачам нередко приходится устанавливать, на какую величину может измениться значение одного признака при изменении другого на общепринятую или установленную самим исследователем единицу измерения.

Например, как изменится масса тела школьников 1-го класса (девочек или мальчиков), если рост их увеличится на 1 см. В этих целях применяется метод регрессионного анализа.

Наиболее часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.

  1. Определение регрессии . Регрессия - функция, позволяющая по средней величине одного признака определить среднюю величину другого признака, корреляционно связанного с первым.

    С этой целью применяется коэффициент регрессии и целый ряд других параметров. Например, можно рассчитать число простудных заболеваний в среднем при определенных значениях среднемесячной температуры воздуха в осенне-зимний период.

  2. Определение коэффициента регрессии . Коэффициент регрессии - абсолютная величина, на которую в среднем изменяется величина одного признака при изменении другого связанного с ним признака на установленную единицу измерения.
  3. Формула коэффициента регрессии . R у/х = r ху x (σ у / σ x)
    где R у/х - коэффициент регрессии;
    r ху - коэффициент корреляции между признаками х и у;
    (σ у и σ x) - среднеквадратические отклонения признаков x и у.

    В нашем примере ;
    σ х = 4,6 (среднеквадратическое отклонение температуры воздуха в осенне-зимний период;
    σ у = 8,65 (среднеквадратическое отклонение числа инфекционно-простудных заболеваний).
    Таким образом, R у/х - коэффициент регрессии.
    R у/х = -0,96 х (4,6 / 8,65) = 1,8, т.е. при снижении среднемесячной температуры воздуха (x) на 1 градус среднее число инфекционно-простудных заболеваний (у) в осенне-зимний период будет изменяться на 1,8 случаев.

  4. Уравнение регрессии . у = М у + R y/x (х - М x)
    где у - средняя величина признака, которую следует определять при изменении средней величины другого признака (х);
    х - известная средняя величина другого признака;
    R y/x - коэффициент регрессии;
    М х, М у - известные средние величины признаков x и у.

    Например, среднее число инфекционно-простудных заболеваний (у) можно определить без специальных измерений при любом среднем значении среднемесячной температуры воздуха (х). Так, если х = - 9°, R у/х = 1,8 заболеваний, М х = -7°, М у = 20 заболеваний, то у = 20 + 1,8 х (9-7) = 20 + 3,6 = 23,6 заболеваний.
    Данное уравнение применяется в случае прямолинейной связи между двумя признаками (х и у).

  5. Назначение уравнения регрессии . Уравнение регрессии используется для построения линии регрессии. Последняя позволяет без специальных измерений определить любую среднюю величину (у) одного признака, если меняется величина (х) другого признака. По этим данным строится график - линия регрессии , по которой можно определить среднее число простудных заболеваний при любом значении среднемесячной температуры в пределах между расчетными значениями числа простудных заболеваний.
  6. Сигма регрессии (формула) .
    где σ Rу/х - сигма (среднеквадратическое отклонение) регрессии;
    σ у - среднеквадратическое отклонение признака у;
    r ху - коэффициент корреляции между признаками х и у.

    Так, если σ у - среднеквадратическое отклонение числа простудных заболеваний = 8,65; r ху - коэффициент корреляции между числом простудных заболеваний (у) и среднемесячной температурой воздуха в осенне-зимний период (х) равен - 0,96, то

  7. Назначение сигмы регрессии . Дает характеристику меры разнообразия результативного признака (у).

    Например, характеризует разнообразие числа простудных заболеваний при определенном значении среднемесячной температуры воздуха в осеннне-зимний период. Так, среднее число простудных заболеваний при температуре воздуха х 1 = -6° может колебаться в пределах от 15,78 заболеваний до 20,62 заболеваний.
    При х 2 = -9° среднее число простудных заболеваний может колебаться в пределах от 21,18 заболеваний до 26,02 заболеваний и т.д.

    Сигма регрессии используется при построении шкалы регрессии, которая отражает отклонение величин результативного признака от среднего его значения, отложенного на линии регрессии.

  8. Данные, необходимые для расчета и графического изображения шкалы регрессии
    • коэффициент регрессии - R у/х;
    • уравнение регрессии - у = М у + R у/х (х-М x);
    • сигма регрессии - σ Rx/y
  9. Последовательность расчетов и графического изображения шкалы регрессии .
    • определить коэффициент регрессии по формуле (см. п. 3). Например, следует определить, насколько в среднем будет меняться масса тела (в определенном возрасте в зависимости от пола), если средний рост изменится на 1 см.
    • по формуле уравнения регрессии (см п. 4) определить, какой будет в среднем, например, масса тела (у, у 2 , у 3 ...)* для определеного значения роста (х, х 2 , х 3 ...).
      ________________
      * Величину "у" следует рассчитывать не менее чем для трех известных значений "х".

      При этом средние значения массы тела и роста (М х, и М у) для определенного возраста и пола известны

    • вычислить сигму регрессии, зная соответствующие величины σ у и r ху и подставляя их значения в формулу (см. п. 6).
    • на основании известных значений х 1 , х 2 , х 3 и соответствующих им средних значений у 1 , у 2 у 3 , а также наименьших (у - σ rу/х)и наибольших (у + σ rу/х) значений (у) построить шкалу регрессии.

      Для графического изображения шкалы регрессии на графике сначала отмечаются значения х, х 2 , х 3 (ось ординат), т.е. строится линия регрессии, например зависимости массы тела (у) от роста (х).

      Затем в соответствующих точках у 1 , y 2 , y 3 отмечаются числовые значения сигмы регрессии, т.е. на графике находят наименьшее и наибольшее значения у 1 , y 2 , y 3 .

  10. Практическое использование шкалы регрессии . Разрабатываются нормативные шкалы и стандарты, в частности по физическому развитию. По стандартной шкале можно дать индивидуальную оценку развития детей. При этом физическое развитие оценивается как гармоничное, если, например, при определенном росте масса тела ребенка находится в пределах одной сигмы регрессии к средней расчетной единице массы тела - (у) для данного роста (x) (у ± 1 σ Ry/x).

    Физическое развитие считается дисгармоничным по массе тела, если масса тела ребенка для определенного роста находится в пределах второй сигмы регрессии: (у ± 2 σ Ry/x)

    Физическое развитие будет резко дисгармоничным как за счет избыточной, так и за счет недостаточной массы тела, если масса тела для определенного роста находится в пределах третьей сигмы регрессии (у ± 3 σ Ry/x).

По результатам статистического исследования физического развития мальчиков 5 лет известно, что их средний рост (х) равен 109 см, а средняя масса тела (у) равна 19 кг. Коэффициент корреляции между ростом и массой тела составляет +0,9, средние квадратические отклонения представлены в таблице.

Требуется:

  • рассчитать коэффициент регрессии;
  • по уравнению регрессии определить, какой будет ожидаемая масса тела мальчиков 5 лет при росте, равном х1 = 100 см, х2 = 110 см, х3= 120 см;
  • рассчитать сигму регрессии, построить шкалу регрессии, результаты ее решения представить графически;
  • сделать соответствующие выводы.

Условие задачи и результаты ее решения представлены в сводной таблице.

Таблица 1

Условия задачи Pезультаты решения задачи
уравнение регрессии сигма регрессии шкала регрессии (ожидаемая масса тела (в кг))
М σ r ху R у/x х У σ R x/y y - σ Rу/х y + σ Rу/х
1 2 3 4 5 6 7 8 9 10
Рост (х) 109 см ± 4,4см +0,9 0,16 100см 17,56 кг ± 0,35 кг 17,21 кг 17,91 кг
Масса тела (y) 19 кг ± 0,8 кг 110 см 19,16 кг 18,81 кг 19,51 кг
120 см 20,76 кг 20,41 кг 21,11 кг

Решение .

Вывод. Таким образом, шкала регрессии в пределах расчетных величин массы тела позволяет определить ее при любом другом значении роста или оценить индивидуальное развитие ребенка. Для этого следует восстановить перпендикуляр к линии регрессии.

  1. Власов В.В. Эпидемиология. - М.: ГЭОТАР-МЕД, 2004. - 464 с.
  2. Лисицын Ю.П. Общественное здоровье и здравоохранение. Учебник для вузов. - М.: ГЭОТАР-МЕД, 2007. - 512 с.
  3. Медик В.А., Юрьев В.К. Курс лекций по общественному здоровью и здравоохранению: Часть 1. Общественное здоровье. - М.: Медицина, 2003. - 368 с.
  4. Миняев В.А., Вишняков Н.И. и др. Социальная медицина и организация здравоохранения (Руководство в 2 томах). - СПб, 1998. -528 с.
  5. Кучеренко В.З., Агарков Н.М. и др.Социальная гигиена и организация здравоохранения (Учебное пособие) - Москва, 2000. - 432 с.
  6. С. Гланц. Медико-биологическая статистика. Пер с англ. - М., Практика, 1998. - 459 с.